January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30:...

62
International Symposium on Non-ergodic behavior in martensites January 28–30, 2013 University of Duisburg–Essen, NETZ, Carl-Benz-Straße 199, 47057 Duisburg, Germany List of invited speakers: M. Acet (Duisburg, Germany) R. Arroyave (College Station, USA) E. Brück (Delft, Netherlands) T. Cagin (College Station, USA) T. Castán (Barcelona, Spain) V. A. Chernenko (Bilbao, Spain) X. Ding (Xi’an, China) S. Fähler (Dresden, Germany) T. Fukuda (Osaka, Japan) M. E. Gruner (Duisburg, Germany) T. Hickel (Düsseldorf, Germany) R. Kainuma (Sendai, Japan) I. Karaman (College Station, USA) H. Katayama-Yoshida (Osaka, Japan) W. Kleemann (Duisburg, Germany) T. Lookman (Los Alamos, USA) Ll. Mañosa (Barcelona, Spain) J. Neugebauer (Düsseldorf, Germany) A. Planes (Barcelona, Spain) K. R. S. Priolkar (Goa, India) P. Puschnig (Graz, Austria) X. Ren (Tsukuba, Japan) J. Rogal (Bochum, Germany) Disordered Ni-Co-Fe-Ga (A. Dannenberg) U. K. Rößler (Dresden, Germany) K. Sato (Osaka, Japan) A. B. Saxena (Los Alamos, USA) D. Schryvers (Antwerp, Belgium) S. R. Shenoy (Trivandrum, India) D. Sherrington (Oxford, UK) M. Wuttig (College Park, USA) R. Zeller (Jülich, Germany) Symposium Chair: Organization: Peter Entel [email protected] Anna Grünebohm [email protected] Raymundo Arroyave [email protected] Denis Comtesse [email protected] Sebastian Fähler [email protected] phone: +49 203 379 4271 / 2794

Transcript of January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30:...

Page 1: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

International Symposium on

Non-ergodic behavior in martensitesJanuary 28–30, 2013

University of Duisburg–Essen, NETZ, Carl-Benz-Straße 199,

47057 Duisburg, Germany

List of invited speakers:

M. Acet (Duisburg, Germany)

R. Arroyave (College Station, USA)

E. Brück (Delft, Netherlands)

T. Cagin (College Station, USA)

T. Castán (Barcelona, Spain)

V. A. Chernenko (Bilbao, Spain)

X. Ding (Xi’an, China)

S. Fähler (Dresden, Germany)

T. Fukuda (Osaka, Japan)

M. E. Gruner (Duisburg, Germany)

T. Hickel (Düsseldorf, Germany)

R. Kainuma (Sendai, Japan)

I. Karaman (College Station, USA)

H. Katayama-Yoshida (Osaka, Japan)

W. Kleemann (Duisburg, Germany)

T. Lookman (Los Alamos, USA)

Ll. Mañosa (Barcelona, Spain)

J. Neugebauer (Düsseldorf, Germany)

A. Planes (Barcelona, Spain)

K. R. S. Priolkar (Goa, India)

P. Puschnig (Graz, Austria)

X. Ren (Tsukuba, Japan)

J. Rogal (Bochum, Germany)

Disordered Ni-Co-Fe-Ga (A. Dannenberg)

U. K. Rößler (Dresden, Germany)

K. Sato (Osaka, Japan)

A. B. Saxena (Los Alamos, USA)

D. Schryvers (Antwerp, Belgium)

S. R. Shenoy (Trivandrum, India)

D. Sherrington (Oxford, UK)

M. Wuttig (College Park, USA)

R. Zeller (Jülich, Germany)

Symposium Chair: Organization:Peter Entel [email protected] Anna Grünebohm [email protected] Arroyave [email protected] Denis Comtesse [email protected] Fähler [email protected] phone: +49 203 379 4271 / 2794

Anna Grünebohm
Page 2: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

International Symposium on

Non-ergodic behavior in martensites

January 28–30, 2013

University of Duisburg–Essen, NETZ, Carl-Benz-Straße 199,

47057 Duisburg, Germany

Monday, January 28

9:00-9:30: Welcome and Introduction

Scientific Director NETZ & CENIDE: Prof. Dr. Christof Schulz,

and symposium chair: P. Entel

Chairmen: P. Entel

9:30-10:00: D. Sherrington:

Understanding glassiness in martensitic alloys:

a perspective from spin glasses and random field magnetism

10:00-10:30: X. Ren:

Strain glass as a new perspective to martensite/ferroelastics

10:30-11:00: Coffee Break

Chairmen: R. Arroyave

11:00-11:30: S. R. Shenoy:

Entropy barriers and glass-like behavior

in martensitic models without quenched disorder

11:30-12:00: A. Saxena:

Mesoscopic modeling of ferroic tweed and ferroic glass

12:00-12:30: T. Lookman:

On glassiness in ferroelastics:

Spin models, microstructures and phase diagrams

12:30-13:00: W. Kleemann:

Domain states and glassy disorder in relaxor ferroelectrics

13:00-14:30: Lunch break

Chairmen: S. Fähler

14:30-15:00: D. Schryvers:

Electron microscopy studies of

disorder, precursors and precipitation in martensitic systems

15:00-15:30: I. Karaman:

Strain glass, super-spin glass and Kauzmann transitions

in NiMnIn meta-magnetic shape memory alloys

15:30-16:00: Coffee Break

Chairmen: M. Acet

16:00-16:30: T. Castán:

Precursor textures in ferroelastics

16:30-17:00: A. Planes:

Avalanche criticality in martensitic transitions:

Acoustic emission studies

17:00-17:30 V. A. Chernenko:

Defects impact on relaxation phenomena in Ni-Mn-Ga alloys

Page 3: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Tuesday, January 29

Chairmen: M. Acet

9:30-10:00: Ll. Mañosa:

Reversibility of the entropy change at the magnetocaloric effect

in magnetostructural transitions

10:00-10:30: R. Kainuma:

Transformation behavior at low temperatures

in some shape memory alloys

10:30-11:00: Coffee Break

Chairmen: W. Kleemann

11:00-11:30: M. Acet:

Relaxation processes in Ni-Mn based martensitic Heuslers

11:30-12:00: K. R. Priolkar:

Role of local disorder in martensitic and

magnetic interactions in Ni-Mn based FSMA

12:00-12:30 M. E. Gruner:

Magnetoelastic coupling and the formation

of adaptive martensite in MSMA

12:30-13:00: S. Fähler:

Ergodicity by ordering nanotwins

13:00-14:30: Lunch break

Chairmen: M. E. Gruner

14:30-15:00: U. K. Rößler:

Nontrivial textures in (multi)ferroics and glassy precursor states

15:00-15:30: M. Wuttig:

Magnetostriction of Permendur

15:30-16:00: R. Arroyave

The effect of configurational order on the magnetic transformation in

ferromagnetic shape memory alloys

16:00-16:30 Coffee break

Chairmen: S. Fähler

16:30-17:00: R. Zeller:

Precise density functional calculations for large systems with KKRnano

for cooling applications near room temperature

17:00-17:30: T. Cagin

Extended Lagrangian molecular dynamics method

for modeling ferroelectrics and magnetic materials

17:30-22:00: Poster session and dinner

Page 4: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Wednesday, January 30

Chairmen: P. Entel9:00-9:30: J. Neugebauer:

Smart microstructures by non-ergodic martensitic transitions9:30-10:00: T. Hickel:

Ab initio prediction of free energies and martensitic phase transitionsin magnetic shape memory alloys

10:00-10:30: J. Rogal:Free energy of phase transformationsextracted from the reweighted path ensemble

10:30-11:00: Coffee BreakChairmen: M. E. Gruner11:00-11:30: X. Ding:

Precursor phenomen and their effects on the product phasein stress- and temperature-induced martensitic transformation

11:30-12:00: T. Fukuda:Time dependent nature of martensitic transformationsin an austenitic stainless steel and some shape memory alloys

12:00-12:30: P. Puschnig:Stacking fault energies in austenitic steelcalculated from ab-initio electronic structure theory

12:30-13:00: E. Brück:Magnetoelastic effects in Fe2P based materials

13:00-14:30: Lunch breakChairmen: W. Kleemann14:30-15:00: H. Katayama-Yoshida:

Design of d0 ferromagnetism in MgO, CaO, BaO, SrO and ZnO:beyond LDA and multi-scale simulations

15:00-15:30: K. Sato:Computational nano-materials designand realization for semiconductor spintronics:control of defect and spinodal nano-decomposition

15:30-16:00: P. Entel:Concluding remarks

Page 5: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

International Symposium on

Non-ergodic behavior in martensitesJanuary 28–30, 2013

University of Duisburg–Essen, NETZ, Carl-Benz-Straße 199,47057 Duisburg, Germany

Abstracts:

Invited talks

Page 6: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Understanding glassiness in martensitic alloys: Aperspective from spin glasses and random field

magnetism

David Sherrington1,2

1 Department of Physics, University of Oxford, Oxford, OX1 3 PU,UK, [email protected]

2 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico87501, USA

This talk will consider effects of quenched disorder (alloying) in structurally de-formable materials with a particular orientation towards glassy behaviour, usingminimalist modelling and mappings to analogues of spin glasses and random fieldmagnets. As well as spin glass experience bearing on the behaviour of the materialssystems, the study suggests new issues for spin glass/random field magnets and new”laboratories” to study spin models.

Page 7: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Entropy barriers and glass-like behaviour inmartensitic models without quenched disorder

Subodh R. ShenoyIndian Institute of Science Education and Research, Trivandrum 695016, India,

[email protected]

A 2D model of three-valued discrete-strain pseudospins S(r) = 0,+1,−1 is studiedin Monte Carlo simulations, under systematic temperature quenches, without extrin-sic disorder in the Hamiltonian. The reduced model is induced from a continuum-strain Landau description of the square-rectangle martensitic transition, with thepseudospins interacting via a power-law anisotropic potential obtained from the StVenant Compatibility constraint. The same procedure yields pseudospin models forthe cubic-tetragonal, and other 3D transitions [2]. After temperature quenches, di-lute martensitic seeds in an austenite background induce a sequential evolution ofdomain-wall phases: a ’vapour’ of a martensite droplet in austenite; a ’liquid’ ofdisordered martensitic domain walls; and a ’crystal’ of oriented-wall twins. Thereare time scales for conversion to martensite tm(T ); and for domain-wall orientationdriven by Compatibility tC(T ). The evolution is tracked through Temperature-Time-Transformation or TTT curves. Depending on elastic constants, tm(T ) can be eitherbe thermally activated and slow, as in ’isothermal’ martensites; or non-activated andfast, as in ’athermal’ martensites, that have explosive conversions below a martensitestart temperature. For quenching to above such a temperature T1, we find that con-versions now take a delay time, that rises towards a temperature T4 > T1. This isidentified with the puzzling Kakeshita delay tail in tm(T ), seen in some martensites[3]. The mean time shows glass-like Vogel-Fulcher behaviour, tm ∼ exp[1/(T4 − T )],and distributions are log-normal [1]. In contrast to the isothermal-regime activationover energy barriers with tm ∼ exp(E0/T )) these athermal-regime times are insensi-tive to the Hamiltonian energy scale E0. Hence, the delays are attributed to entropybarriers faced in the search, on constant-energy surfaces, for rare energy-loweringpathways. The entropy barriers are pictured to vanish at T1 and diverge at T4. Thecoexistence of slow and fast times in the TTT phase diagram is best understood inFourier space. The vapour phase peak in the structure-factor in the Brillouin zonehas to find pathways to distort and roll into a small and anisotropic ’golf-hole; andthen be rapidly guided by a ’funnel’ into a liquid phase; with a final domain-wallsymmetry-breaking to a crystal phase. A time-dependent effective temperature canbe defined, that tends to the bath temperature Teff (t) → T, on re-equilibration. Theentropic golf-hole, and energetic funnel, are concepts are borrowed from protein fold-ing, that also involves searches on a free energy landscape [4]. On the other hand, fortemperature quenches to much lower temperatures T << T1 < T4, the domain wallsin the liquid become sluggish, needing the sudden appearance of austenitic hotspotsor dynamical heterogeneities to release trapped stress, and open up pathways to orientto form the crystal [1, 5].

Page 8: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Strain glass as a new perspective tomartensite/ferroelastics∗

Xiaobing RenFerroic Physics Group, National Institute for Materials Science, Sengen 1-2-1, Tsukuba

305-0047, Japan, [email protected]

Strain glass is a ”glass” form of martensite; it is a frozen disordered ferroelastic statewith short-range strain order only. It is a conjugate state to the long-range orderedferroelastic state or martensite. In this talk recent progress in strain glass and strainglass transition is reviewed. It is shown that a strain glass bears all the features ofa glass, such as dynamic freezing, ergodicity-breaking, existence of nano-scale strainordering. These are parallel to other types of glasses such as relaxor ferroelectrics andcluster spin glasses. The origin of strain glass is discussed in terms of the interaction ofstrain order parameter to randam point defects. Finally, it is shown that strain glassis the key to understanding quite a number of long-standing puzzles in martensitecommunity, such as the origin of premartensitic phenomena, Invar effect, and so on.This new perspective may also lead to the prediction/design of novel materials.

References

[1] S. Sarkar, X. B. Ren, and K. Otsuka. Phys. Rev. Lett. 95, 205702 (2005)

[2] Y. Wang, X. B. Ren and K. Otsuka. Phys. Rev. Lett. 97, 225703 (2006)

[3] P. Lloveras, T. Castan, M. Porta, A. Planes, and A. Saxena, Phys. Rev. Lett. 100,165707 (2008)

[4] R. Vasseur and T. Lookman, Phys. Rev. B 81, 09417 (2010)

[5] X. B. Ren, et al., MRS Bulletin 34, 838 (2009)

[6] D. Wang, Y. Wang, Z. Zhang, and X. B. Ren, Phys. Rev. Lett. 105, 20570 (2010)

[7] D. Sherringtong in Disorder and Strain-Induced Complexity in Functional Materials(T. Kakeshita, T. Fukuda, A. Saxena and A. Planes, eds., (Springer, 2011)

[8] J. Zhang, et al., Phys. Rev. B 83, 174204 (2011)

[9] J. Zhang, et al., Phys. Rev. B 84, 214201 (2011)

[10] D. Wang, et al., Phys. Rev. B 86, 054120 (2012).

∗The author acknowledges Y. Wang, S. Sarkar, Y.C. Ji, D.Z. Xue, Z. Zhang, D. Wang, J. Zhang,

K. Otsuka, T. Suzuki, A Saxena, T. Lookman, Y.Z. Wang for the support and collaboration

Page 9: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

When these self-generated catalysts vanish, one has a glass-like domain-wall phase.The approach used in the model may be useful (on adding disorder), in studying strainglass evolution after temperature quenches.

References

[1] N. Shankaraiah, K. P. N. Murthy, T. Lookman, and S. R Shenoy, Europhys. Lett. 92,36002 (2010);

Phys. Rev. B 84, 064119 (2011); and unpublished

[2] S. R. Shenoy, T. Lookman and A. Saxena, Phys. Rev. B 82, 077034 (2010)

[3] T. Kakeshita, T. Fukuda, and T. Saburi, Scr. Mater. 34, 1 (1996);

L. Mueller, U. Klemradt, and T. R. Finlayson, Mater. Sci. Eng. A, 438, 122 (2006)

[4] P. G. Wolynes, J. N. Onuchic, and D. Thirumalai, Science 267, 1619 (1995);

D. J. Bicout and A. Szabo, Protein Science 9, 452 (2000);

N. Nakagawa, Phys. Rev. Lett. 98, 128104 (2007)

[5] S. R. Shenoy and T. Lookman, Phys. Rev. B 78, 144103 (2008).

Page 10: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Mesoscopic modeling of ferroic tweed and ferroicglass

Avadh Saxena

Los Alamos National Lab., NM 87545 Los Alamos, USA, [email protected]

This talk will attempt to demonstrate the ubiquity of similar phenomena in all four

primary ferroic materials, in particular disorder induced tweed and glassy behav-

ior. Ferroic materials possess two or more orientation states (domains) that can be

switched by an external field and show hysteresis. Typical examples include ferro-

magnets, ferroelectrics and ferroelastics which occur as a result of a phase transition

with the onset of spontaneous magnetization (M), polarization (P) and strain (e),

respectively. The fourth class of ferroic materials called ferrotoroidics (with an order-

ing of either magnetic or polar vortices) has been recently found. Phase transitions

result from symmetry breaking: Broken rotational symmetry in a crystal leads to

ferroelasticity, broken spatial inversion symmetry leads to ferroelectricity and broken

time reversal symmetry results in ferromagnetism. Simultaneous spatial inversion and

time reveral symmetry breaking leads to magnetic ferrotoroidoc behavior. However,

electric ferrotoroidic state is invariant under both spatial inversion and time reversal.

