Krasnoyarsk: 2 th August, 2009 Carbon Nanotube: The Inside...

of 44/44
Krasnoyarsk: 2th August, 2009 Carbon Nanotube: The Inside Story Review written for “Journal of Nanoscience and Nanotechnology” Yoshinori ANDO Dean of Faculty of Science and Technology, Meijo University Department of Materials Science and Engineering, Meijo University Shiogamaguchi 1-501,Tempaku-ku, Nagoya 468-8502, Japan [email protected] 1
  • date post

    26-Jun-2020
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of Krasnoyarsk: 2 th August, 2009 Carbon Nanotube: The Inside...

  • Krasnoyarsk: 24th August, 2009

    Carbon Nanotube: The Inside Story

    Review written for “Journal of Nanoscience and Nanotechnology”

    Yoshinori ANDO Dean of Faculty of Science and Technology, Meijo University

    Department of Materials Science and Engineering, Meijo University

    Shiogamaguchi 1-501,Tempaku-ku, Nagoya 468-8502, Japan

    [email protected] 1

  • ○ Moscow ○ Krasnoyarsk

    ○ Beijing○ Nagoya

    2

  • ◎Tokyo○Nagoya

    名城Meijo:

    Nagoya Castle

    Meijo University 3

  • What’s Carbon? Carbon Element C [Atomic number 6,mass number12,13]

    One of high existent in the earthCrystal made of Carbon Amorphous CarbonDiamond Graphite Carbon Nanotube Fullerene Charcoal3D crystal 2D crystal 1D crystal 0D crystal Amorphous

    2 nm

    4

  • Carbon NanotubesCarbon Nanotubes (CNTs):

    Tubes made by CarbonDiameter is the order of nm

    Co-axial tubes are projected Side wall is projected as parallel linesHRTEM micrograph of

    CNTsS. Iijima: Nature, 354 (1991), 56. 5

  • The Original Paper of Carbon NanotubesSumio Iijima: “Helical microtubles of graphitic carbon”, Nature, 354 (1991), 56.

    Meijo Univ. is the birth place of carbon nanotubes!6

  • T. W. EbbesenPhysics Today 49(1996), 26. Review of Cabon Nanotubes

    “Sumio Iijima of NEC had been using transmission electron microscopy to analyze a sample of carbonsoot received fromYoshinori Ando of MeijoUniversity.

    Iijima observed that the sample contained tubules.”

    History of Carbon of Carbon NanotubesNanotubes

    7

  • Chirarity of Carbon Nanotubes

    Chiral map

    SWNT modelChirarity of tube

    8

  • Tip of tube and bamboo basket model

    Six pentagons close hemi-sphere

    Heptagon at corner B

    S. Iijima, T. Ichihashi & Y.Ando:Nature, 356 (1992), 776.

    9

  • Fullerenes Carbon Nanotubes1970 Prediction of C60 Osawa

    1985 Discover of C60 Kroto, Smalley

    1990 Mass production of fullerenes

    Krätschmer et al.

    1996 Nobel prize in Chemistry

    Kroto, Curl, Smalley

    1991 Discover of MWNTs Iijima

    1993 Discover of SWNTs Iijima & Ichihashi

    Bethune et al.

    1997 Mass producction of SWNTs by arc method Journet et

    al.

    1999 Discover of carbon nanohorn Iijima et al.

    2000 Thinnnest 4Å MWNTs Qin et al.

    2003 Macroscopic net of SWNTs Zhao et al.

    2004 Super growth of SWNTs Hata et al.

    2005 DIPS growth of SWNTs Saito et al.Green terms are related with Y. Ando 10

  • Production of CNTs in Ando Lab

    Arc Discharge Thermal CVD1991~present(COE ’02 ~’07)

    2000~present

    (COE ’02 ~’07)

    MWNTs: First specimen of CNTs discovery 1991

    Yield of CNTs CH4 >> He > Ar 1994

    Predominance of H2 ambient gas 1997

    4Åinnermost tube in H2–arc MWNT 2000

    Characteristic Raman spectra 2002

    Carbon chain in H2–arc MWNT 2003

    3Åinnermost tube in H2–arc MWNT 2004

    SWNTs: ac arc to produce SWNTs 1999

    Mass production of SWNTs, APJ 2000

    Macroscopic web (~30cm) of SWNTs

    2003

    Precursor: camphor

    1. Catalyst: ferrocene (floating catalyst)

    Substrate: quartz plate 2001

    High yield of vertically aligned MWNTs 40mg per run (20 min reaction) 2002

    Patterned growth of aligned MWNTson Co/Si & Ni/Si substrates 2003

    2. Catalyst: Fe-Co (supported catalyst)

    Support: zeolite powder 2003

    High yield of MWNTs with narrow diameter distribution at 650℃ 200411

  • Production ofMulti-walled CarbonNanotubes (MWNTs)

