Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct...

22
Draft Marina B´ eguin W study at FCC-ee November 18, 2019 1 / 15 Kinematic reconstruction of the W mass and width at FCC-ee Marina B´ eguin On behalf of the FCC-ee WG2 working group CEPC workshop November 18, 2019

Transcript of Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct...

Page 1: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Dra

ftMarina Beguin W study at FCC-ee November 18 2019 1 15

Kinematic reconstruction of the W mass andwidth at FCC-ee

Marina Beguin

On behalf of the FCC-ee WG2 working groupCEPC workshop

November 18 2019

FCC-eeFCC-hh 100 TeVOption FCC-he

Z WW HZ ttsim 91 GeV sim 160 GeV sim 240 GeV sim 350-365 GeV

Detectors e+eminus CLD and IDEA

WW factoryradics = 160 GeV L = 12 abminus1

rarr 60106 WW

radics = 240 GeV L = 5 abminus1

rarr 80106 WW

radics = 350 minus 365 GeV L = 17 abminus1

rarr 20106 WW

WW diboson physics at FCC-ee

Measurements of the W mass andwidth directly and with threshold scan

W partial widths

Strong coupling constant

CKM matrix

Gauge self-couplings

with unprecedented accuracy

W mass measurement

Marina Beguin W study at FCC-ee November 18 2019 5 15

Precise relation between MW MH Mt is a crucial test of

the internal consistency of SM and failure might reveal

new physics

At WW threshold

Direct determination

Methods

CLIC-Like Detector CLD

Marina Beguin W study at FCC-ee November 18 2019 6 15

More information in FCC CDR v2

Detector simulation softwareFCCSW and heppy

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Study at 1626 GeV 240 GeV and 365 GeV

pythia v824 simulation

Reconstruction withheppy (CLD detectordurham algorithm)

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 7 15

W mass estimators

Raw mass

4C jets momenta rescaling

Kinematic fit with energy-momentum conservation (4C) and Wmasses equality (5C)

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 2: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

FCC-eeFCC-hh 100 TeVOption FCC-he

Z WW HZ ttsim 91 GeV sim 160 GeV sim 240 GeV sim 350-365 GeV

Detectors e+eminus CLD and IDEA

WW factoryradics = 160 GeV L = 12 abminus1

rarr 60106 WW

radics = 240 GeV L = 5 abminus1

rarr 80106 WW

radics = 350 minus 365 GeV L = 17 abminus1

rarr 20106 WW

WW diboson physics at FCC-ee

Measurements of the W mass andwidth directly and with threshold scan

W partial widths

Strong coupling constant

CKM matrix

Gauge self-couplings

with unprecedented accuracy

W mass measurement

Marina Beguin W study at FCC-ee November 18 2019 5 15

Precise relation between MW MH Mt is a crucial test of

the internal consistency of SM and failure might reveal

new physics

At WW threshold

Direct determination

Methods

CLIC-Like Detector CLD

Marina Beguin W study at FCC-ee November 18 2019 6 15

More information in FCC CDR v2

Detector simulation softwareFCCSW and heppy

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Study at 1626 GeV 240 GeV and 365 GeV

pythia v824 simulation

Reconstruction withheppy (CLD detectordurham algorithm)

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 7 15

W mass estimators

Raw mass

4C jets momenta rescaling

Kinematic fit with energy-momentum conservation (4C) and Wmasses equality (5C)

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 3: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

WW factoryradics = 160 GeV L = 12 abminus1

rarr 60106 WW

radics = 240 GeV L = 5 abminus1

rarr 80106 WW

radics = 350 minus 365 GeV L = 17 abminus1

rarr 20106 WW

WW diboson physics at FCC-ee

Measurements of the W mass andwidth directly and with threshold scan

W partial widths

Strong coupling constant

CKM matrix

Gauge self-couplings

with unprecedented accuracy

W mass measurement

Marina Beguin W study at FCC-ee November 18 2019 5 15

Precise relation between MW MH Mt is a crucial test of

the internal consistency of SM and failure might reveal

new physics

At WW threshold

Direct determination

Methods

CLIC-Like Detector CLD

Marina Beguin W study at FCC-ee November 18 2019 6 15

More information in FCC CDR v2

Detector simulation softwareFCCSW and heppy

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Study at 1626 GeV 240 GeV and 365 GeV

pythia v824 simulation

Reconstruction withheppy (CLD detectordurham algorithm)