Next, I will emphasize the role of long-range, anisotropic forces such as those arising

from either the elastic compatibility constraints or the (polar and magnetic) dipolar

interactions (or toroidal quadrupolar interactions) in determining the microstructure.

In the presence of disorder all ferroic materials are expected to exhibit tweed precur-

sors and glassy behavior.

Page 11: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

On glassiness in ferroelastics: spin models,

microstructure and phase diagrams

Turab LookmanTheoretical Division, Los Alamos National Laboratory, NM 87545 Los Alamos USA,

[email protected]

There is little consensus on the nature of the glass state and its relationship to otherstrain states in ferroelastics. I will show what can be learned by mapping continuummodels into discrete ones and using tools of statistical mechanics. In particular, thesemodels recover salient aspects of the microstructure and, in the presence of disorder,provide an interpretation of known strain states, including precursory tweed and aglassy phase.

References

[1] R. Vasseur, D. Xue, Y. Zhou, W. Ettoumi, X. Ren and T. Lookman, Phys Rev. B.(2012); http://arxiv.org/abs/1210.5919

[2] R. Vasseur, T. Lookman and S.R. Shenoy, Phys. Rev. B 82, 0948 (2010).

Page 12: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Domain states and glassy disorder in relaxorferroelectrics

Wolfgang Kleemann

Angewandte Physik, Universitat Duisburg-Essen, 47048 Duisburg, [email protected]

The glassy phases of both martensitic alloys with compositional defects and relaxor

ferroelectrics with internal charge disorder can be mapped onto those of spin-glasses

subjected to additional quenched random-field (RF) disorder [1]. Minimalistic RF

models allow explaining the formation of intermediate ’domain states’ in relaxors such

as PbMg1/3Nb1/3O3 (PMN) [2], SrxBa100−xNbO3 (SBNx) [3], and BaZrxTi100−xO3

(BTZ) [4]. Transitions into cluster-glass states are expected to occur after equilibra-

tion upon further cooling. This talk will highlight pertinent evidence from structural,

dielectric, and dynamic experiments [5] and discuss aspects of the complexity involved

[1].

References

[1] D. Sherrington, Springer Tracts in Mater. Science 148, 177 (2012)

[2] V. Westphal, W. Kleemann, M. Glinchuk, Phys. Rev. Lett. 68, 847 (1992)

[3] W. Kleemann, J. Dec, P. Lehnen, R. Blinc, B. Zalar, R. Pankrath, Europhys. Lett. 57,14 (2002)

[4] V. V. Shvartsman, J. Zhai, W. Kleemann, Ferroelectrics 379, 77 (2009)

[5] W. Kleemann, J. Advan. Diel. 2, 1241001 (2012).

Page 13: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Electron microscopy studies of disorder, precursorsand precipitation in martensitic systems

Dominique SchryversUniversity of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium,

[email protected]

The lecture will review the results of various electron microscopy investigations ofthe effects of disorder, premartensite and precipitation in martensitic systems. Thiswill include early results in Ni-Al in which the micro-modulation of the premartensitecan be related with the 7R martensite stacking as well as recent work on strain glassobservations in Ni-Ti under high resolution and in-situ work on the effects of nano-precipitation in Ni-Ti-Nb.

Page 14: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Strain glass, super-spin glass and Kauzmanntransitions in NiMnIn meta-magnetic shape

memory alloys

Ibrahim Karaman1,2

1 Department of Mechanical Engineering, Texas A & M University,MS 3123, College Station, TX 77843, USA, [email protected]

2 Materials Science and Engineering Program, Texas A & M Univer-sity, College Station, Texas 77843-3003, USA

NiMn based metamagnetic shape memory alloys (MMSMAs) show great promise forsensing, energy harvesting and actuation applications because they undergo mag-netic field induced martensitic phase transformation due to differences between theaustenitic and martensitic magnetic saturation levels. More interestingly, these alloysdemonstrate multiple first- and second-order phase transitions in a single composi-tion after simple heat treatments. These include first-order martensitic transforma-tion, where martensite can be athermal or isothermal, and second-order super-spinglass, strain glass, order-disorder, ferromagnetic-paramagnetic/antiferromagnetic,and paramagnetic-antiferromagnetic transitions. The same mechanisms can also beobserved with minor compositional changes with the same heat treatment. Configu-rational order and defects play a significant role in such multi-physics couplings. Inthis talk, the potential role of heat treatments, composition, and thus, configurationalorder on the six critical transitions will be discussed. These transitions include: 1)B2 to L21 ordering, 2) austenite to martensite, 3) Curie, 4) strain glass, 5) super-spinglass, and 6) Kauzmann (TK between austenite and martensite).

Page 15: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Precursor textures in ferroelastics

Teresa Castan1, Pol Lloveras

1, Marcel Porta

2, Antoni Planes

1, Avadh Saxena

2

1 Departament d’Estructura i Constituents de la Materia, Facultatde Fısica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona,Catalonia, [email protected]

2 Theoretical Division, Los Alamos National Laboratory, Los Alamos,NM 87545, USA

First-order phase transitions are expected to occur abruptly at given values of exter-

nal control parameters such as temperature, pressure or applied field (stress, magnetic

or electric). However, in numerous homogeneous crystalline solids the transition is

preceded by anomalies, typically detected in the response to certain types of exci-

tations, which may arise from local symmetry breaking perturbations. Spatially in-

homogeneous states often occur as precursors of the incoming phase in many ferroic

materials including ferroelastic, ferroelectric, magnetic and superconducting systems.

These states consist of coexisting regions with properties varying over nanometer

length scale. Understanding these complex textures is a challenging nonlinear prob-

lem usually involving interplay of disorder and long range interactions.

Strain, and thus elasticity, is known to be important in determining the actual

symmetry properties of nanoscale patterns. From this point of view martensites

offer a unique scenario where purely structural textures can be studied. Here, after

providing an overview of general aspects of the problem we will discuss the combined

role of elastic anisotropy (controlling long range effects) and disorder in the context

of such textures. We will show that crosshatched modulations (tweed patterns)

occur for temperatures above the martensitic phase in the limit of high anisotropy

or low disorder while a nano-cluster phase separated state occurs at low anisotropies

or high disorder [1]. In the latter case, nanoscale inhomogeneities give rise to glassy

behavior while the structural transition is inhibited [2]. Interestingly, in this case

the ferroelastic system also displays a large thermo-mechanical response so that

the low symmetry structure can be easily formed by the application of relatively

small stresses within a broad temperature range [3]. Results will be discussed in the

context of available experimental data [4].

References

[1] P. Lloveras, T. Castan et al., Phys. Rev. Lett. 100, 165707 (2008)

[2] P. Lloveras, T. Castan et al., Phys. Rev. B 80, 054107 (2009)

[3] P. Lloveras, T. Castan et al., Phys. Rev. B 81, 214105 (2010)

[4] X. Ren, Y. Wang et al., MRS Bulletin 34, 838 (2009).

Page 16: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Avalanche criticality in martensitic transitions:Acoustic emission studies

Antoni Planes, Lluis Manosa, Eduard VivesDepartament d’Estructura i Constituents de la Materia. Facultat de Fısica. Universitat de

Barcelona. Diagonal 647, E-08028 Barcelona, Catalonia, [email protected]

Martensitic transitions usually take place through a sequence of discontinuous stepsor avalanches of the order parameter (appropriate combination of components of thestrain tensor). This behavior reflects the fact that, when externally driven, marten-sitic systems jump from one metastable state to another metastable state with anassociated energy dissipation responsible for hysteresis effects. This is a consequenceof the existence of dynamical constraints which may originate from the interplay ofthe transition with some sort of randomly quenched disorder (impurities, dislocations,etc...) and/or self-generated long-range elastic interaction effects. The statistical dis-tributions of avalanche sizes and durations is related to the properties of the complexfree energy landscape determined by the configuration of the metastable minima. Of-ten, these distributions are power-law which reveals the absence of characteristic sizeand time scales in these transitions and define the so-called avalanche criticality.Avalanches are associated with sudden changes in the internal strain field of themartensitic material that are at the origin of acoustic waves that propagate throughthe materials and can be detected with appropriate transducers. This is the so-calledacoustic emission (A.E.) that typically occurs in the ultrasonic range between kHz andMHz. In this talk we will show how to use AE measurements in order to statisticallycharacterize avalanches in martensitic transitions. This will be illustrated with ex-amples for magnetic and non-magnetic shape-memory alloys under different externalconditions (temperature, stress, strain and magnetic field). Our results demonstratethat these transitions display avalanche criticality characterized by exponents thatmainly depend on the symmetry reduction at the transition and on the driving mech-anism.

References

[1] F. J. Perez-Reche et al., Phys. Rev. B 69, 064101 (2004)

[2] E. Bonnot et al., Phys. Rev. B 78, 094104 (2008)

[3] B. Ludwig et al., Appl. Phys. Lett. 94, 121901 (2009)

[4] M. C. Gallardo et al., Phys. Rev. B 81, 174102 (2010)

[5] E. Vives at al., Phys. Rev. B 84, 060101(R) (2011)

[6] A. Planes et al., Acoustic emission in martensitic transformations, J. Alloys Compd.(2011), doi: 10.1016/j.allcom2011.10.082 .

Page 17: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Defects impact on relaxation phenomena inNi-Mn-Ga alloys

Volodymyr A. Chernenko

Universidad del Pais Vasco UPV/EHU Apartado 644, 48080 BILBAO, Spain,volodymyr [email protected]

A destabilizing influence of thermal, mechanical and combined thermomechanical cy-

cling on the martensitic phase has been revealed experimentally in high-temperature

Ni-Mn-Ga alloys. The martensite destabilization is caused by the internal stress that

arises in the course of the spatial reconfiguration of crystal defects that can be de-

scribed in the framework of symmetry-conforming Landau theory. Huge relaxation

effect in the surface layer of NiMnGa single crystal is recently found by optical elip-

sometry. A giant isothermal creep (up to 20%) of the refractive index was measured

and observed below 315K. The time and temperature dependent mechanisms respon-

sible for these phenomena are not well understood.

References

[1] V. A. L’vov, A. Kosogor, J. M. Barandiaran, V. A. Chernenko, Acta Mater. 60, 1587(2012)

[2] A. Dejneka, V. Zablotskii, M. Tyunina, L. Jastrabik, J. I. Perez-Landazabal, V. Re-carte, V. Sanchez-Alarcos, and V. A. Chernenko, Appl. Phys. Lett. 101, 141908 (2012).

Page 18: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Reversibility of the entropy change at themagnetocaloric effect in magnetostructural

transitions

Lluıs Manosa, Baris Emre, Suheyla Yuce, Enric Stern-Taulats, Antoni Planes

Departament d’Estructura i Constituents de la Materia, Facultat de Fısica. Universitat deBarcelona, Diagonal 647, 08028 Barcelona, Catalonia, [email protected]

The giant magnetocaloric effect reported for a large variety of materials is typically

associated with the occurrence of a first order magnetostructural transition. The

hysteresis of the first-order phase transition represents a serious drawback for the

potential applications of the magnetocaloric effect in solid-state refrigerators. On the

one hand, it reduces the refrigerant capacity of the material, and on the other hand,

the entropy change quantifying the effect is not reversibly recovered upon succesive

cycling through the transition. In this work, we used differential scanning calorimetry

under magnetic field to study the reversibility of the entropy change in a number of

intermetallic alloys exhibiting giant magnetocaloric effect.

Page 19: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Transformation behavior at low temperatures insome shape memory alloys

Ryosuke Kainuma1, Xiao Xu1, Kodai. Niitsu1, Rie Y. Umetsu2, Toshihiro Omori1

1 Department of Material Science, Graduate School of En-gineering, Tohoku University, Sendai 980-8579, Japan,[email protected]

2 Institute for Materials Research (IMR), Tohoku University, Sendai980-8577, Japan

In order to clarify the thermal activating process in the kinetics of martensitic trans-

formation, investigation at cryogenic temperatures is very important. We can use

some different kind of external fields such as uniaxial stress and magnetic field to

control martensitic transformation at low temperatures. Recently, the field-induced

transformation behaviors in low temperature region for the magnetic shape memory

alloy (SMA) Ni-Co-Mn-In [1], and the conventional SMAs Ti-Ni and Cu-Al-Mn [2]

were examined by our research group. In the Ni-Co-Mn-In alloys, abnormal increase

of the transformation hysteresis in the magnetic-field-induced transformation appears

with decreasing temperature. A similar behavior on the hysteresis has also been found

in the stress-induced transformation in the Ti-Ni alloy, while almost no change has

been detected in the stress-induced Cu-Al-Mn alloy. In this presentation, the details

on the transformation behavior at low temperatures for these alloys will be presented

and discussed.

References

[1] W. Ito et al., Appl. Phys. Lett., 92, 021908 (2008)

[2] K. Niitsu et al., Mater. Trans. 52, 1713 (2011).

Page 20: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Relaxation processes in Ni-Mn-based martensitic

Heuslers

Mehmet Acet

Experimentalphysik, Universitat Duisburg-Essen, Lotharstr. 1, 47048 Duisburg, Germany,[email protected]

The transition from the austenite to the martensite state in Ni-Mn-X (X: In, Sn, Sb)

Heusler systems is accompanied by a transition from a ferromagnetic or a ferromag-

netically correlated state to a short-range antiferromagnetically correlated state as

shown by neutron polarization analysis experiments. The presence of this transition

is responsible for the observation of effects such as the inverse magnetocaloric ef-

fect, magnetic shape-memory, exchange bias, large magnetoresistance, etc. A further

property of these materials is that they can exhibit nonergodic behavior both at low

temperatures and around the martensitic transition. We examine the nonergodicity of

these systems by time dependent magnetization measurements with the samples pre-

pared under various field and temperature treatments and discuss the characteristics

of the exponential time dependencies.

Page 21: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Role of local disorder in martensitic and nagneticinteractions in Ni-Mn based FSMA

Kaustubh R. S. PriolkarDepartment of Physics, Goa University, Taleigao Plateau, Goa 403206, India,

[email protected]

Extended X-ray absorption fine structure (EXAFS) spectroscopy has been employedto understand the mechanism of martensitic transformation in Ni-Mn based ferro-magnetic shape memory alloys. Local structural distortions have been found evenin the austenitic phase in Ni2Mn1.4Z0.6 (Z = Sn and In) alloys [1, 2]. Systematicinvestigations on Ni2Mn1+xIn1−x (x =0, 0.3, 0.4, 0.5, and 0.6) reveal a progres-sive difference between Ni-In and Ni-Mn nearest neighbour bond distances that drivethese alloys to martensitic transformation [3]. Thermal evolution of Ni-Mn and Mn-Mn bond distances in the martensitic phase gives a clear evidence of a close relationbetween structural and magnetic degrees of freedom in these alloys. EXAFS alongwith XMCD studies highlight the role of Ni 3d-Mn 3d hybridization in the magnetismof the martensitic phase of these alloys [4].

References

[1] P. A. Bhobe et al., J. Phys.: Condens. Matter 20, 015219 (2008)

[2] P. A. Bhobe et al., J. Phys. D: Appl. Phys. 41, 045004 (2008)

[3] D. N. Lobo et al., Appl. Phys. Lett. 96, 232508 (2010)

[4] K. R. Priolkar et al., Euro Phys Lett. 94, 38006 (2011).

Page 22: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Magnetoelastic coupling and the formation ofadaptive martensite in magnetic shape-memory

alloys

Markus E. Gruner, Peter Entel

Faculty of Physics and Center for Nanointegration, CENIDE, University ofDuisburg-Essen, 47048 Duisburg, Germany, [email protected]

Efficient magnetic shape-memory alloys undergo a thermoelastic martensitic transfor-

mation which is frequently accompanied by structural premartensitic precursor phe-

nomena, which are also relevant in the context of strain glasses. The premartensites

evolve into modulated martensitic phases which can in several cases be interpreted

as nanotwinned representations of the low-symmetry ground state with a more or

less regular periodicity of the twin defects. Their presence is related to a pronounced

shear anomaly in [110] direction. This is a common signature of magnetic shape mem-

ory systems as different as Ni-Mn-based Heusler systems and disordered fcc Fe-based

alloys and can be ascribed to an electronic band-Jahn-Teller-type instability which

affects the transversal acoustic phonons in [110] direction [1]. By means of large-scale

first-principles total energy calculations, we will demonstrate at the example of Ni-

Mn-based Heusler compounds and disordered Fe-Pd alloys, that magnetic disorder is

an important factor for the destabilization of nanotwinned or modulated martensites

according to the inherently strong magnetoelastic coupling in these systems. Thus,

apart from atomic size effects in disordered systems and electronic instabilities, also

magnetoelastic coupling plays an important role for the formation of local structural

distortions which can lead to a dependence of the elastic properties on the sample

history.

References

[1] R. Niemann, U. K. Roßler, M. E. Gruner, O. Heczko, L. Schultz, and S. Fahler, Adv.Eng. Mater. 14, 562 (2012).