    by Arc Discharge

    12

  • Production of CNTs by DC Arc Discharge

    The original apparatus for producing CNTs

    Y. Ando & S. Iijima: Jpn. J. Appl. Phys., 32(1993), L107.

    DC arc apparatus producing ultrafine particles of SiC

    Y. Ando & M. Ohkohchi, J. Cryst. Growth, 60(1982), 147.

    AC resistive heating apparatus producing fullerenes

    W. Krätschmer et al., Nature, 347 (1990), 354.

    13

  • Cathode deposit obtained by DC arc

    Optical photo of a section of cathode depositY. Ando & S. Iijima: Jpn. J. Appl. Phys., 32(1993), L107. SEM micrograph of cathode

    deposit: CNTs and nanoparticles14

  • Model of Multiwalled Carbon Nanotubes (MWNTs)

    Double wall carbon nanotube

    (DWNT) by S. IijimaFour walls carbon nanotube

    an example of MWNTs15

  • Production of MWNTs in various kinds of gas

    He: 100Torr Ar: 100Torr CH4: 100TorrAmong these three gasses, CH4 gas (including H-atom) is the best.This is the essential difference between CNT and fullerene synthesis.

    Fullerene can’t be formed in gas including H-atom.Y. Ando: Fuller. Sci. & Tech., 2 (1994), 173. 16

  • Predominance of ambient gas including H-atomMass spectroscopy of CH4 gas after arc discharge

    Thermal decomposition of CH4 ambient gas

    2 CH4 C2H2 + 3H2Gas pressure ratio after and before evaporation:

    Eva. in He gas ---1.05 times

    Eva. in CH4 gas --- 2.0 timesSimilar results were obtained in C2H2 and CH4 ambient gases

    What is the result of pure H2 gas as ambience?M. Wang et al.: Fuller. Sci. & Tech., 4 (1996), 1027. 17

  • Arc evaporation of pure graphite in pure H2 ambience

    MWNTs

    Carbon Roses

    Optical photo of the top of cathode

    Y.Ando, X.Zhao & M.Ohkohchi, Carbon, 35 (1997), 153. X. Zhao et al.: Carbon, 35 (1997), 775. 18

  • Purification of H2-arc MWNTs by Infrared Radiation

    (a) As grown (b) Purified

    Purification by infrared radiation

    Y. Ando, X. Zhao & M. Ohkohchi,Jpn. J. Appl. Phys., 37 (1998), L61.

    19

  • HR-SEM before and after purification

    Before purification After purificationArrows: nanoparticles 20

  • SEM micrograph of MWNTs purified by infra-red radiation

    Low magnification SEM of purified MWNTs sponge

    Y. Ando, X. Zhao & M. Ohkohchi,Jpn. J. Appl. Phys., 37 (1998), L61.SEM micrograph of a section

    21

  • HR-TEM micrograph of H2-arc MWNT

    Regular spacing of 3.4 Å

    Thin innermost tube, 11ÅOxidation starts from tip of MWNT

    22

  • The smallest carbon nanotube (0.4 nm diameter)(0.4 nm diameter)

    L.-C.Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando & S. Iijima: Nature, 408 (2000), 50.

    23

  • 3Å diameter innermost tube

    X. Zhao, Y. Ando et al., Phys. Rev. Lett., 92 (2004), 125502.24

  • 1D Quantum Confinement Effect Observed in Raman Spectra

    (a) Low frequency region (b) High frequency regionMWNTs :Multi-walled carbon nanotubes HOPG: Highly oriented pyrolytic graphiteSWNTs:Singlewall carbon nanotubes prepared by APJ method

    X. Zhao, Y. Ando, L-C. Qin, H. Kataura, Y. Maniwa, R. Saito: Physica B 323 (2002), 265. Chem. Phys. Lett. 361(2002), 169.

    Appl. Phys. Lett. 81 (2002), 2550. 25

  • New Raman peak for H2-arc and D2-arc MWNTs

    D-band

    G-band

    new Raman peak

    Inte

    nsity

    (arb

    . uni

    t)

    514.5 nm

    Raman Shift (cm-1)M. Jinno, S. Bandow, Y. Ando; Chem. Phys. Lett., 398 (2004), 256.