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 7 15

W mass estimators

Raw mass

4C jets momenta rescaling

Kinematic fit with energy-momentum conservation (4C) and Wmasses equality (5C)

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 4: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

WW diboson physics at FCC-ee

Measurements of the W mass andwidth directly and with threshold scan

W partial widths

Strong coupling constant

CKM matrix

Gauge self-couplings

with unprecedented accuracy

W mass measurement

Marina Beguin W study at FCC-ee November 18 2019 5 15

Precise relation between MW MH Mt is a crucial test of

the internal consistency of SM and failure might reveal

new physics

At WW threshold

Direct determination

Methods

CLIC-Like Detector CLD

Marina Beguin W study at FCC-ee November 18 2019 6 15

More information in FCC CDR v2

Detector simulation softwareFCCSW and heppy

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Study at 1626 GeV 240 GeV and 365 GeV

pythia v824 simulation

Reconstruction withheppy (CLD detectordurham algorithm)

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 7 15

W mass estimators

Raw mass

4C jets momenta rescaling

Kinematic fit with energy-momentum conservation (4C) and Wmasses equality (5C)

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 5: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

W mass measurement

Marina Beguin W study at FCC-ee November 18 2019 5 15

Precise relation between MW MH Mt is a crucial test of

the internal consistency of SM and failure might reveal

new physics

At WW threshold

Direct determination

Methods

CLIC-Like Detector CLD

Marina Beguin W study at FCC-ee November 18 2019 6 15

More information in FCC CDR v2

Detector simulation softwareFCCSW and heppy

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Study at 1626 GeV 240 GeV and 365 GeV

pythia v824 simulation

Reconstruction withheppy (CLD detectordurham algorithm)

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 7 15

W mass estimators

Raw mass

4C jets momenta rescaling

Kinematic fit with energy-momentum conservation (4C) and Wmasses equality (5C)

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 6: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

CLIC-Like Detector CLD

Marina Beguin W study at FCC-ee November 18 2019 6 15

More information in FCC CDR v2

Detector simulation softwareFCCSW and heppy

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Study at 1626 GeV 240 GeV and 365 GeV

pythia v824 simulation

Reconstruction withheppy (CLD detectordurham algorithm)

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 7 15

W mass estimators

Raw mass

4C jets momenta rescaling

Kinematic fit with energy-momentum conservation (4C) and Wmasses equality (5C)

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 7: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Study at 1626 GeV 240 GeV and 365 GeV

pythia v824 simulation

Reconstruction withheppy (CLD detectordurham algorithm)

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 7 15

W mass estimators

Raw mass

4C jets momenta rescaling

Kinematic fit with energy-momentum conservation (4C) and Wmasses equality (5C)

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 8: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Direct reconstruction of MW and ΓW

Hadronic decay channel WW rarr qqqq

Statistical uncertainty estimated with a binned maximum likelihoodfit on the reconstructed MW distributions using templates with dif-ferent nominal W mass (width) values

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

02

04

06

08

1

12

14

16

18

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detector qqqqrarrWW

5C Kinematic Fit4C Kinematic Fit4C Kinematic rescalingRaw MassThreshold method

Marina Beguin W study at FCC-ee November 18 2019 8 15

1626 GeV∆ΓW (4C) = 11 MeV

240 GeV∆ΓW (5C) = 047 MeV

365 GeV∆ΓW (5C) = 1 MeV

Mass and width uncertaintiesevaluated independently

Full FCC-ee luminosity

Th

resh

old

mea

sure

men

th

ere

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 9: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Direct reconstruction of MW and ΓW