Page 23: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Ergodicity by ordering nanotwins∗

Sebastian Fahler1, Markus Gruner2, Robert Niemann1, Ulrich K. Roßler1

1IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany,

[email protected]

2University of Duisburg-Essen, 47048 Duisburg, Germany

Non-ergodic behavior of martensite requires the presence of many degenerated con-figurations. Here we propose a scenario for the formation of premartensite and itstransition to a proper martensite. Though the boundary conditions towards theaustenite represent one constrain, there are many different disordered twin configu-rations possible. We identify this disordered state with premartensite, exhibiting alarge number of degenerated states. Ordering of nanotwins can explain the transitiontowards the microstructure of a proper martensite with a marginally small degen-eracy. A common way to minimize the elastic energy at the habit plane, accordingto the concept of adaptive phases by Khachaturyan, is the formation of a periodicnanotwinned adaptive structure. This, however, is only one solution. In general,many different irregular stacking sequence of nanotwins can also fulfill the kinematicconstraint of compatibility at the habit plane. These may be thermally favored forentropic reasons. A thermal equilibrium transition between austenite and the fluc-tuating nanotwin sequences provides a mechanism for premartensite in pure systemswithout quenched disorder. On average, such sequences exhibit transformationalstrain matrices with a middle eigenvalue of exactly one. Thus hysteresis is expectedto vanish, in agreement with the continuous transition to premartensite. To explainthe transition to an ordered adaptive phase, we expand the adaptive concept, whichconsiders only elastic and twin boundary energy. We propose an additional interactionenergy between twin boundaries. This is plausible since twin boundaries representdefects in the crystal structure, which can form dense arrays through their mutualcoupling. Aperiodic sequences of nanotwins can be viewed as strain-liquid states ofan adaptive martensite that may provide stable thermodynamic states at high enoughtemperature. But, when temperature and thus entropy is low enough, the interactionenergy results in the formation of an ordered arrangement of nanotwins, which is theordered crystalline realization of the nanotwinned adaptive phases. We sketch howthis results in the formation of a-b twin boundaries as mesoscale microstructure ofthe adaptive phase. A direct consequence is a slight deviation of the middle eigen-value from one, which necessitates that this ordering process proceeds as a properfirst order transformation towards martensite.

∗This work is supported by SPP 1239 and SPP 1599

Page 24: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Nontrivial textures in (multi)ferroics and glassyprecursor states

Ulrich RosslerLeibniz Institute for Solid State & Materials Research, IFW Dresden, Germany,

[email protected]

Clean ferroic systems can own localized textures in the form of multidimensional soli-tons if the order parameter(s) contain certain gradient couplings, which are describedin the phenomenological Ginzburg-Landau continuum theory by Lifshitz invariants[1]. This type of localized textures can produce intermediate glassy precursor states,as seen by the grey form of the blue phases in chiral nematic liquid crystals andas skyrmionic precursors in chiral magnets [2, 3]. Similar or more complex glassystates are proposed to exist in systems with ferroelastic primary order helped alongby other instable modes. The ingredients are coexisting or competing order parame-ters, closeness to a bicritical point, and the particular ”twisting” gradient couplingsof the Lifshitz-type between these ordering modes. As examples, flexoelectric tex-tures with localized dielectric polarization and spontaneous strains can stabilize eachother in a twisted way over a restricted region in space, thus forming small domainswith shapes of balls or tubular strings. Similar textures may exist in magnetoelectricmaterials with high symmetry of the parent phase. Even coupling of lattice modes(phonons) with different symmetry may produce such states in crystals with coop-erating displacive instabilities. The phenomenological theory formulates an intrinsicmechanism for the generation of lumps of ferroic order with a fixed physical size inclean systems without quenched disorder. Extended mesophases then can be com-posed of such localized units and may form amorphous packings. Such self-generatedglassy states reflect an intrinsic frustration of systems with a tendency to twistingorder parameters that can be described by a frozen gauge background in the gradientenergy contributions. Promoting the gauge potentials to dynamical variables of thesystem, an important relation of these continuum theories to the continuum theoriesof lattice defects can be made.

References

[1] A. N. Bogdanov, JETP Lett. 62, 247 (1995)

[2] U. K. Roßler, A. N. Bogdanov, C. Pfleiderer, Nature 442, 797 (2006)

[3] U. K. Roßler, A. A. Leonov, A. N. Bogdanov, J. Phys.: Conf. Ser. 303, 012105 (2011).

Page 25: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Magnetostriction of permendur

T. Ren1, Abdellah Lisfi

2, Armen G. Khachaturyan

3, Manfred Wuttig

1

1 Dept. of Materials Science and Engineering, University of Mary-land, College Park, MD 20742, USA, [email protected]

2 Dept. of Physics, Morgan State University, USA3 Dept. of Materials Science and Engineering, Rutgers University,

USA

FeSi, FeAl, FeCo and particularly FeGa, form a family of rare earth free ferromagnetic

materials featuring a large processing dependent magnetostriction, l, who also display

a very small magnetocrystalline anisotropy, K, and therefore large c’s. However, the

shared origin of this technologically attractive property combination, high c and large

l, has been overlooked. Here, we highlight the extended linear range of c (Permendur

effect) common to all family members and we report that cubic Fe82Ga18 and Fe35Co65

display a uniaxial magnetic anisotropy at low magnetic fields. The Permedur effect isconsistent with the unusual field independent Barkhausen noise which we also report

whereas the uniaxial anisotropy is seemingly inconsistent with the intrinsic four-fold

symmetric magnetocrystalline anisotropy of the cubic alloys. In this presentation we

will illustrate how all stated common properties of the Fe-(Si, Al, Co, Ga) family are

compatible with the idea of a composite of a ferromagnetic cubic matrix and exchange

coupled nano-precipitates of lower-than-cubic symmetry. This insight is general and

can serve as a guiding principle for the search of better functional ferroic materials.

Page 26: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

The effect of configurational order on the magnetictransformation in ferromagnetic shape memory

alloys

Raymundo Arroyave

Department of Mechanical Engineering Texas A&M University, College Station Texas77483-3141, USA, [email protected]

In most of the ternary (and higher order) ferromagnetic shape memory alloys (FS-

MAs) with compositions close to the A2BC stoichiometry, the austenite phase exhibits

L21-type ordering. Recent investigations on the Co-Ni-Ga FSMA system, however,

suggest that the austenite phase has B2-type ordering, although definite confirmation

remains elusive. In this work, we present a theoretical investigation of the effect of

configurational disorder on the magnetic properties of ordered (L21) and disordered

(B2) FSMA Co2NiGa. Through the use of calculations based on density functional

theory, we predict the structural and magnetic properties (including magnetic ex-

change constants) of ordered and disordered Co2NiGa alloys. We validate our cal-

culation of the magnetic exchange constants by extracting the Curie temperatures

of the austenite and martensite structures and comparing them to experiments. By

constructing a q-Potts magnetic Hamiltonian and through the use of a lattice Monte

Carlo simulation we predict the finite temperature behavior of the magnetization,

magnetic susceptibility as well as the magnetic specific heat and entropy. The role

of configurational disorder on the magnetic properties of the phases involved in the

martensitic phase transformation is discussed and predictions of the magnitude of the

magnetic contributions to the transformation entropy are presented. The calculations

are compared to experimental information available in the literature as well as exper-

iments performed by the authors. It is concluded that in FSMAs, magnetism plays a

fundamental role in determining the relative stability of the austenite and martensite

phases, which in turn determines the martensitic transformation temperature MS,

irrespective of whether magnetic fields are used to drive the transformation.

Page 27: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Precise density functional calculations for largesystems with KKRnano

Rudolf ZellerInstitute for Advanced Simulation, Forschungszentrum Julich GmbH, 52425 Julich,

Germany,

[email protected]

In my presentation I will give an overview of our newly developed computer codeKKRnano [1], which is suitable for density functional calculations for systemswith several thousand atoms, and I will present examples of first applicationsto a phase-change material [2] and to large supercells of Cu doped Ni2MnGa.The code, which is based on the Korringa-Kohn-Rostoker (KKR) Green functionmethod, can be applied to supercells with arbitrary atomic arrangements and yieldsaccurate results for total energies and atomic forces. Its efficiency arises fromiterative solution of the screened KKR equations [3], which leads to computingtimes that only increase with the second power of the number of atoms in systemand not with third power as needed in conventional density functional methods.For large systems with thousands of atoms, I will show that the effort can bereduced further, if small total energy errors of the order of meV per atom are toler-ated, so that the computing times only increase linearly with the number of atoms [4].

References

[1] A. Thiess, R. Zeller, M. Bolten, P. H. Dederichs, and S. Blugel, Phys. Rev. B 85,235103 (2012)

[2] W. Zhang, A. Thiess, P. Zalden, R. Zeller, P. H. Dederichs, J-Y. Raty, M. Wuttig, S.

Blugel, and R. Mazzarello, Nat. Mater. 11, 952 (2012)

[3] R. Zeller, P. H. Dederichs, B. Ujfalussy, L. Szunyogh, and P. Weinberger, Phys. Phys.

B 52, 8807 (1995)

[4] R. Zeller, J. Phys. Condens. Mat. 20, 294215 (2008).

Page 28: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Extended Lagrangian molecular dynamics methodfor modeling ferroelectrics and magnetic materials

Tahir CaginTexas A&M University, College Station, TX 77843-3122, USA, [email protected]

One obstacle that should be overcome to create the next generation coupled phasetransition devices is the refinement of molecular dynamics (MD) simulation meth-ods to accurately describe complex ferroelectric, piezoelectric, and magnetic effects.The only currently available technique that can both properly simulate this range ofinteractions is density functional theory (DFT). Of course, DFT is a fully quantumdescription of the system and can only reasonably simulate systems with hundreds ofatoms, precluding the simulation of any reasonable nanostructure that would appearin a device. However, the development of an accurate MD method would allow thesimulation of hundreds of thousand of atoms, allowing a multitude of nanostructureswith varied compositions and thermodynamic conditions to be studied. The devel-opment of such a technique is not straightforward, as the interactions that dominatecoupled transition materials greatly depend on the density of electrons in the mate-rial. For instance, typical ferroelectric perovskite barium titanate (BaTiO3) has fourphases with drastically different electron distributions and spontaneous polarizationsin each. In order for a simulation technique to adequately describe multiple phases ofa material, as well as its piezoelectric, ferroelectric, or magnetic response to stimuli,the electron density must be coupled to the structural variations.As electronic structure plays a dominant role in the materials of interest for coupledphase transition devices, it is important that an MD method retain an accurate de-scription of the electron, and thereby the spin, distribution. Accordingly, we proposean extended Lagrangian formalism that, in addition to the 3N degrees of freedomfor atomic motion, can include degrees of freedom for charge transfer or magneticmoment alignment. The general form of the Lagrangian is

L = KATOM − UATOM +KEXT − UEXT (1)

where K is the kinetic energy and U is the potential energy of the atoms (ATOM) andextended degrees of freedom (EXT). The choice of the extended variables is dependentupon the system of interest. For ferroelectric and piezoelectric materials, the extendedvariables would govern the charge transfer inherent in these systems, while magneticsystems would include terms concerning the torque on individual magnetic moments.The attractiveness of this formalism is the uni-cation of the atomic, electronic, andmagnetic properties into a single Lagrangian, allowing the simultaneous solution ofthe total dynamic behavior of the system.

Page 29: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

An important application of the Lagrangian is to ferroelectric and piezoelectricsystems. In this case, charge interactions are of singular importance; so the energyterms must take into account the variation of charge distribution explicitly. The inter-action of the charge distribution with all other atoms is given by UEXT. Each atomis also given a measure of how adding additional electrons would increase the atomicenergy, through a USELF term. Each charge is then given a conjugate momentumvariable, KEXT, and is allowed to dynamically evolve under the constraint that totalcharge must be conserved. In essence, this method includes valuable aspects of DFT,a charge density that is responsive to atomic structure, into an MD framework, andis necessary to describe the ferroelectric and piezoelectric effects accurately.There are many issues in piezo- and ferro- device materials that can be addressedusing this Lagrangian formalism. For ferroelectric devices, like nonvolatile memo-ries and switches for devices, it is important to have a large polarization materialassociated with a low coercive field, allowing the polarization state of the materialto be switch with a minimum power consumption. With an appropriate simulationmethod, investigation of possible polar nanostructures or alloys that are switchedwith less power would save time and clarify the physics of the atomic interactionsthat cannot be directly determined from experiment. The development of new mate-rials with better piezo-response for more efficient energy harvesting devices will likelyinvolve the exploitation of what is known as the flexoelectric effect. In short, whereasthe piezoelectric coefficient couples to the strain, the flexoelectric coefficient couplesto the strain gradient. This effect characterizes the electronic response of a materialto a large irregular deformation. The optimum exploitation of this effect involvesanalysis of the inherent strain characteristics of nanostructures. The large surface tovolume ratio in such structured materials always results in a strain that can alter thepiezoelectric coefficient of the material and lead to a large effective piezoresponse. An-other extension of this method is to magnetic systems. In this case, the Lagrangianwill have the additional potential energy terms arising from the magnetic momentdistribution.

Page 30: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Smart microstructures by non-ergodic martensitictransitions

Jorg Neugebauer, Fritz Kormann, Ivan Bleskow, Tilmann Hickel

Max-Planck-Institut fur Eisenforschung, Max-Planck-Str. 1, 40237 Dusseldorf, Germany,[email protected]

A novel design route to achieve structural materials with superior mechanical per-

formance is the incorporation of a dynamic microstructure that adapts to local me-

chanical loads. Rather than having a fixed grain size the new materials form above

a critical load extended defects that effectively reduce the grain size leading to re-

duced free dislocation paths length and thus hardening. These adaptive mechanisms

ensure that hardening sets in only in regions where strain and thus potential failure

are largest. A popular way to realize such an adaptive mechanism are martensitic

transitions which induce in the bulk material extended defects such as stacking faults

or twins. This strategy is e.g. successfully employed in modern TRIP (transforma-

tion induced plasticity) and TWIP (twinning induced plasticity) steels that combine

ultra-high strength with good ductility.

To design such materials it is critical to know how the energetics to create such

extended defects depends on the chemical composition, local strain, and temperature.

These dependencies, however, are difficult to obtain from experiment. Combining

accurate first principles calculations with mesoscopic/macroscopic thermodynamic

and/or kinetic concepts allows now to address this issue and to accurately determine

these energies. In the talk fundamental ideas behind these approaches [1, 2], their

predictive power as well as applications in modern steel design will be presented [3, 4].

References

[1] F. Kormann, A. Dick, T. Hickel, and J. Neugebauer, Phys. Rev. B 83, 165114 (2011)

[2] B. Grabowski, P. Soderlind, T. Hickel, and J. Neugebauer, Phys. Rev. B 84, 214107(2011)

[3] A. Abbasi, A. Dick, T. Hickel, and J. Neugebauer, Acta Mater. 59, 3041-3048 (2011)

[4] T. Hickel, A. Dick, B. Grabowski, F. Kormann, and J. Neugebauer, Steel. Res. Int.

80, 4-8 (2009).

Page 31: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Ab initio prediction of free energies andmartensitic phase transitions in magnetic shape

memory alloys

Tilmann Hickel, Biswanath Dutta, Ali Al-Zu’bi, Jorg Neugebauer

Max-Planck-Institut fur Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Dusseldorf,

Germany, [email protected]

The Heusler alloys of the Ni-Mn-(Al, Ga, In, Sn, Sb) type are due to their marten-

sitic transformations and magnetic shape memory behaviour from the fundamental

as well as application perspective of long-standing interest in materials science. In or-

der to systematically improve the performance of this class of materials, an accurate

understanding of their phase transitions as function of temperature and chemical

composition are crucial. We have developed an ab initio scheme based on density

functional theory (DFT) to derive the free energies for the austenitic, the martensitic

and (modulated) pre-martensitic phases of magnetic Heusler alloys. All free energy

contributions such as quasiharmonic phonons, anharmonic vibrations, electronic exci-

tations, fixed-spin magnons and alloy disorder are computed within DFT. Using this

approach we successfully described the phase transitions in Ni2MnGa [1].

Besides the introduction of the methods, the focus of the talk will be on the physics of

the involved ergodicity-breaking. This will include the discussion of modulations, the

nature of pre-martensitic and intra-martensitic transitions, the delicate interplay of

vibrational and magnetic excitations, and the extension to non-stoichiometric chem-

ical compositions [2]. By comparing the obtained results with available experimental

data, we will demonstrate the predictive power of the chosen approach.

References

[1] M. Uijttewaal, T. Hickel, J. Neugebauer, M. Gruner, P. Entel, Phys. Rev. Lett. 102,035702 (2009)

[2] T. Hickel, B. Grabowski, F. Kormann, J. Neugebauer, J. Phys: Cond. Mat. 24, 053202(2011).