    26

  • Carbon Carbon NanowireNanowire : Carbon Chain in MWNT: Carbon Chain in MWNT

    X. Zhao, Y. Ando, Y. Liu, M. Jinno, T. Suzuki: Phys. Rev. Lett. 90 (2003), 187401.

    27

  • CNW and 3Åtube exist in the same MWNT

    CNWMWNT

    Inne

    rmos

    t tub

    e

    C-c

    hain

    (a)

    (c)(b)

    28

  • Electric Resistance of Single MWNT

    Using micro-manipulator

    29

  • Production ofSingle Wall Carbon Nanotube

    by Arc Discharge Method In our Laboratory

    30

  • Production of SWNTs by arc discharge method

    Arc discharge of graphite rod including metal catalysts

    ◎ Arc Plasma Jet (APJ) method

    4%Ni-1%Y catalyst, He 500Torr ambient gas

    Inclined electrodes, 30° ; Yield: 1g / min

    ◎ conventional DC-arc discharge method (FH-arc method)

    single Fe catalyst, H2-Ar 200Torr mixed gas

    macroscopic SWNTs web longer than 30cm

    ◎ AC-arc discharge method (Ohkohchi)

    two electrodes including different metal catalysts31

  • SWNTs Produced by Arc Plasma Jet (APJ) Method

    Production rates of SWNT soot (a) APJ (b) Normal arc

    Apparatus of APJ methodY. Ando et al.:Chem.Phys.

    Lett., 323 (2000), 580.SEM & TEM images of SWNTs prepared by APJ method 32

  • Raman and TG measurement of APJ-SWNT

    Excitation wavelength532nm

    RBMG-band

    D-band2D-band

    33

  • FHFH--arcarc MethodMethod

    Usual DC Arc Evaporation:

    Atmospheric Gas;

    H2-Ar mixture gas

    [Total Pressure 200 Torr]

    Anode; 1.0 at% Fe-Graphite rod

    Evaporation time; 5 min

    Huge web of Huge web of SWNTsSWNTs

    H2-Ar mixture gas

  • Macroscopic SWNT web produced by Macroscopic SWNT web produced by FHFH--arcarc

    Photo of macroscopic SWNT web ~30cm

    SWNTsbottled in one liter bottle

    Mass is only 1g

    35

  • SWNTs Web Like Lace Curtain

    1 cm

    36

  • Optical Photograph of Huge Optical Photograph of Huge SWNT WebWeb

    Mass of this huge SWNT web is ~20 mg 37

  • Electron micrographs of macroscopic SWNTs web

    38

    As grown: (a) SEM, (b) HR-TEM Purified: (c) SEM, (d) TEM X. Zhao, S. Inoue, M. Jinno, T. Suzuki, Y. Ando: Chem. Phys. Lett. 373 (2003), 266.

  • Heat Treatment

    HCl Treatment

    Ultrasonic Cleaning

    Centrifuge

    Drying

    Characterization

    Purification of SWNTs

    Heat Treatment

    HCl Treatment39

  • 40

  • Raman Spectra of Raman Spectra of SWNTsSWNTs Made in HMade in H22--inert Gasinert Gas

    50%H2 + 50%Ne50%H2 + 50%N2

    50%H2 + 50%Kr 50%H2 + 50%Xe 41

  • Thermal Analysis

    Temperature /Temperature /℃℃0 200 400 600 800 1000

    TGTG((

    %%))

    120

    100

    80

    60

    40

    20

    0

    as-grownpaper

    Purified paperPurified web

    42

  • The first stage of double walled carbon nanotubes (DWNT) production

    Arc evaporation of (Fe, Ni, Co)-including carbon rod added in H2S gas

    Y. Ando, et al., Nanonetwork Materials, edited by S. Saito et al.,2001 AIP, CP590, pp. 7-10 (2001).

    43

  • Growth conditions and structure propertiesof CNTs produced by arc discharge method

    in Ando laboratory

    Kind of CNT Method Catalyst Ambient gas Producedposition ItemNumberof layers

    Diameterof tube

    (nm)

    Length oftube(μ m)

    APJ Ni4%+Y1% He: 500torr wholechamber mass productionof SWCNTs 1 1.2- 1.5 ~2- 10

    FH- arc Fe1% H2+Ar: 200torr wholechamber macroscopic webof SWCNTs 1 0.8- 1.5 ~2- 10

    DWCNT normal DC arc Fe0.25%+Ni0.9%+Co0.9%H2+H2S1%:

    500torr wholechamberthick SWCNTsand DWCNTs 2 1.4- 4 ~2- 10

    none H2: 30- 100torr cathode deposit thin inner tube &carbon nanowire 3- 30 10- 30 > 10

    Y or Sc or La He: 500torr cathode deposit mass productionof MWCNTs 10- 40 20- 40 > 10

    SWCNT

    MWCNT normal DC arc

    44