Semi-leptonic decay channel WW rarr qq`ν

Study at 1626 GeV 240 GeV and 365 GeV

Only the muon decay

Marina Beguin W study at FCC-ee November 18 2019 9 15

160 180 200 220 240 260 280 300 320 340 360 380 [GeV]s

0

02

04

06

08

1

12

14

16

18

2

22

[M

eV]

W s

tat

M∆

1626 GeV-1 12 abW stat M∆ 240 GeV-1 5 abW stat M∆

365 GeV-1 17 abW stat M∆

CLD Detectorνmicro qqrarrWW

Raw mass

1C Kinematic Fit

2C Kinematic Fit

Threshold method

Full FCC-ee luminosity

1626 GeV ∆ΓW (1C) = 035 MeV240 GeV ∆ΓW (2C) = 068 MeV365 GeV ∆ΓW (2C) = 156 MeV

Threshold measurement here

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 10: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Direct reconstruction of MW and ΓW at threshold

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 10 15

Had

roni

cch

anne

lS

emi-leptonic

channel

Direct reconstruction can be used to extract W mass and width at threshold

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 11: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

W mass and width statistical uncertaintiesTable Hadronic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 166 049 097 144 110 171

4C rescaling 172 036 073 153 077 148

4C fit 113 028 05 11 058 095

5C fit 021 044 047 10

With threshold method σMW= 023 MeV

Threshold measurement here

Table Semi-leptonic decay

σMW[MeVc2] σΓW [MeVc2]

radic

s [GeV] 1626 240 365 1626 240 365

Luminosity (abminus1) 12 5 17 12 5 17

Raw Mass 042 049 119 039 087 194

1C fit 026 033 078 035 059 136

2C fit 031 075 068 156

Marina Beguin W study at FCC-ee November 18 2019 11 15

Full FCC-ee luminosity

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 12: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Systematic uncertainties

radics [GeV] 1626 240 365

δMFSI [MeV] standard cone standard cone standard coneSKI 146 75 239 115 322 175SKII 79 38 121 60 147 83BEC 31 18 59 21 99 55

Marina Beguin W study at FCC-ee November 18 2019 12 15

40 50 60 70 80 90 100 110 120 (5C) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7689

Std Dev 9452

Wo treatment

Cone 04 rad

240 GeV

CLD Detector qqqqrarrWW

Main sources of systematic uncertainties at LEP2arXiv13023415 FSI simulated with pythia (SKISKII)

δMW FSI reduced using a cone(04 rad) on jets

∆MW stat is degraded with the cone by a few percents at threshold and 10-15 above

without FSI

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 13: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Background contamination in hadronic channel

Background processes studied at 1626 GeV 240 GeV and 365 GeV (ifpossible)

e+eminus rarr qq(γ)

e+eminus rarrWW rarr qq``

e+eminus rarr ZZ rarr 4f

e+eminus rarr ZH rarr qqqq

e+eminus rarr ZH rarr qq``

Marina Beguin W study at FCC-ee November 18 2019 13 15

Sofiane Lablack

Bkg rejection increases with energy1626 GeV p = 041 ε = 037365 GeV p = 085 ε = 036

⊳ Effective backgroundrejection above threshold

⊳ ∆MW (5C) = 027 MeV240 GeV (5abminus1) inpresence of background(021 MeV without)

Sofiane Lablack Precise measurement of the W boson mass atthe e+eminus future circular collider (FCC-ee) Master Thesis 2019

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 14: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Conclusion

The amount of W-pairs at different centre-of-mass energies plannedat FCC-ee presents a huge potential for the W physics measurements

Direct MW and ΓW measurements at threshold and above ispossible at FCC-ee Yielding to statistical precision belowMeV-level (∆MW = 210 keV 240 GeV for hadronic channeland ∆MW = 260 keV 1626 GeV for semi-leptonic channel)

Measurement of the centre-of-mass energy with good precision(2 MeV 365 GeV) for energies above the WW threshold wherethe resonant depolarisation cannot be used (more informationhere)