Page 32: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Free energy of phase transformations extractedfrom the reweighted path ensemble

Jutta RogalInterdisciplinary Centre for Advanced Materials Simulation (ICAMS)

Ruhr University Bochum, 44780 Bochum, Germany, [email protected]

Phase transformations often involve atomistic processes that take place on time scalesthat are much longer than atomic vibrations. Due to these so-called rare events itbecomes impossible to sample the time evolution of the system over an extended timescale using regular molecular dynamics.If it is possible to sample the free energy surface (FES) that maps out the transitionfrom a single phase in phase space into the coexistence region of the two phases, manyimportant properties can be extracted. One example is the interface free energy whichis one of the important interfacial properties that govern nucleation and growth duringthe transformation. But also the transformation mechanism, the interface mobility,and the effect of composition and defects are of particular interest.Here, we use the reweighted path ensemble (RPE) [1] to obtain the FES of phasetransformations in a Lennard-Jones model system. One of the key advantages of theRPE is that an a priori definition of collective variables is not required. Once thesampling has been performed the RPE allows for a projection of the FES into anyarbitrary collective variable space. Furthermore, the RPE can be used to analysecommittor projections, identify transition state regions, and optimise non-linear re-action coordinates to determine important parameters governing the transformationmechanism.

References

[1] J. Rogal et al., J. Chem. Phys. 133, 174109 (2010)

Page 33: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Precursor phenomena and their effects on theproduct phase in stress- and temperature- induced

martensitic transformation

Xiangdong Ding

State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University,Xi’an 710049, China, [email protected]

It is well known that prior to a temperature-induced martensitic transformation

(MT), several important precursor phenomena are observed as the temperature ap-

proaches the transformation temperature, e.g., low-lying TA2 phonon, elastic constant

C �= (C11 − C12)/2 softening, diffuse scattering and tweed. However, little is known

on whether similar precursor phenomena can exist prior to a stress-induced MT. In

addition, the relationship between these precursor phenomena and the transforma-

tion products is not clear. In the present work, by means of molecular dynamics

simulations, we first clarify whether precursor effects exist prior to stress-induced

MT, how and why they change in the presentence of external stress, and how they

are related to the MT product. We then introduce various concentrations of point

defects into a perfect martensitic system. We found the martensitic transformation

temperature decreases dramatically with increasing point defect concentration, and

the corresponding domain size decreases. With the concentration of point defects

exceeding a critical value, no obvious MT can be found even down to 1K; instead,

the system shows a freezing of nano-sized domains.

References

[1] X. Ding, T. Suzuki, X. Ren, J. Sun, K. Otsuka, Phys. Rev. B 74, 104111 (2006)

[2] X. Ding, J. Zhang, Y. Wang, Y. Zhou, T. Suzuki, J. Sun, K. Otsuka, X. B. Ren, Phys.Rev. B 77, 174103 (2008)

[3] L. Gao, X. Ding, H. Zong, T. Lookman, J. Sun, X. Ren, A. Saxena Phys. Rev. B,submitted.

Page 34: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Time dependent nature of martensitictransformations in an austenitic stainless steel and

some shape memory alloys

Takashi Fukuda, Tomoyuki Kakeshita

Department of Materials Science and Engineering, Graduate School of Engineering, Osaka

University, Japan, [email protected]

Martensitic transformations have been classified into two groups, athermal (time in-

dependent) and isothermal (time dependent) ones, from the view point of kinetics.

However, we consider that any martensitic transformation is intrinsically an isother-

mal one although the detection of isothermal nature is sometimes difficult. In this

presentation, we will demonstrate several examples of isothermal nature observed in

(i) an austenitic stainless steel [1]; (ii) some shape memory alloys, such as Cu-Al-Ni [2],

Ni-Co-Mn-In [3] and Ti-Ni; (iii) FeRh exhibiting first order ferro-antiferro transition

[4]. Then, assuming that the nucleation of martensitic transformation proceeds by a

thermal activation process, we analyze the experimentally obtained time dependence.

References

[1] J. Y. Choi, T. Fukuda, T. Kakeshita, ISIJ International, 52, 1366 (2012)

[2] T. Kakeshita, T. Takeguchi, T. Fukuda, T. Saburi, Mater. Trans. JIM 37, 299 (1996)

[3] Y. H. Lee, M. Todai, T. Okuyama, T. Fukuda, T. Kakeshita, R. Kainuma, Scr. Mater.64, 927 (2011)

[4] Y. Feng, Y. H. Lee, T. Fukuda, T. Kakeshita, J. Alloys. Comp. 583, 5 (2012).

Page 35: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Stacking fault energies in austenitic steelscalculated from ab-initio electronic structure

theory

Peter PuschnigInstitut fur Physik Karl-Franzens-Universitat Graz Universitatsplatz 5, 8010 Graz,

Austria, [email protected]

Based on state-of-the-art density-functional-theory methods, we calculate thestacking-fault energy (SFE) of the prototypical high-Mn steels between 300 and 800 Kdemonstrating the interplay between the magnetic excitations and the thermal latticeexpansion as the main factor determining the hcp-fcc transformation temperature andthe SFE [1]. We have also investigated the effect of interstitial carbon on the SFEand the generalized SFE revealing an overall increase due to local lattice relaxations[2].

References

[1] A. Reyes-Huamantinco, P. Puschnig, C. Ambrosch-Draxl, O. E. Peil, A. V. Ruban,Phys. Rev. B 86, 060201(R) (2012)

[2] H. Gholizadeh, P. Puschnig, C. Draxl, ”The influence of interstitial carbon on thegamma-surface in austenite”, Acta Materialia (accepted).

Page 36: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Magnetoelastic effects in Fe2P based materials forcooling applications near room temperature

Ekkes Bruck, Nguyen H. Dung, Zhi Q. Ou, Luana Caron, Lian Zhang, K. H. JurgenBuschow

Delft University of Technology, Fundamental Aspects of Materials and Energy, Faculty ofApplied Sciences, Delft, NL2629 JB 15, The Netherlands,

[email protected]

The efficient coupling between lattice degrees of freedom and spin degrees of freedomin magnetic materials can be used for refrigeration. This coupling is enhanced inmaterials exhibiting the giant magnetocaloric effect. The coexistence of strong andweak magnetism in alternate atomic layers of MnFe(P,Si) compounds has recentlybeen shown to be a tool to design new materials [1]. The weak magnetism of Felayers (disappearance of local magnetic moments at the Curie temperature) is re-sponsible for a strong coupling with the crystal lattice while the strong magnetism inadjacent Mn-layers ensures Curie temperatures high enough to enable operation atand above room temperature. Varying the composition on these magnetic sublatticesgives a handle to tune the working temperature and to achieve a strong reductionof the undesired thermal hysteresis [2]. In this way we design novel materials basedon abundantly available elements with properties matched to the requirements of anefficient refrigeration cycle. The occurrence of irreversible changes of the Curie tem-perature on first cooling, an intriguing phenomenon that is termed ”virgin effect”shall also be discussed.

References

[1] N. H. Dung, Z. Q. Ou, L. Caron, L. Zhang, D. T. C. Thanh, G. A. de Wijs GA, R. A.de Groot, K. H. J. Buschow, E. Bruck, E. Adv. Energy Mat. 1, 1215 (2011)

[2] H. D. Nguyen, L. Zhang, Z. Ou, L. Zhao, L. von Eijck, A. M. Mulders, M. Avdeev, E.Suard, N. H. van Dijk, and E. Bruck, Phys. Rev. B 86, 045134 (2012).

Page 37: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Design of d0 ferromagnetism in MgO, CaO, BaO,

SrO, and ZnO: Beyond LDA and multi-scale

simulations

Hiroshi Katayama-YoshidaGraduate School of Engineering Science, Osaka University, Japan,

[email protected]

Based upon self-interaction-corrected LDA (PSIC-LDA) and multi-scale simulation,we propose the computational nano-materials design of oxide-based energy savingspintronics materials by using the self-organized nano-structure of C, N, and cationvacancy-doped MgO, CaO, BaO, SrO and ZnO without 3d transition atom doping.We propose a new mechanism explaining the magnetic properties of MgO-based d0

ferromagnets determined from multi-scale simulations. The calculated Curie tem-perature Tc of homogeneous system, combined ab initio calculation of the exchangeinteraction based on the magnetic force theorem and Monte Carlo simulation, is al-ways lower than the experimentally observed Tc. Chemical pair interactions betweenN atoms in Mg(O,N) and Mg vacancies (VMg) in (Mg,VMg)O were calculated. MonteCarlo simulations of the crystal growth were performed, using the Ising model, to pre-dict the favored configurations of dopant distribution. It was found that self-organizednanowires can be formed both in Mg(O,N) and (Mg,VMg)O under layer-by-layer crys-tal growth, which suggests high blocking temperatures can be obtained in these d0

ferromagnets by spinodal nano-decomposition. We will compare the theoretical pre-dictions and design with the available experimental data. We demonstrate the crucialrole of defects on tunneling magnetoresistance (TMR) in MgO-based magnetic tunneljunctions (MTJs). We propose a new mechanism in which self-organized nanowires ofmagnesium vacancies can be formed in MgO-based MTJs. We also discuss the originand switching mechanism of NiO-based Re-RAM materials caused by self-organizedtwo-dimensional spinodal nano-decomposition, if time is available.

Page 38: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

References

[1] M. Seike et al.: Jpn. J. Appl. Phys. 42, L1061. (2003); M. Seike et al.: Jpn.J. Appl. Phys. 43, 3367 (2004) ; M. Seike et al.: Jpn. J. Appl. Phys. 43, L834(2004)

[2] Patent of d0 Ferromagnetism: H. Yoshida et al.: P2003-127602; WO2004/097081A1; US-Patent US 2006/0231789 A1. H. Yoshida et al.: Japan Patent 2004-55017,WO2005/083161 A1; Japan Patent 2006-510484 (registered, 2011); U.S. Patent2007/0178032 A1

[3] d0 Ferromagnetism in Oxides: M. Seike et al.: Jpn. J. Appl. Phys. 43, L579(2004); K. Kenmochi et al.: Jpn. J. Appl. Phys. 43, L934 (2004); K. Kenmochiet al.: J. Phys. Soc. Jpn. 73, 2952 (2004); V. A. Dinh et al.: Solid State Commun.136, 1 (2005); K. Kenmochi et al.: Jpn. J. Appl. Phys. 44, L51 (2005)

[4] KKR-CPA by PSIC-LDA: M. Toyoda et al.: Physica B 376, 647 (2006)

[5] Spinodal Nano-Decomposition: K. Sato et al.: Jpn. J. Appl. Phys. 44, L948(2005); T. Fukushima et al.: Jpn. J. Appl. Phys. 45, L416 (2006)

[6] High Blocking Temperature in Konbu-Phase and Dairiseki-Phase: K. Sato et al.:Jpn. J. Appl. Phys. 46, L682 (2007)

[7] Konbu-Phase: M. Seike et al., Jpn. J. Appl. Phys. 51, 050201 (2012)

[8] Re-RAM: K. Oka et al., J. Am. Chem. Soc. 134, 2535 (2012).

Page 39: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Computational nano-materials design andrealization for semiconductor spintronics: Control

of defect and spinodal nano-decomposition

Kazunori Sato

Department of Materials Engineering Science, Graduate School of Engineering Science,

Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan,

[email protected]

Semiconductor spintronics, in which one tries to use the spin degree of freedom of

electrons in semiconductor technology, is one of the candidates for next generation

electronics. So far dilute magnetic semiconductors (DMS) systems have been inves-

tigated intensively as a spintronics material. The purpose of this lecture is to show

perspective on spintronics materials by proposing some ideas to answer the most im-

portant question in material science for semiconductor spintronics, namely, how we

can realize high-TC DMS. To understand materials design of high-TC DMS proposed

in this lecture, firstly, I discuss electronic structure of transition metal (TM) impuri-

ties in semiconductors. As fundamental mechanisms of magnetic interactions in DMS,

double exchange, p− d exchange and super exchange mechanism are introduced, and

it is pointed out that relative importance of these mechanisms depends on the occu-

pancy of d-states of TM impurities and calculated chemical trend of the magnetism

in III-V and II-VI DMS is discussed [1]. Next, I discuss magnetic properties of DMS

at finite temperature. To calculate TC , I will explain how to map the first-principles

total energy results on classical Heisenberg model to estimate magnetic properties.

Accuracy in estimating TC depends strongly on the approximations used. It will be

shown that the mean field approximation is not justified particularly in the double

exchange systems for low concentrations. Here, I emphasize that the magnetic per-

colation is the biggest problem that prevents us from realizing high-TC [1]. Then, I

propose two scenarios for realizing high-TC DMS. The first one uses spinodal decom-

position. Thermodynamics consideration based on calculated total energies of DMS

tells us that strong inhomogeneity is in general induced in DMS and clusters with

high concentration of TM (thus high-TC), whose structure is coherent to host matrix,

are formed. If the cluster size is large enough, due to the super-paramagnetic blocking

phenomena the system shows hysteresis even at high temperature [2]. The other way

is a co-doping method. When we dope TM impurities in semiconductors, by intro-

ducing compensating donor impurity at the same time the solubility of TM impurities

increases owing to the reduction of mixing energy. If we use interstitial donors for

the co-dopants, we can remove the co-dopants by low-temperature annealing after

the crystal growth to recover the ferromagnetism [3].

Page 40: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

To realize the above two proposals, I will emphasize that the understanding on thedefect properties in DMS is very important. In addition to the above two scenarios,it is still important to discover new materials which is useful for spitronics. I willpresent our recent materials design of LiZnAs-based [4] and IV-VI semiconductor-based materials [5].

References

[1] K. Sato et al., Rev. Mod. Phys. 82, 1633 (2010)

[2] K. Sato et al., Jpn. J. Appl. Phys. 46, L682 (2007)

[3] H. Fujii et al., Appl. Phys. Express 4, 043003 (2011)

[4] K. Sato et al., Physica B 407, 2950 (2012)

[5] K. Sato et al., Physica B 358, 2377 (2012).

Page 41: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

International Symposium on

Non-ergodic behavior in martensitesJanuary 28–30, 2013

University of Duisburg–Essen, NETZ, Carl-Benz-Straße 199,47057 Duisburg, Germany

Abstracts:

Contributed posters

Page 42: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

A first-principles study aided with Monte Carlosimulations of carbon doped iron-manganese alloys

Denis Comtesse, Heike C. Herper, Mario Siewert, Alfred Hucht, Peter Entel

Faculty of Physics and CENIDE, University of Duisburg-Essen, 47048 Duisburg,Germany, [email protected]

We present ab initio calculations of structural and magnetic properties of iron-

manganese alloys over a wide range of compositions using VASP [1]. We add differentamounts of carbon on complete relaxed interstitial and substitutional lattice positions

and analyze the changes of the magnetic exchange interactions Jij. The exchange pa-rameters are used for Monte Carlo simulations of the Heisenberg model to extend

the analysis of the magnetic behavior to finite temperatures and to determine the

magnetic transition temperatures. In order to examine the influence of disorder we

employed the KKR-CPA method [2] and calculated the exchange parameters for vari-

ous types of disorder. We find a strong dependence of the critical temperature on the

disorder and the carbon content. The disorder always tends to reduce the transition

temperature. In case of high carbon concentrations, ordered systems show a strong

relation between the iron-manganese composition and the transition temperature.

References

[1] G. Kresse and J. Furthmuller, Phys. Rev B 54, 11169 (1996)

[2] The Munich SPR-KKR package, version 3.6, H. Ebert et al.

Page 43: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Understanding the phase sequence of Fe-Pd alloysfrom first-principles calculations and thin film

experiments∗

Markus E. Gruner1, Sven Hamann

2, Sandra Kauffmann-Weiss

3, Alfred Ludwig

2,

Sebastian Fahler3

1 Faculty of Physics and CENIDE, University of Duisburg-Essen,

47048 Duisburg, Germany, [email protected] Institute of materials, Faculty of Mechanical Engineering, Ruhr-

University Bochum, 44801 Bochum, Germany3 IFW Dresden, P.O. Box 270116, 01171 Dresden, Germany

Apart from the prototypical Ni-Mn-Ga Heusler alloy, also Fe-based alloys as Fe-rich

Fe-Pd exhibit significant magnetic field induced strains in moderate magnetic fields.

This is bound to a slightly tetragonal fcc structure (fct) which finds no correspon-

dence on the zero termperature energy surface which has been determined recently

from first principles calculations [1]. Instead, the energy decreases rather uniformly

along the Bain path towards the absolute minimum at bcc. Magnetic excitations at

elevated temperatures have decisive impact on the energy landscape suggesting that

strong magnetoelastic coupling finally stabilizes the fcc austenite. Likewise changes

to the energetics are encountered after alloying with a suitable third component. This

aids the interpretation of the transformation behavior seen in combinatorial experi-

ments offering further perspectives for functional design [2,3]. Recently, thin 70at.-%

Fe films were epitaxially grown with c/a = 1.09, which extends the conventional

Bain path far beyond fcc. XRD spectroscopy and first principles modeling reveal the

presence of a novel relaxation mechanism leading to a nanotwinned pattern, which

consists of fct building blocks [4,5]. This process owes to the extremely low formation

energy of initial fct twins, which causes the autonomous evolution of a nanotwinned

superstructure in the simulation cell along [110]. This corresponds to the experimen-

tally observed soft transversal acoustic phonon in this direction, which is also a central

feature of the Ni-Mn-Ga magnetic shape memory alloy. Extending the analogy be-

tween the two systems, we finally interpret the fct phase as a metastable adaptive

martensite, where the increasing twin defect energy at larger distortions prevents the

relaxation to the bcc ground state.

References

[1] M. E. Gruner, P. Entel, Phys. Rev. B 83, 214 415 (2011)

[2] S. Hamann, M. E. Gruner, S. Irsen et al., Acta Mater. 58, 5949 (2010)

[3] M. E. Gruner et al. J. Alloys Compd., in print, DOI:10.1016/j.jallcom.2012.02.033

[4] S. Kauffmann-Weiss, M. E. Gruner iet al., Phys. Rev. Lett 107, 206105 (2011)

[5] S. Kauffmann-Weiss et al., Adv. Eng. Mater. 14, 724 (2012).

∗The authors gratefully acknowledge funding by the DFG via SPP1239.

Page 44: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Magnetic glasses in (Pt, Pd)-Ni-Mn-(Ga, Sn)

Anna Grunebohm1, Peter Entel

1, Heike C. Herper

1, Markus E. Gruner

1, Alfred

Hucht1, Denis Comtesse

1, Raymundo Arroyave

2

1 Faculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, Germany, [email protected]

2 Department of Mechanical Engineering, Texas A&M University,College Station, Texas 77843, USA

First-principles calculations are used to study the structural, electronic and magnetic

properties of (Pd, Pt)-Mn-Ni-(Ga, In, Sn, Sb) alloys which display multifunctional

properties like the magnetic shape-memory, magnetocaloric and exchange bias effect.The ab initio calculations give a basic understanding of the underlying physics which

is associated with the complex magnetic behavior and the magnetic glass state arising

from competing ferro- and antiferromagnetic interactions with increasing number of

Mn excess atoms in the unit cell. This information allows to optimize, for example, the

magnetocaloric effect by using the strong influence of compositional changes on the

magnetic interactions. Thermodynamic properties can be calculated by using the abinitio magnetic exchange parameters in finite-temperature Monte Carlo simulations.

Page 45: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Anomalous strain effects in Co-Fe-Si∗

Heike C. Herper, Peter Entel

Faculty of Physics and CENIDE, University of Duisburg-Essen, Germany,[email protected]

The magnetic properties of Heusler-type compounds can be quite easily controlled

by composition and strain these alloys seem to be suitable for different magnetic

applications, e.g., in magnetoelectronic and magnetocaloric devices and one can think

of multifunctional devices. Here, we focus on the influence of strain on the magnetic

properties of Fe3−xCoxSi and Co2FeSi1−xZx (Z=Sn,Sb) Heusler alloys. We distinguish

between three different types of strain: Volume changes, where the symmetry is

conserved, shape changing lattice distortions of the bulk material (e.g. tetragonal

distortion), and layer-dependent strain in thin film geometries.

Electronic properties have been studied within the density functional theory using

VASP. For the analysis of spin-polarization, disorder, and exchange parameters the

SPRKKR Green’s functions approach has been used. Information about finite tem-

perature properties is obtained from Monte Carlo simulations of the classical Heisen-

berg model with ab initio determined exchange coupling constants.

Si-rich structures show an indication of tetragonal instability which comes along with

antiferromagnetic exchange couplings. A similar effect is observed for quaternary

system Co2FeSi1−xZx (Z=Sn,Sb).

∗This work was supported through the Deutsche Forschungsgemeinschaft (SFB 491).

Page 46: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Crossover from athermal to isothermal martensitictransformation in TiNi alloys

Yuanchao Ji , Xiaobing Ren

Ferroic Physics Group, National Institute for Materials Science, Tsukuba, 305-0047,Ibaraki, Japan

Multi-Disciplinary Materials Research Center, Frontier Institute of Science andTechnology, Xi’an Jiaotong University, Xi’an 710049, P. R. China, [email protected]

Martensitic transformation is the heart of many important materials, such as high-

strength steels, shape memory alloys and tough structural ceramics. The diffusion-less / displacive nature of this transition seems to suggest a very fast kinetics of the

transition, and indeed this is true for most of the martensitic systems, where no per-

ceptible time-dependence is observed. Thus martensitic transformation is generally

known as athermal, i. e., dependent on temperature only, not on time. However,

obvious exceptions also exist where martensite forms only after hours of isothermal

holding. Although it is in principle possible to provide a phenomenological explana-

tion of the isothermal martensitic transformation by assuming a high energy barrier

between the parent phase and martensite, it is unclear why only a small fraction of

martensitic alloys has a high energy barrier whereas the majority do not. It is also

unclear what happens during the isothermal holding. Here we report an interest-

ing finding that there exists a crossover from athermal martensitic transformation to

isothermal martensitic in Ti50−xNi50+x system at a critical composition xc. For x < xc

the transformation from B2 to B19’ occurs with a typical athermal feature. For x > xc

the transformation shows time-dependence, i. e., isothermal feature. We show that

the isothermal transformation originates from ”strain glassiness” of the martensitic

system containing extra Ni as point defect, and this leads to the time-dependence

of the martensitic transformation. The present study provides a microscopic expla-

nation to the nature of isothermal martensitic transformation and can predict the

occurrence of such transformation in any martensitic system.

Page 47: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Towards a microscopic understanding ofmagnetocaloric effects: Ni51.6Mn32.9Sn15.5 as an

example

B. Krumme1, A. Auge

2, D. Klar

1, L. Joly

3, J. Landers

1, A. Hutten

2, H. Wende

1

1 Faculty of Physics and CENIDE, University Duisburg-Essen,

Lotharstraße 1, 47048 Duisburg, Germany, [email protected] Thin Films and Nanostructures, Department of Physics, University

of Bielefeld, P.O. Box 100131, 33501 Bielefeld, Germany3 Universite de Strasbourg, Institut de Physique et de Chimie des Ma-

teriaux de Strasbourg, Campus de Cronenbourg, 23 Rue du Loess,

67034 Strasbourg Cedex 2, France

An austenite-martensite transition was observed in a 100 nm thick Ni51.6Mn32.9Sn15.5

film by temperature-dependent resistivity and magnetization measurements, re-

vealing a martensite starting temperature of MS ≈ 260 K. The influence of the

structural phase transition on the electronic structure and the magnetic properties

were studied element-specifically employing temperature-dependent X-ray absorption

spectroscopy. For Mn a change of the electronic structure and a strong increase of

the ratio of orbital to spin magnetic moment ml = ms can be observed, whereas for

Ni nearly no changes occur. Applying an external magnetic Field of B = 3 T reverses

the change of the electronic structure of Mn and reduces the ratio of ml = ms from

13.5 % to ≈ 1 % indicating a field-induced reverse martensitic transition.

Page 48: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Correlation of superparamagnetic relaxation withmagnetic dipole and exchange interaction in

capped iron-oxide nanoparticles

Joachim Landers, Frank Stromberg, Masih Darbandi, Christian Schoppner, Werner

Keune, Heiko Wende

Faculty of Physics and CENIDE, University of Duisburg-Essen, 47048 Duisburg, Germany,[email protected]

Iron-oxide nanoparticles with an average diameter of 6 nm capped with an organic

surfactant and/or silica shells of various thicknesses have been synthesized by a mi-

croemulsion method to facilitate tunable contributions of interparticle magnetic dipole

interaction. Bare particles of the same size with direct surface contact were used

as a reference to distinguish between interaction and surface effects and verified no

considerable changes in magnetic surface properties by capping. Superparamagnetic

relaxation behaviour was analyzed by field-cooled/zero-field-cooled magnetization,

thermoremanent magnetization and AC susceptibility measurements showing a de-

crease of the blocking temperature with progressive capping thickness. Temperature-

dependent Mossbauer spectra measured in the range of 4.2 - 300 K enabled us to

resolve several states of relaxation. Effective anisotropies calculated from Mossbauer

spectra were supported using ferromagnetic resonance. Calculations based on the

Vogel-Fulcher law allowed us to estimate the strength of interparticle interactions T0,

and the effective magnetic anisotropy constant of non-interacting particles as 42(2)

kJm−3

for an average relaxation parameter τ0 = 1.1(4) · 10−10s.

Page 49: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Temperature dependence of stress hysteresis inCu-Al-Mn and Ti-Ni superelastic alloys

Kodai Niitsu, Toshihiro Omori, Ryosuke Kainuma

Department of Materials Science, Graduate School of Engineering, Tohoku University,Sendai, 980-8579, Japan

Superelasticity in shape memory alloys (SMAs) has been keenly studied for several

decades and practically applied in the temperature range near room temperature. On

the other hand, there have been less reports on the mechanical properties, especially

on stress hystereses, of SMAs at lower temperatures in spite of their importance

in the academic and engineering aspects. In this study, the superelastic behaviors

at the temperature ranging from 4.2 to 273 K were investigated in single-crystal

Cu-Al-Mn and polycrystalline Ti-Ni SMAs. In the Cu-17Al-15Mn (at.%) SMA, the

critical stress of stress-induced forward and reverse martensitic transformation (σMs

and σAf ) decreases with decreasing temperature and their interval, σMs − σAf , keeps

almost constant [1]. On the other hand, the superelastic stress-strain curves are

obtained in the temperature range of 40 K to 180 K in the Ti-51.8Ni (at.%) SMA

and their hystereses drastically increase with decreasing temperature. The origin of

the difference in the temperature dependences of stress hystereses in these SMAs will

be discussed.

References

[1] K. Niitsu, T. Omori, and R. Kainuma. Mater. Trans. 52 (8), 1713 (2011).

Page 50: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Non-ergodic behavior at martensitic transitionsrevealed by X-ray photon correlation spectroscopy

Michael Widera, Uwe Klemradt

2nd Institute of Physics B, RWTH Aachen University, Germany,

[email protected]

The vast majority of martensitic transitions follow athermal dynamics, but also time-

dependent dynamics has been found in shape memory alloys, which is characterized

by the observation of incubation time and/or aging effects. This is interpreted as a

superposition of the diffusionless transformation with short-range diffusion at finite

temperatures. Through 3rd generation synchrotrons it has become possible to access

the corresponding non-equilibrium states in the vicinity of the martensitic transition

using X-ray photon correlation spectroscopy (XPCS). The non-equilibrium dynamics

can be highlighted using two-time correlation functions, where the time-dependent

development of X-ray speckle pattern is auto-correlated [1]. Using this technique we

revealed non-ergodicity for Au49.5Cd50.5 and Ni63Al37 alloys in the immediate vicin-

ity and during the martensitic transition [2], including signatures of microstructural

avalanches. Although both alloys are conventionally classified as athermal, clear

isothermal dynamics is observable. The experimental observations are consistent with

the ”symmetry-conforming short-range-order” model (SC-SRO), based on short-range

diffusion near symmetry-breaking lattice defects under the influence of stress fields

[3].

References

[1] A. Malik, A. R. Sandy, L. B. Lurio, G. B. Stephenson, S. G. J. Mochrie, I. McNutty,

and M. Sutton, Phys. Rev. Lett. 81, 5832 (1998)

[2] L. Muller, M. Waldorf, C. Gutt, G. Grubel, A. Madsen, T. R. Finlayson, and U.

Klemradt, Phys. Rev. Lett. 107, 105701 (2011)

[3] X. Ren and K. Otsuka, Phys. Rev. Lett. 85, 5 (2000).

Page 51: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Magnetic-Field Hysteresis in NiCoMnIn

Metamagnetic Shape Memory Alloy

Xiao Xu1, T. Kihara2, M. Tokunaga2, Wataru Ito3, Rie Y. Umetsu4, RyosukeKainuma1

1 Department of Materials Science, Graduate School of En-gineering, Tohoku University, Sendai 980-8579, Japan,[email protected]

2 International MegaGauss Science Laboratory, Institute for SolidState Physics, the Uni- versity of Tokyo, Kashiwanoha 5-1-5,Kashiwa, Chiba 277-8581, Japan

3 Institute for Materials Research, Tohoku University, Natori 981-1239, Japan

4 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Metamagnetic shape memory alloys, represented by Ni(Co)MnIn, have attractedmuch attention due to the magnetic-field-induced reverse martensitic transformationand the great possibility of application [1, 2]. Recently, for Ni(Co)MnIn alloys, themartensitic transformation has been reported to be thermally arrested during fieldcooling and the two-phases condition is kept down to very low temperature [3, 4].By summarizing the reports on this phenomenon up to now, we can understand thatthere are two factors in this phenomenon. Thermodynamically, the entropy changeduring martensitic transformation lowers and becomes zero at low temperature, whichresults the thermal driving force also becomes zero, therefore the transformation isinterrupted. Kinetically, the hysteresis enlarges at low temperature, which causesfurther obstacle of the proceeding of transformation. In this research, we focus onthe kinetic behavior of the thermal arrest phenomenon. In order to understand thisthermal activation accompanied process, we employed different sweeping rate of mag-netic field to induce the reverse martensitic transformation at different temperatures.As a result, the magnetic-field hysteresis, Hhys = HAf −HMs, is successfully observedto enlarge with increasing sweeping rate of the magnetic field. Detailed results andfurther discussions will be presented in the poster.

References

[1] R. Kainuma et al., Nature 439, 957 (2006)

[2] R.Y. Umetsu et al., J. Phys. D-Appl. Phys. 42, 075003 (2009)

[3] I. Wataru et al., Appl. Phys. Lett. 92, 021908 (2008)

[4] V. K. Sharma et al., Phys. Rev. B 76, 140401(2007).

Page 52: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Stress and thermal induced long range ordering inTi50Ni44.5Fe5.5 strain glass

Jian Zhang

Multi-disciplinary Materials Research Center, Frontier Institute of Science andTechnology, State Key,Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong

University, Xi’an 710049, ChinaNational Institute for Materials Science, 1-2-1 Sengen, Tsukuba305-0047, Ibaraki, Japan

Institute for Materials, Ruhr University Bochum, Bochum 44801, Germany,[email protected]

Strain glass (STG) in Ni-rich Ti-Ni possesses an R-like (rhombohedral) local strain

order and remain frozen in STG state down to 0 K, however the long range ordering

(LRO) can only be induced by stress into a B19’ (monoclinic) martensite. It remains

a puzzle why the local strain order (R-like) in Ti-Ni STG yields a different long-

range strain order (B19’) under stress. We systematically investigated a ternary

Ti50Ni44.5Fe5.5 STG, which exhibited the same STG features as the Ti-Ni STG, and

the local strain order is also an R-like one. Being different from the Ti-Ni STG, under

stress this ternary STG transforms into a normal LRO R martensite rather than B19’

[1]. Furthermore, a spontaneous transition from frozen STG to R martensite during

further cooling was also found in this alloy [2]. By considering that both systems

have bi-instability with respect to both R and B19’ martensites in the schematic

free energy landscape, we provide a unified explanation for the different products ofthe stress-induced STG to martensite transition between Ti-Ni binary system and

the present ternary system. The spontaneous transition from a frozen STG (with

local R-like order) into a LRO R-phase upon cooling is also explained by taking into

account the existence of a thermodynamic driving force towards LRO. It indicates

that thermodynamics may also play a role in glass, in additional to the kinetics.

References

[1] J. Zhang, et al., Phys. Rev. B 83, 174204 (2011)

[2] J. Zhang, et al., Phys. Rev. B 84, 214201 (2011).