Ultimately a simultaneous fit of WW ZZ and Zγ events couldbe performed to extract mW mZ with potential largecancellations of systematic uncertainties

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 15: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Thank you谢谢谢谢谢谢

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 16: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

BACK-UP

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 17: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

W mass distributions - Hadronic channel

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

Mean 689

Std Dev 9604

Mean 6754

Std Dev 9845

Mean 6711

Std Dev 983

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8154

Std Dev 7732

Mean 8259

Std Dev 8666

1626 GeV qqqqrarrWW

4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 7407

Std Dev 9779

Mean 7313

Std Dev 9977

Mean 7439

Std Dev 1021

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006 Mean 7835

Std Dev 8687

Mean 8607

Std Dev 961

Mean 8559

Std Dev 9863

Mean 8753

Std Dev 1022

240 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (smaller dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 7462

Std Dev 1021

Mean 7329

Std Dev 1066

Mean 762

Std Dev 1063

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006

Mean 79

Std Dev 8493

Mean 8524

Std Dev 9191

Mean 8455

Std Dev 9747

Mean 8732

Std Dev 1004

365 GeV qqqqrarrWW

5C kinematic fit4C kinematic fit4C rescalingRaw Mass

Marina Beguin W study at FCC-ee November 18 2019 2 7

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 18: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

W mass distributions - Semi leptonic channel

Marina Beguin W study at FCC-ee November 18 2019 3 7

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 19: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Cross-section for different processes in lepton collisions

Marina Beguin W study at FCC-ee November 18 2019 4 7

All processes with larger orrelatively close cross-section tothe WW cross-section arepotential backgrounds for theWW decay study

sou

rce

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 20: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Colour Reconnection - Models

Jesper Roy Christiansen July 23 2015EPS HEP Vienna

Color Reconnection (CR) in-teraction between partons ofthe two Ws

e+eminus rarrWW rarr q1q2q3q4

Because WW separation in phase-space issmaller than the typical distance scale of hadro-nisation (q1q4) and (q3q2)

Models in Pythia for e+eminus collisions are basedon string hadronisation

SK1 string = cylindrical bag Colourreconnection probability proportional tothe integrated overlap between cylinders

SK2 string = vortex line Colourreconnection if the cores are crossing

Marina Beguin W study at FCC-ee November 18 2019 5 7

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 21: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Cone reconstruction effect on W mass resolution

Marina Beguin W study at FCC-ee November 18 2019 6 7

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

0005

001

0015

002

0025

003

0035

004

0045Mean 8302

Std Dev 7524

Mean 8301

Std Dev 7751

Wo treatment

Cone 04 rad

1626 GeVshift wo cone = 001517 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

Mean 8238

Std Dev 9568

Mean 8085

Std Dev 1026

Wo treatment

Cone 04 rad

240 GeVshift wo cone = 153515 GeV

40 50 60 70 80 90 100 110 120 (larger dijet mass) [GeV]WM

0

001

002

003

004

005

006Mean 8217

Std Dev 1014

Mean 7958

Std Dev 122

Wo treatment

Cone 04 rad

365 GeVshift wo cone = 259273 GeV

The loss of particle information degrades the resolution by 29 at1626 GeV 67 at 240 GeV and 169 at 365 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix
Page 22: Kinematic reconstruction of the W mass and width at FCC-ee · 2019. 11. 18. · Direct reconstruction of M W and W Hadronic decay channel WW → qqq q Study at 162.6 GeV, 240 GeV

Cone effect on ∆MW stat

radics [GeV] 1626 240 365

∆MW stat [MeV] standard cone standard cone standard conewoFSI 114 118 0215 0228 0463 0564

SKI 118 121 0225 0244 0478 055SKII 117 119 0218 0237 0467 0539BEC 117 118 0224 0236 0461 058

Marina Beguin W study at FCC-ee November 18 2019 7 7

∆MW stat is degraded with the cone by few percent atthreshold and 10-15 above

Full FCC-ee luminosity

  • Appendix