Page 53: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Participants

Mehmed AcetFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Raymundo ArroyaveDepartment of Mechanical Engineering, Texas A&M University,College Station, Texas 77483-3141, [email protected]

Pio BuenconsejoFaculty of Mechanical Engineering, Ruhr-Universität Bochum,Universitätsstr. 150, 44801 Bochum, [email protected]

Ekkes BrückDelft University of Technology, Fundamental Aspects of Materials and Energy,Faculty of Applied Sciences, Delft, NL2629 JB 15, The Netherlands,[email protected]

Tahir CaginTexas A&M University, College Station, TX 77843-3122, [email protected]

Asli CakirFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, Germany

Öznur CakirFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Teresa CastánDepartament d’Estructura i Constituents de la Matèria, Facultat de Física,Universitat de Barcelona, Diagonal 647, 08028 Barcelona, [email protected]

Page 54: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Volodymyr A. Chernenko

Dpto de Electricidad y Electronica Universidad del Pais Vasco UPV/EHU

Apartado 644 E-48080 Bilbao, Spain

[email protected]

Denis Comtesse

Faculty of Physics and CENIDE, University of Duisburg-Essen,

47048 Duisburg, Germany

[email protected]

Peer Decker

Faculty of Mechanical Engineering, Ruhr-Universität Bochum,

Universitätsstr. 150, 44801 Bochum, Germany

[email protected]

Peter-H. Dederichs

Institute for Theoretical Nanoelectronics, Forschungszentrum Jülich,

Wilhelm-Johnen-Straße, 52428 Jülich, Germany

[email protected]

Biswanath Dutta

Computational Materials Design, Max-Planck-Institut für Eisenforschung,

Max-Planck-Straße 1, 40237 Düsseldorf, Germany

[email protected]

Xiangdong Ding

State Key Laboratory for Mechanical Behavior of Materials,

Xi’an Jiaotong University, Xi’an 710049, China

[email protected]

Peter Entel

Faculty of Physics and CENIDE, University of Duisburg-Essen,

47048 Duisburg, Germany

[email protected]

Michael Farle

Faculty of Physics and CENIDE, University of Duisburg-Essen,

47048 Duisburg, Germany

[email protected]

Page 55: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Sebastian FählerIFW Dresden, Helmholtzstrasse 20, 01069 Dresden, [email protected]

Takashi FukudaDepartment of Materials Science and Engineering,Graduate School of Engineering, Osaka University, [email protected]

Anna GrünebohmFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Markus E. GrunerFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Sven HamannFaculty of Mechanical Engineering, Ruhr-Universität Bochum,Universitätsstr. 150, 44801 Bochum, [email protected]

Heike C. HerperFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Tilmann HickelComputational Materials Design Theory of Phase Transitions Max-Planck-Institut für Eisenforschung Max-Planck-Straße 1, 40237 Düsseldorf, [email protected]

Alfred HuchtFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Page 56: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Yuanchao JiFerroic Physics Group National Institute for Materials Science, Tsukuba,305-0047, Ibaraki, [email protected]

Ryosuke KainumaDepartment of Material Science, Graduate School of Engineering, TohokuUniversity, Sendai 980-8579, [email protected]

Ibrahim KaramanDepartment of Mechanical Engineering, Texas A&M University, MS 3123,College Station, TX 77843, USAMaterials Science and Engineering Program, Texas A&M University, CollegeStation, Texas 77843-3003, [email protected]

Hiroshi Katayama-YoshidaDepartment of Materials Engineering Science, Graduate School of EngineeringScience, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531,[email protected]

David KlarFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Wolfgang KleemannAngewandte Physik, Universität Duisburg-Essen, 47048 Duisburg, [email protected]

Uwe Klemradt2nd Institute of Physics B, RWTH Aachen University, Germany,[email protected]

Joachim LandersFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Page 57: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Turab Lookman

Theoretical Division, Los Alamos National Laboratory, NM 87545 Los Alamos,

USA

[email protected]

Alfred Ludwig

Faculty of Mechanical Engineering, Ruhr-Universität Bochum,

Universitätsstr. 150, 44801 Bochum, Germany

[email protected]

Lluís Manõsa

Departament d’Estructura i Constituents de la Matèria, Facultat de Física,

Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Catalonia

[email protected]

Yahya Motemani

Faculty of Mechanical Engineering, Ruhr-Universität Bochum,

Universitätsstr. 150, 44801 Bochum, Germany

[email protected]

Jörg Neugebauer

Max-Planck-Institut für Eisenforschung GmbH,

Max-Planck-Str. 1, 40237 Düsseldorf, Germany

[email protected]

Kodai Niitsu

Department of Materials Science, Graduate School of Engineering, Tohoku

University, Sendai, 980-8579, Japan

Antoni Planes

Departament d’Estructura i Constituents de la Matèria. Facultat de Física.

Universitat de Barcelona. Diagonal 647, 08028 Barcelona, Catalonia

[email protected]

Kaustubh R. S. Priolkar

Department of Physics, Goa University, Taleigao Plateau, Goa 403206, India

[email protected]

Page 58: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Peter Puschnig

Institut für Physik, Karl-Franzens-Universität Graz,

Universitätsplatz 5, 8010 Graz, Austria

[email protected]

Xiaobing Ren

Ferroic Physics Group, National Institute for Materials Science, Sengen 1-2-1,

Tsukuba 305-0047, Japan

[email protected]

Jutta Rogal

Interdisciplinary Centre for Advanced Materials Simulation (ICAMS)

Ruhr University Bochum, 44780 Bochum, Germany

[email protected]

Ulrich Rössler

Leibniz Institute for Solid State & Materials Research, IFW Dresden, Germany

[email protected]

Steffen Salomon

Faculty of Mechanical Engineering, Ruhr-Universität Bochum,

Universitätsstr. 150, 44801 Bochum, Germany

[email protected]

Yusuf Samancioglu

Faculty of Physics and CENIDE, University of Duisburg-Essen,

47048 Duisburg, Germany

Kazunori Sato

Department of Materials Engineering Science, Graduate School of Engineering

Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531,

Japan

[email protected]

Avadh B. Saxena

Los Alamos National Lab., NM 87545 Los Alamos, USA

[email protected]

Page 59: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Dominique SchryversUniversity of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, [email protected]

Subodh R. ShenoyIndian Institute of Science Education and Research, Trivandrum 695016, [email protected]

David SherringtonDepartment of Physics, University of Oxford, Oxford, OX1 3 PU, UK, andSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, [email protected]

Atakan TekgülFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, Germany

Kai WagnerFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Michael Widera2nd Institute of Physics B, RWTH Aachen University, Germany,[email protected]

Heiko WendeFaculty of Physics and CENIDE, University of Duisburg-Essen,47048 Duisburg, [email protected]

Manfred WuttigDepatment of Materials Science and Engineering, University of Maryland,College Park, MD 20742, [email protected]

Xiao XuDepartment of Materials Science, Graduate School of Engineering, TohokuUniversity, Sendai 980-8579, [email protected]

Page 60: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

Rudolf ZellerInstitute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich,[email protected]

Jian ZhangXi’an Jiaotong University, Xi’an 710049, ChinaNational Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047,Ibaraki, JapanInstitute for Materials, Ruhr University Bochum, Bochum 44801, [email protected]

Page 61: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics
Anna Grünebohm
University of Duisburg-Essen
Anna Grünebohm
Anna Grünebohm
Anna Grünebohm
Anna Grünebohm
Venue
Anna Grünebohm
Anna Grünebohm
Tram
Anna Grünebohm
Page 62: January 28–30, 2013 - uni-due.de · for cooling applications near room temperature 17:00-17:30: T. Cagin Extended Lagrangian molecular dynamics method for modeling ferroelectrics

934.NE3.4.9

933 924

924.933

937.NE3.9

924

933.937.NE4

934.937

924.926

933.N

E3.4.

9

924.

926

921.

923.

924.

926.

928.

929.

933.

934.

937.

939.

944.

NE1.

2.3.

4

923.9

34

923

924.926.934

921,

923,

924,

926,

929,

930,

939,

344,

997,

994

SB10

,

SB30

,

921,

906

906

906

906

903.

903.

NE3

NE3

910

906

910

910

906.

910.

925

903

906

906.

925

925

906

906

925

906.

907.

925

NE3.

906.

910 90

7

906.907

906.9

07.92

5.NE3

925.

NE3

925

907

907.925

906

NE3

910

910

905.910

917

905

905

905.

917

909.917

901

905

906.909

906.NE1

906.9

09

906.

909

909 90

9

907.

NE1

907

911.

925.

929.

NE2

901

929.NE1.2

NE1.3903

925.

939

939

907

939

903

939

944

944

944

939.944

937.9

39.94

4

944

944

944

937.944903

NE3.

9

926.933

924.926

NE3

923

937.

944

923.

924

923

923

944

934

923.934.944

934.944

942

942

934

942

942

942

942

942

944

944

934

934.9

40934.940

934

941

940

941

941

941

940.

941

940.941.NE4

NE4

942

942

940.941

903.

NE4

942

942

942

942

940.

942

940

940

940.NE4NE4

942

903

NE4.

NE4

934

934.NE4

934.944.

921.

924.

944

921.

924.

937

921.

924.

937.

NE2

903.

921.9

23.92

4.937

.NE2

937

937

923

923

923

U79

921.924.944

921

923

933

933

933

SB10

.SB3

0.92

6.92

893

3

929.NE1.2

934

934

934

934

NE4 93

9

NE1.NE3

934

934

934.

939.

NE4

939.NE4

903.

901

921

923.

926.

928.

929.

933.

939

U79

901. 901

929.NE1.2

901.

901

901.

901.

903

903.

NE4903.

U79.

U79

U79.U79.

U79.

U79.

905.

917

NE3

910

NE3

906

903.

906 925

901.906.NE1

901.906.NE1

907.9

11.92

5.NE1

906

907

NE1.2

901.

901.

934

NE4

939.9

44

937

901

U79903.

939

937

937.NE3.9

903.NE2.4

903

923.934.944

NE4

941

901.906

901.

903.

U79

929.9

33.N

E1.2

901.

903.

937.

944U7

9

NE1

NE1

901.

929.

NE2

929

Poststr.

Steins

che G

asse

Gute

nber

gstr.

Land

ferm

anns

tr.

Ruhrorter St

r.

Köhn

enst

r.

Schw

anen

-

str.

Mül

heim

er S

tr.

Esse

n-St

eeler

-Str.

Esse

n-St

eele

r-Str.

Arno

ld-D

ehne

n-St

r.

Varzi

ner S

tr.

Emm

erich

er S

tr.

Gartroper Str.

Oberhauser Str.

Koop

man

nstr.

Koop

manns

tr.

Styrum

er Str

.

Obermeidericher Str.

Ober-

m

eideri

cher Str.

Emmericher Str.

Ruhr

deich

Fähr

str.

Ruhr

deich

Kiffward

Sym

pher

str.

Emmericher Str.

Wes

tend

er S

tr.

Bahn

hofst

r.

Bahnhofstr.

Bron

khor

stst

r.

Neumühler Str.

Emsc

hers

tr.

Emscherstr.

Neumühler Str.

Hamborner Str.

Beecker Str.

Möh

lenk

amps

tr.

Hamborner Str.

Honig

str.

Papiermühlenstr.

Möh

lenk

amps

tr.

Ostacke

rweg

Sche

llens

tr.La

nge

Kam

p

Friedrich-

EbertFrie

dr.-K

arl-S

tr.W

ind-

müh

lens

tr.

Helmholtzstr.

Schmidt-

Hoffs

che

Str.

Kaiser-Wilhelm-Str. Friedrich-Ebert-Str.

Müh

lenf

elde

r Str.

Austr.

Florastr.

Laar

er S

tr.

Stah

lstr.

Dammstr.

Hom

berg

er S

tr.

Eisen

bahn

str.

Am Nordha

fen

Vohw

inkels

tr.

Unter d

en U

lmen

Bürg

erm

eiste

r-Püt

z-St

r.

Auf d

em D

amm

Gerrickstr.

Vohw

inkels

tr.

Horstst

r.

Garts

träuc

hers

tr.

Augu

stas

tr.

Singstr.

Biesenstr.

Meideri

cher

Str.

Wint

gens

str.

Schweizer Str.

Carl-Benz-Str.

Mül

heim

er S

tr.

Stap

eltor

Bismarck

str.

Sternbuschweg

Lotharstr.

Oranienstr.

Kard

inal

-Gal

en-S

tr.

Saarstr.

Ober

str.

Kard

inal

-Gal

en-S

tr.

Frie

drich

-Wilh

elm

-Str.

Schif

ferstr

.

Schif

ferstr

.Düsseldorfer Str.

Mercatorstr.

Mer

cato

rstr.

Krem

erstr

.

Plessingstr.

Heerstr.

Werthauser Str.

Esse

nberg

er Str

.

Ruhr

orte

r Str.

Kaßl

erfe

lder

Str.

Paul

-Rüc

ker-S

tr.

Auf d

er H

öhe

Ruhr

deich

Am Schlütershof

Am Brink

Esse

nber

ger S

tr.

Pont

wer

t

Pont

wer

t

Ruhror

ter St

r.

Max-Peters-Str.

Oberbürgermeister-Le

hr-Brücke

Hafenstr.

Hafe

nstr.

Krusestr.

Krup

pstr.

Werthauser

Str.

Kupfe

rhüt

te

Seda

nstr. Rudolf-Schock-Str.

Rhei

nhau

sene

r Str.

Wörths

tr.

Wanheimer Str.

Heerstr.

Heerstr.

Karl-

Jarre

s-St

r.

Heer

str.

Düsseldorfer Str.

Wor

ringe

r Weg

Karl-

Lehr

-Str.

Koloniestr.

Kolon

iestr.

Sternbusch

weg

Mozart

str.

Kammers

tr.

Kammerstr.

Kam

mer

str.

Lotharstr.

Sternbusch

weg

Neudorfer Str.Neue Fruchtstr.

Kalkweg

Krup

pstr.

Koloniestr.

Masurenallee

Uhlenhorststr.

Uhle

nhor

stst

r.

Bissingheimer Str.

Bissingheimer Str.

Wed

auer

Brü

cke

Masurenallee

Wed

auer

Str.

Wed

auer

Str.

Kalkweg

Kalkweg

Großenbaumer Allee

Großenbaumer Allee

Lindenstr.

Sittar

dsbe

rger A

llee

Großenbaumer Allee

Sittar

dsbe

rger A

llee

Altenbrucher Damm

Ange

rtaler

Str.

Angerhauser Str.Angertaler Str.

Kaiserswerther Str.

Kaiserswerther Str.

Schu

lz-Kn

audt

-Str.

Ehinger Str.

Ehing

erstr.

Beim

Kne

velsh

of

Röm

erst

r.

Düsseldorfer Landstr. Düsseldorfer Landstr.

Wed

auer

Str.

Neue

nhof

str.

Obere Kaiserswerther Str.

Rhei

ntör

chen

str.

Wanheimer Str. Forstt

r.

Kultu

rstr.

Niko

laist

r.

Fisch

erst

r.

Düsseldorfer Str.

Im S

chle

nk

Im Sc

hlenk

Wac

hold

erst

r.

Paul

-Esc

h-St

r.

Paul

-Esc

h-St

r.

Marg

areth

en St

r.

Helmholtz str.

Mül

heim

er S

tr.

Bügelstr.

Kolon

iestr.

Emmericher Str.

Papiermühlenstr.

str.

Garts

träuc

herst

r.

Am Schlütershof

Kalkweg

-Str.

Kolo

nies

tr.

Klemensst

r.

Mün

zstr.

Unterstr.

Kuhlen-

Fuld

astr.

wall

Pulverweg

Philosophenweg

Moselstr.

Neckarstr.

Sprin

gwall

Nied

erst

r.

Am A

lten

Bohnen-

gasse

Obermauerstr.

Wie

berp

l.

Kuhs

tr.

Müllers-

gasse

Kasin

ostr.

Beekstr.

Salv

ator

weg

Köni

gstr.

Börse

nstr.

Landgerichtsstr.

Köni

g-He

inric

h-Pl

atz

Am B

uche

nbau

m

Heuserstr.

Köni

gstr.

Sonn

enwall

Abteist

r.

Peterstal

Unterst

r.

Beek

str.K.

-Stra

ck-

Plat

z

Vom-Rath- Str.

Goldstr.

An der Bleek

Mar

ient

or

Werftstr.

Char

lotten

str.

Vulka

nstr.

Musfeld-

Tibist

r.

Alte Rhein

- st

r.

Quer-

gasse

Kloste

r-

Chris

tian-

str.

Unive

rsitä

tsstr.

Unte

rmau

erstr

.

Am Müh

lenb

erg

Schm

aleGa

sse

Hube

rtuss

tr.

Naffenbergshof

Heck

ersh

of Lehn

hofs

tr.

Fontanestr. Weststr.

Poth

man

n-

str. Pr

inz-

Hein

rich-

Str.

Krumm-

beeck

str.

Flot

tens

tr.

Albert- Str.

Am B

eeck

bach

Bruckhauser Str.

Herz

ogst

r.

Fran

kens

tr.Leib

nizs

tr.

Wel

kenb

ergs

tr.

Schleiermacherstr.Gotenstr.

Karolinger

Str.Goeckingk-

Wer

ntge

nstr.

Coup

ette

str.

Span

nage

lstr.

Friedhofstr.

Kam

anns

- hof

Vogels-bergstr.

Hopf

enst

r.

Stoc

kum

er S

tr.

Möl

lers

hofs

tr.

Neand

erstr.

Sach

sens

tr.

Wandjesstr.

An der

Andreas-Hofer-Str.

Wyg

erts

tr.

Talstr.

Berlakstr.Neanderstr.

BruckhauserStr.

Sand-

brück

Am Rö

ns-

bergshof

Thom

asstr

.

Arndtst

r.

Frie

sens

tr.Jah

nstr.

Wer

thstr

.

Florastr.Florastr.

Schil

lstr.

Fran

k-

linst

r.

Apostelstr.

Ewal

d-

str.

Am Heck-

mannshof

Apostelstr.

Emsc

herh

ütte

nstr.

Scho

ltenh

ofst

r.

Rhei

nstr.

Kanzlerstr.Am

Hag

en-

beck

shof

Spat

enst

r.

Deich

str.

Am E

isenb

ahnb

assin

Rhein

-br

ücke

n-str

.

Fürs

t-Bism

arck

-Str.

König-Friedrich

-Wilhelm- Str.

Neum

arkt

Dammstr.

Rich

.-Hi

ndor

f-Pl.

Rheinallee

Harmoniestr.

Wein

hage

nstr.

Dr.-H

amm

ache

r-Str.

Amts

geric

htss

tr.

Landwehrstr.

Hafe

nstr.

Milc

hstr.

Luisenstr.

Berg

iuss

tr.Haniel- str.

Karlstr.

Karlstr. Carpstr.Krusestr. Jo

rdin

g- str.

Kast

eelst

r.

Krau

sstr.

Vinc

kepl

.

Gildenstr.

G.-S

ande

r-Pl.

Vinc

keuf

er

H.-N

iede

r-he

llman

n-Pl

.

Vinc

kest

r.Au

g.-H

irsch

-St

r.

Vinc

kew

eg

Alte Ruhrorter

Str.

Alte Ruhrorter

Str.

Sped

ition

sinse

l

Container-Terminal

Kaßl

erfe

lder

Str.

Am B

lum

enka

mps

hof

In de

r Rhe

inau

Emst

erm

anns

-

Arno

ldstr

.

Lierhe

ggen

str.

Burbachstr.Brem

menkampJoha

nniss

tr.

Eggenkamp

kamp

Mai

stat

tstr.

Schelle

n-

str.

Im W

eide

kam

p

Am Schü

rman

nshof

Kochstr.

Voßstr.

Hage

naue

r Str.

Löso

rter S

tr.

Lösorter Str.

Neubreisacher Str.

Brüc

kelst

r.

Sundgaustr.

Joh.-Mechmann-Str.

Schw

arzw

aldstr

.

Step

hans

tr.

Vogesenstr.Talbahnstr.

Reinholdstr.

Was

gaus

tr. Emils

tr.

Eikenstr.

Quadtstr.

Gerhardstr.

Laaker Str.

Biesenstr.

Winters

tr.

Rege

nber

gastr

.

Gerhardstr.

Rege

nber

gast

r.

Jakobstr.

Baus

tr.

Reinholdstr.

Spes

sarts

tr.

Brückelstr.

Hühner- orter Str.

Schl

oßst

r.

Odenwaldstr.M.-Tilger-Str. Ka

ro-

linen

str.

Fran

ken- pl.

Gerh

ardp

l.

Stöc

ken-

Augusta- str.

Herk

en-

berg

er S

tr.W

alzs

tr.

Am A

lten

Vieh

hof

Mylendonkstr.

Geld

erbl

omst

r.Drak

erfe

ld

In den Dörnen

Am W

elsc

henh

of

Kück

en-

Rose

nau

Rosenau

Winters

tr.

Laaker Str.

Eckershorst Enge Str.

Vohw

inkels

tr.

Herwarthstr.

Stickerskamp

Herwarth- Stei

nstr.

Died

enho

fene

r Str.

Werderstr.

Nom

beric

her S

tr.

Franseckystr.

Dietr.-Rütten-Str.

Nombericher Pl.

BerchumerStr.

Düpp

elst

r.

Düppe

lstr.

Stra

ßbur

ger

Str.

Spichern- str.

Met

zer

Str.

Neus

tr.Ne

ustr.

Mühlenstr.Mühlenstr.

Mühlen-

Berg

str.

Eupener Str. St.-Vither-Str.

Malmedyer Str.

Tunnelstr.

Tunnelstr.

Michelshof

Alsens

tr.

Waterloostr.

Kron-prinzenstr.

Bred

owstr

.

Berg

str. Bruch-

feldstr.

Im Binnen-

dahl

Alte

n-

kam

p

Kronenstr.

Mau

erst

r.

Hohe

r Weg

Herb

stst

r.

Som

mer

str.

Som

mer

str.

Burg

str.

Paul-Bäumer-Str.

Fauststr.

Wes

erst

r.

Geric

htss

tr.

Stei

nen-

k

ampSi

egfri

edst

r.W

eser

-

Nalenzstr.

Dislichstr.Salmstr.

Lakumer Str.

Unter-führungsstr.

Wickrathstr. Bleibtreustr.

Schliemannstr.

Schwaben-

ruhrstr.

Habsburgerstr.Hoge

nweg

Lohengrinstr.

Schlickstr.

Heisingstr.

Herb

stst

r.Gabelsbergerstr. Schn

üran

str.Stolze-

str.

Schl

acht

enst

r.

Am Stadtpark

Letje

ns-

s

tr.

Heinrich-Bongers- Str.

Tönn

iskam

p

Ritterstr.

Nach

bar- str.

Borkhofer Str.

Phili

ppst

r.

Pfarrstr.

Denn

ewitz

str.

Ritterstr.

Mar

ktstr

.

Rosenbleek

Haferacker

Holle

nber

gstr.

Kirchstr.

W.-W

ild-S

tr.

Martin-

Kaehler-Str.

Von-

der-M

ark-

Str.

Weißenburger

Str.

Zopp

enbr

ück-

In den Groonlanden

Weizen

kamp

Skre

ntny

str.

Kornstr.Roggenkamp

Welsch

enka

mp Unte

rgar

d

Hüttekp.

Untergard

Am Kanal

Kana

lstr.

Am G

iesen

hof

Hofst

r.

Dümpter Str.Wildmundstr.

Am D

ehne

nhof

Ober- meidericher

Pfad

Neue

r Weg

Ostender Str.

Ruhrstr.

Hilfs

werkstr

.

Koop

manns

tr.Al

brech

tstr.

Nieb

uhrst

r.

Albrechtstr.

Im Heidekamp

Speldorfer Str.

Dreibundstr.

Berliner Str.

Hage

nsal

lee

Alex

ande

rstr.

Taunusstr.

Nansenstr.

Polarpfad

Pfingststr.

WetzlarerStr.

Wiesbadener Str.

Berli

ner S

tr.

Grün

str.

Wie

sbad

ener

Str.

Nauheimer Str.

Bonh

oeffe

rstr.

Berliner S

tr.

Emmericher Str.

Krab

benk

amp

Bald

usst

r.

Baldusstr.

Krem

ersk

amp

Kiffw

ard

Ruhr

deich

Schl

ickst

r.

Schrot

tinsel

Kohleninsel

Ölinsel

Am B

lum

enka

mps

hof

Rück

er-

Ottweiler Str.

Merzige

r Str. Ne

unki

rche

ner S

tr.

Benediktstr. Benediktstr.

Esse

nber

ger S

tr.

Esse

nber

ger S

tr.

Klever Str.

Rheinberger RingGelderner

Str.

Baer

ier S

tr.

Lilien

thals

tr.

Diergardtstr.

BovefeldSulzbacher Str.

Völklinger Str.

Dillinger

Javastr.

Xant

ener

Str.

Am Pa

ralle

lhaf

en

Lehmstr.

Am D

eicht

or

Am A

ußen

hafen

Moe

rser S

tr.

Am A

ußen

hafen

Juliu

sstr.

Julius- W

eber-Str.

Bung

erts

tr.

Hagelstr.

Zirk

elst

r.

Walzenstr.

Ulric

hstr.

Marientorst

r.

Tonhallenstr.

Sonn

enwa

ll

Begin

en-

gass

e

Fr.-

Wilh

elm

-Pl

.

Wallstr.

Böni

nger

str.

Neue

Mar

ktst

r.

Dell-

Krummach

er Str

.

Dellp

l.

Grünstr.

Pape

ndel

le

G.-Könzgen-Str.

Real

schu

lstr.

Real

schu

lstr.

Musfeldstr.

Cecilienstr.

Kölner Str.

Witt

ekin

dstr.

Haup

tbah

nhof

Tonhallenstr.

Hohe Str.

Galle

nkam

pstr.

Günt

hers

tr.

Claubergstr. Lenzmann- st

r.

Am Burg-

Münzst

r.

Lipp

estr.

Averdunk-str.

Brüd

erst

r.Ju

nker

nstr.

Am R

atha

us

Mainstr.

Werrastr.

Nahestr.Nahestr.

Schi

llerp

l.

Wup

pers

tr.

Siegstr.

Lennestr.

Erfts

tr.Erf

tstr.

Fuld

astr.

Angerstr.

Stre

sem

anns

tr.

Philo

soph

enw

eg

Burg

pl.

Schi

nkel

-pl

.

Schi

ffers

tr.

Tannstr.

Kaßl

erfe

lder

Str.

Wrangelstr.

Waldemar-str.

Baukampstr.

Stupperichstr.

Andr

eas- str

.

Bülow

-

str.

Scha

rnho

rsts

tr.

Wei

denw

eg

Am Hafe

n

Albertstr.

Gabl

enzs

tr.

Am Churkamp

Siec

henh

auss

tr.

Immendal

Walzenstr.

Brücken-pl.

Anto

niens

tr.

Vygenstr.

Hochfel

dstr.

Frie

dens

tr.

Bach

str.

Lieb

fraue

nstr.

Im B

ocks

bart

Vale

nkam

p Brückenstr.

Eige

nstr.Zu

mSc

hulh

of

Blüc

herst

r.

Dickelsbachstr.

Mus

feld

pl.

Men

zel-Re

itbah

n

Musfel

dstr.

Musfeldstr.

Blei

chst

r. W.-Tell-Str.

Tiergartenstr.

Frie

dens

tr.

Johanniterstr.

Fehr-

bellin

str.

Eige

nstr.

Köni

ggrä

tzer

Str.

Hochfeld- str.

Brückenstr. Paul

usst

r.Gerokstr.

Gitschiner Str.

Gitschiner Str.

Johanniterstr.

Curti

usst

r.

Wel

kers

tr. Akaz

ienh

of

Köst

erst

r.

Brockhoffstr.

Pilgrimstr.

Zeppelinstr.

Aug.

-Nie

ten-

Str.

Merremstr.

Davidisstr.

Eich

enho

f

Köni

ggrä

tzer S

tr.

Fliederstr.

Heer

str.

Schultestr.

Fröb

elstr.

Ters

teeg

en-

str.

Fröb

el-

St. Johann-Str.

brüc

ker

S

tr.

Grav

elot

test

r.Gr

avel

otte

str.

Moritzstr.

Wör

thstr

.Steinmetzstr.

Trautenaustr.

Grunew

aldstr

.

Graustr.

Krummenhakstr.

Rud.-Schönstedt-Str.

Lieb

igst

r.

Gießereistr.

Forbachstr.

Wörthst

r.Adelenstr.

Blüc

herp

l.

Fähr

str.

Im Ec

k

Deichstr.

In de

n

Rheinau

Am B

erns

’sche

n Ho

f

Hoch

feld

er S

tr.

Lisas

tr.

Lisa- Rosastr.

Irmgard-

Giselastr.Werthauser Str.

Werthauser

Str.

Berth

apl.

Olgastr.

Erna

str.

Ursu

last

r.

Karolastr.

Kopenhagener Str.

Liver

pool

er St

r.

Osloer Str.

Europaallee

Rotterdamer Str.

Europaallee

Antw

erpe

ner S

tr. Gate

rweg

Bliersheimer Str.

Dachsstr.

Dach

sstr.

Forst

str.

Elst

erst

r.

Eich

horn

str.

Eber

str. Fu

chss

tr.

Schm

iede

str.

Kaufstr.

Eschenstr.Eschenstr.

Alter Kalkweg

Schl

osse

rstr.

Glas

erst

r.

Eschenstr.

Gärtnerstr.

Gieß

ings

tr.

Gießingstr.

Bode

lschw

ingh

str.

Mich

aelst

r.

Pose

ner S

tr.

Kulmer Str.

Thorner Str.

Markusstr.

Mich

aelst

r.M

ichae

l-pl

.Fis

cher

str.

Erlenstr.

Buss

ards

tr.

Buch

holzs

tr.Bu

chho

lzstr.

Kran

ichst

r.Bu

chen

str.

Hultschiner Str.

Ahorn- str.

Tannen- str.

Ulmenstr.

Dornstr.

Birkenstr.

Ginsterstr.

Platanen-str.

Holunderstr.

Hultschiner Str.

Calvinstr.

P.-Ge

rhar

dt-S

tr.

Mel

anch

-th

onpl

.

Fr.-Naumann-Str.

W.-K

ette

ler-S

tr.

Damaschkestr.

Max-Brandts-Str.

Berlep

schstr.

Sper

lings

gass

e

Fasa

nens

tr.Im

Wal

dfrie

den

Im Baumhof

Im S

iepe

nIm

Hag

en

Im Hort

Im VogelsangVoge

lsang

pl.

Zum Lith

Adle

rstr.

Kiebitzstr.

Drossel-str.

Amsel-str.

Meisen-str.

Eulen-str.

Habicht-str.

Sperber-str.

Sternstr.Sternstr.

Am Tannenhof

Zu de

n Reh

wiesen

Linto

rfer S

tr.

Hummel-pfad

Am Schützenhaus

Sebastianstr.

Bienen-pfad

Buch

enha

inH.

-Löns

-Weg

Preg

elweg

Fried

rich-

Alfre

d-St

r.

Eichenweg

Margaretenstr.

Berta

allee

Grün

er W

eg

Kiefe

rnwe

g

Diepen-brocker W.

AmBahndamm

Memelstr.

Hardtstr.

Enge

l-be

rtstr.

Waldstr

.

Wildstr

. Nibelun

genst

r.

H.-Pfitz

ner-S

tr.

Verdi

str.

Lortz

ingstr

.

Strau

ßstr.

Derfflin

gerst

r.

Gauß

str.

Hertz

str.

Fraunhofer

Str.

Buns

enstr

.

Wegnerstr.

Fraun

hofer

Str.

Akazie

nstr.Kra

utstr.

Grabenstr.

Grabenstr.

Richard

-Wag

ner-S

tr.

Kreutz

erstr.

Bruckn

erstr.

Wildstr.

Kortu

mstr.

Silche

rstr.

Gneisenaustr.

Gneisenaustr.

Uthman

nstr.

Gabrie

lstr.

Rich.-D

ehmel-

Str.

Lotharstr.

Lotharstr.

Wal

dhor

nstr.

Stei

nbru

chst

r.

Kam

mer

weg

Krähenweg

Nach

tigal

lent

alNa

chtig

alle

ntal

Rund

weg

Aktie

nweg

Forsthausw

eg

Rundweg

Grenzweg

Drac

hens

teig

Eselsbruchweg

Klöcknerweg

GrenzwegMonningstr.Monningstr.

Aktie

nweg

Kommandantenstr.

Neudorfer Str.

Alte Scha

nze

Rhein

-

babe

nstr.

Schu

manns

tr.

Sche

ffelst

r.

Hebbelstr.

Seile

rstr.

Gustav-Adolf-Str.Blumenstr.

Tulp

enst

r.

Blumen

str.

Harolds

tr.

Sche

mkes-

w

eg

Grabenstr.

Gustav-Adolf-Str.

Lilien

crons

tr.

Händelstr.

Ostst

r.

Schenken

-dorfst

r.

Nettel-

b

ecks

tr.

Eichendorff-Andersenstr.

Mör

ikestr

.

Harde

n-be

rgstr.

Lenaustr.Bürge

r-

str.

Gneisenaustr.

Gneisenaustr. Walramsweg

Heine

str.

Aktien

str.

Finke

n-

str.

M.-R

eger

-Str.

Forst

haus

weg

Flurst

r.Holte

istr.

Holte

i-

st

r.

Hessen

str.

Gellertstr.

Geib

elst

r.

Grabenstr.

Carl-Benz-Str.

Breh

msw

eg

Mül

heim

er S

tr.

Am Waldessaum

ZumDrachensteig

Lerchenstr.

Pappenstr.

Memelstr.

Otto-Keller-Str.

Kette

nstr.

Anke

rstr.

Schön-

hauser Str.

Ostst

r.

Klöc

kner

str.

Blumenstr.

Ham

mer

-

str.

H.-Le

rsch

Gerh

art-H

aupt

man

n-St

r.

Danziger Str.

Hedwigstr.

Winkelstr. Lützowstr.

Man-

teuffelstr.

G.-Freytag-Str.

Oststr.

Brauer- s

tr.

Prinzenstr.

Lutherstr.Moltkestr.

Aakerfährstr.

Denk

mal

str.

Park

str.

Am B

otan

. Gar

ten

Am Kaise

rber

g

Hohe

nzol

lern

str.

Zieglerstr.To

nstr.

Hohe

nsta

ufen

str.

Heckenstr.

Konr

adin-

Pr.-Albrecht- Str.

Mar

tinstr

.

Bechemstr.

manstr.

Roßstr.

Zieglerstr.

Felse

nstr.Malteserstr

.

Templers

tr.

Duiss

erns

tr.

Blumen

thals

tr.

Köni

gsbe

rger

Alle

e

Köni

gsbe

rger

Alle

e Pappenstr.

Hansastr.

Hansastr.

Wilhelmshöhe

KiefernwegW

alds

teig

eAm Freischütz

Steu

bens

tr.

Carl-Schulz Str.

Hasenkampstr.

d. Kirche

Hint

er

Ottil

ienp

l.

Schr

eiber

-

str.

Falkstr. Falkstr.

Falk

str.

Hans

astr.

Butter-

Wallensteinstr.

Rübe

nstr.

Am Schn

abel

-hu

ck

Gottfried-

In der Ruhrau

Esm

arch

str.

Zanderstr.

Aakerfährstr.

Dörnerhofstr

.

SchafswegKo

lkerh

ofwe

g

Tilsiter Ufer

Plata

nena

llee

Schw

iesen

kamp

Schwiesenkamp

Wert

hack

er

L.-Kr

ohne

Futte

rstr.

Am U

nkels

tein

Rehweg

Rehweg

Rund

weg

Rund

weg

Wer

kstä

ttens

tr.

Sternstr.

Keniastr.

Tiro

ler S

tr.

Im L

icht

Mar

ienb

urge

r Ufe

r

Dirschauer Weg

Allenst

einer

Ring

Allens

teine

r Ring

Am Nord-

graben

Mär

chen

weg

Finkenschlag

Am B

runn

enTeich

grab

en

Zum

Elle

n-

b

erg

Berglehne

Wal

dleh

ne

Berglehne

Bissingheimer Str.

Zum

Hol

zenb

erg

Am Holderstrauch

Dorfp

l.

Vor dem Tore

Am S

üdgr

aben

Finkenschlag

Vor dem ToreHerm.-Grothe-Str.

Herm.-Grothe-Str.

An d

en P

lata

nen

Masurenallee

Am S

ee

Kurt-Heintze-Str.

Seitenhost

Ulm

enw

eg

Zur Wolfskuhl

Rüsternstr.An den Linden

Wed

auer

Mar

kt

Zu den Eichen

Zu den Eichen

Im Grünen

Winkel

Birkenweg He

imwe

g

Fliederbusch

Braunsberger Weg

Braunsberger Weg

Neid

enbu

rger

Str.

Riesenburger Str.

Ortelsburger

Graudenzer

Inste

rbur

ger W

eg

Am Kirchmannshof

Ster

neck

str.

Sternstr.

Sternstr.

Dach

steins

tr.

Sem

mer

ings

tr.

Watzmannstr.

Zugspitzstr.Sterneck

str.

Masurenallee

Taue

rn-

str.

Hauweg

Am D

icker

hors

t

Am S

chel

lber

g

Am BollheisterGroßglöcknerstr.

Südstr.E.-K

uss-

Str.

Eibe

nweg

Brei

thof

Am D

ickel

sbac

h

Am Golfpla

tz

Weißdornstr.

Zu den Birken

Zu den BuchenZu den Buchen

Zu den Erlen

Zu den Erlen

Zu d

en W

iese

nZu

den

Wie

sen

Wal

derb

enw

eg

Jasminstr.

Ligu

ster

str.

Am K

rähe

n-ho

rst

AmMaashof

Am Dickels-

Im Knick

Kastanienstr.

Rotdornstr.

Sanddornstr.

Zu den Tannen

Fichtenstr.

AmGlockenturm

Fran

zisku

s-st

r.

Im Dickerhorster Grund

Saar

ner S

tr.

Saarner Str.

Zum Verschwiegenen Zoll

Im Kneipp- grund

Strohweg

Allgäu

er Str

.

Allgäu

er Str

.

Zimmers

tr.

Zille

rtale

r Str.

Gast

eine

r Str.

Am Grünen

GrundAm Sp

ick

Otawistr

.

Windhuk

er Str.

Swak

opmun

der S

tr.

Swak

opmun

der Pfad

Lomest

r. Lambare

nastr.

Windhu

ker P

l.

Daressalamstr.

Lüderitzal

leeTog

ostr. Tog

ostr.

Altenbrucher

Damm

Keniastr.

Mün

chen

er S

tr.

Mafiastr.

Pembastr.

Water-

bergstr.

Waterberg

pfad

Pfron

tener

Weg

Salzb

urge

r P

latz

Innsbrucker Alle

Linzer Str.

Füssener Str.

Kufs

tein

er S

tr.

Dregenzer Str.

Im D

reisp

itz

Ecks

tr.

v. Spree Str.

Rose

n-he

imer

Weg

Im Königsbusch

Str.

Landshuter Str.

Konstanzer Str.

Trau

nste

iner

Str.

Str.

Grazer Str.

Passauer Str.

Tiro

ler S

tr.

Kärn

tene

r Str. Burgenlandstr.

Im D

omän

en-

wal

d

Lindauer Str.

Sude

tens

tr.

Steiermarkstr.

Straubinger Str.

Sude

tens

tr.

Heinrich-Albrod-Str.

Alte Kaserne

Wanheimer Str.

Industriestr.

Neue

nhof

str.

Win

dtho

rats

tr.

Pollmannstr.

Hitzestr.

Mallinckrodtstr.

Am Duisburger Richtweg

Am B

ierw

eg

Zum Eichelskamp

Am Gebranten Heldgen

Forst

str.

Efeustr.

Aste

rnw

eg

Irisstr.

Dahlienstr.

Dahlienstr.

Landwehr

Auf demAuf der Heg

Ferd

.-Hos

er-S

tr.

Hortensienstr.

Im Heck

dahl

An d

er

Pütz

kate

Mar

ktpl

.

Alte

Duisb

urger Str.

Zum

Posa

dow

skip

l.

Schönenhofweg

Höschen-

hofweg

Ring

Ring

Am Z

iege

lkam

p

Bieg

erfe

lder

Weg

Mei

ster

-Are

nz-S

tr.

Bieg

erfe

lder

Weg

Peschenstr.

Otto

-Hel

lwig

- Str.

Zum

Müh

lkot

ten

Spieckerstr.

Gustavsburger Str.

Cramer-

Klett-S

tr.

Krokusstr.

Gerberstr.

Buzs

tr.

Hain

dt- str.

Graf-Spee-Str.

Kolumbus-

Anger- orter Str.

Am Mühlstein Rinn

e-St

r,Berz

eliu

sstr.

Fer-

d

inan

dstr.

Goetzkestr.

Steinb

rinks

tr.

Hole

ypl.

Am Windhövel

Rich.-

Seiffer

t-Str.

Am Kreuzacker

Peter

sstr.

Mol

berg

str.

Beim Görtzhof

Suitb

ertus

str.

Am To

llber

g

Am Steinberg

shof

Heiligen- baumstr.Rahmer Str.

Atro

per S

tr.

Augsburger Str.

Nürnbe

rger S

tr. Wanhe

imer

Str.

Knev

elspfä

dche

n

Bliers-

heim

er Str

.Frie

mersheim

er Str.

Honn

enpf

ad

Honnenpfad

Wittlaerer Str.

Kalku

merStr

.Br

isenw

eg

KlagenfurterStr.

Neud

orfe

rM

arkt

Ostst

r.

Karm

elpl

.Heu-

Quadtstr.

Am B

ahnh

of

Karl-

Flot

tens

tr.

str.

Magdalenenstr.

Brauere

i

Neanderstr.

Schuir-

Im

hof

Haxter- grund

str.

str.

str.

Gans

str.

str. dells

tr.

Laaker Str.

str.

kamp

DümpterPfad

Am Ingen-

hammshof

Brückel

str.

Talbahnstr.

Wattstr.Besse- merstr.

Zwin

glist

r.

Rheinstr.

Kanzlerstr.

Zwin

glist

r.

Schifferheim- str.

Karls

pl.

Fabrikstr.

Fabrikstr.

Landwehrstr.

Am

Rosen-

hügel

Str.

Paul-

Str.

Im Kalk

arer

Str.

GocherStr.

Wehrgang

Flachsmarkt

str.Leiden-

froststr.

Kief

er-str

.

str.

str.

acker

Am Innenhafen

Speicher-

gracht

Hanse-gracht

str.

Grasstr.

Kinkel-Str.

Heckenstr.

str.

Prinzen- str.Zieglerstr.

Keet-

Geib

elst

r.

Aktien

-

str

.

str.

Str.

Krautst

r.

Saar

-

str.

Teilstr.

str.

Schultestr.

Erlenstr.

Fliederstr.

Markusstr.

Zum Lith

A.-Wagner-Str.

In der

Hoch

feld

er S

tr.

Werthen

str.

str.

Eschenstr.

Rüsternstr.

Zur Wolfskuhl

Kehr

wie

der

Am

Am Hand-wer

ksho

f

Sansibar- str.

Herm

.-

str.

Stei

nbrin

kstr.

Am Kreuzacker

Dorn

Bergische

Cramer-Klett-Str.

Arlberger Str.

Böhmer

Tolzer

Grazer Str.

Hohe Str.

Str.

bach

Lahn

-st

r.

AmM

ismah

lshof

Sond

erbu

rger

Str.

Unte

r-öd

erich

Kühlings-gasse

Rhei

nber

ger R

ing

Carstanjen-

str.

Ludgeri-

str.

Ludgeristr.

Beim

Alte

n He

betu

rm

Busb

ahnh

of Rads

tatio

n

LAA

R

MEI

DER

ICH

BEE

CK UN

TER

MEI

DER

ICH

OB

ERM

EID

ERIC

H

RU

HR

ORT

DU

ISSE

RN

ALT

STA

DT

KA

SSLE

RFE

LD

WA

NH

EIM

NEU

DO

RF

HO

CH

FELD

DEL

LVIE

RTEL

NEU

ENK

AM

P

WA

NH

EIM

ERO

RT

AN

GER

HA

USE

N

WED

AU

BU

CH

HO

LZ

BIS

SIN

GH

EIM

GR

OSS

ENB

AU

M

STAD

TPAR

K

HAFE

NKAN

AL

INNE

NHAF

EN

RUHR

RHEIN

-HER

NE-K

ANAL

KANA

LHAF

EN

BOTA

N.GA

RTEN

HOLZ

-HA

FEN

KAIS

ERBE

RG

DUIS

BURG

ERST

ADTW

ALD

BERT

ASEE

BARBARASEE

SPOR

TPAR

K DU

ISBU

RG

REGATTABAHN

MARGAR

ETEN

SEE

MAS

UREN

SEE

WAM

BACH

SEE

WOL

FSSE

EBÖ

LLER

TSEE

HAUB

ACHS

EE

WIL

DFÖR

STER

SEE

ERHO

LUNG

SPAR

K

AUSS

ENHA

FEN

HAFEN RHEINHAUSEN

RHEIN

RHEIN

PARA

LLEL

HAFE

N

HAFE

NKAN

AL

RUHR

VINC

KEKA

NAL

NORDHAFEN

SÜDHAFEN

RUHR

PARALLELKANAL

Univ

ersit

ät

DU

ISPO

RT

Anle

gest

elle

Müh

lenw

eide

Imm

anue

l-Ka

nt-P

ark

Garte

n de

rEr

inne

rung

Am Güter- bahnhofPorts

mou

th-

plat

z

11AS

DU-

Zent

rum

Mercatorstr.

10

AK D

uisb

urg-

Nord

AK D

uisb

urg

AS D

U-Du

isser

n

13AS D

U-W

edau

14AS

DU-

Buch

holz

AK K

aise

rber

g

14AS

DU-

Kaise

rber

g

12AS

DU-

Häfe

n/Ze

ntru

m

12AS

DU-

Hoch

feld

11

AS D

U-Ho

mbe

rg

CITY-ZOOM

934.NE3.4.9

933

924

924.

933

937.N

E3.9

924

933.9

37.N

E4

934.9

37

924.

926

933.NE3.4.9

924.926

921.923.924.926.928.929.933.934.937.939.944.NE1.2.3.4

923.934

923

924.926.934

906

906

906

906

903.

903.

NE3

NE3

910

906

910

910

906.910.925903

906

906.925

925

906

906

925

906.907.925

NE3.906. 910

907

906.907

906.907.925.NE3

925.NE3

925

907

907.9

25

906

NE3

910

910

905.910

917905

905

905.917

909.

917

901

905

906.909

906.

NE1

906.909

906.909

909

909

907.NE1

907

911.925.929.NE2

901

929.N

E1.2

NE1.

390

3

925.939

939907

939

903

939

944

944

944

939.

944

937.939.944

944

944

944

937.944

903

NE3.9

926.

93392

4.926

NE3

923

937.944

923.924

923

923

944

934

923.934.944

934.944

942

942

934

942

942

942

942

942

944

944

934

934.940934.940

934

941

940

941

941

941

940.941

940.9

41.N

E4

NE4

942

942

940.

941

903.

NE4

942

942

942

942

940.942

940

940

940.

NE4

NE4

942

903

NE4

.

NE4

934934.

NE4

934.

944.

921.924.944

921.924.937921.924.937.NE2

903.

921.9

23.92

4.937

.NE2

937

937

923

923

923

U79

921.

924.

944

921

923

933

933

933

SB10.SB30.926.928933

929.NE1.2

934

934

934

934

NE4

939

NE1.N

E3

934

934

934.939.NE4

939.

NE4

903.

901

921

923.926.928.929.933.939

U79

901.

901

929.NE1.2

901.

901901.

901.

903

903.

NE4

903.

U79.

U79

U79.

U79.

U79.

U79.

905. 917

NE3

910

NE3 906

903.

906

925

901.9

06.N

E1

901.

906.

NE1

907.911.925.NE1

906

907

NE1.2

901.

901.934

NE4

939.944

937

901

U79

903.

939

937

937.

NE3.

9

903.

NE2.

4

903

923.934.944

NE4

941

901.

906

901.903.

U79

929.933.NE1.2

901.903.

937.944

U79

NE1

NE1

901.

929.NE2

929

Post

str.

Steinsche Gasse

Gutenbergstr.

Landfermannstr.

Ruhrorter Str.

Köhnenstr.

Schwanen- str.

Mülheimer Str.

Essen-Steeler-Str.

Essen-Steeler-Str.

Arnold-Dehnen-Str.

Varziner Str.

Emmericher Str.

Gartroper Str.

Oberhauser Str.

Koopmannstr.

Koopmannstr.

Styrumer Str.

Ober

meid

erich

er St

r.

Ober-

m

eideri

cher

Str.

Emm

erich

er S

tr.

Ruhrdeich

Fährstr.

Ruhrdeich

Kiffw

ard

Sympherstr.

Emmericher Str.

Westender Str.

Bahnhofstr.

Bahn

hofst

r.

Bronkhorststr.

Neum

ühler

Str.

Emscherstr.

Emscherstr.

Neum

ühle

r Str.

Hamborner Str.

Beec

ker S

tr.

Möhlenkampstr.

Ham

born

er S

tr.

Honigstr.

Papiermühlenstr.

Möhlenkampstr.

Ostacke

rweg

Schellenstr.Lange Kamp

Friedrich- Ebert

Friedr.-Karl-Str. Wind-mühlenstr.

Helmholtzstr.

Schmidt-

Hoffsche Str.

Kaise

r-Wilh

elm-S

tr.Fr

iedr

ich-E

bert-

Str.

Mühlenfelder Str.

Austr

.

Flor

astr.

Laarer Str.

Stahlstr.

Damm

str.

Homberger Str. Eisenbahnstr.

Am Nord

hafen

Vohwinkelstr.

Unter den Ulmen

Bürgermeister-Pütz-Str.

Auf dem Damm

Gerrickstr.

Vohw

inkels

tr.

Horstst

r.

Gartsträucherstr.

Augustastr.

Sings

tr.

Biesenstr.

Meidericher Str.

Wintgensstr.

Schweizer Str.

Carl-

Benz

-Str.

Mülheimer Str.

Stapeltor

Bismarc

kstr. St

ernb

usch

weg

Loth

arst

r.

Oran

ienstr

.

Kardinal-Galen-Str.

Saars

tr.

Oberstr.

Kardinal-Galen-Str.

Friedrich-Wilhelm-Str.

Schiffe

rstr.

Schiffe

rstr.

Düss

eldo

rfer S

tr.

Mer

cato

rstr.

Mercatorstr.

Kremerstr.

Plessingstr.

Heer

str.

Wert

haus

er Str

.

Essenberger Str.

Ruhrorter Str.Kaßlerfelder Str.

Paul-Rücker-Str.

Auf der Höhe

Ruhrdeich

Am S

chlü

ters

hof

Am B

rink

Essenberger Str.

Pontwert

Pontwert

Ruhrorter Str.

Max-Peters-Str.

Oberbürgermeister-Lehr-Brücke

Hafen

str.

Hafenstr.

Krusestr.

Kruppstr.

Wertha

user

Str.

Kupferhütte

Sedanstr.

Rudo

lf-Sc

hock

-Str.

Rheinhausener Str.

Wörthstr. Wan

heim

er S

tr.

Heerstr.

Heerstr.

Karl-Jarres-Str.

Heerstr.

Düsseldorfer Str.

Worringer Weg

Karl-Lehr-Str.

Koloniestr.

Koloniestr.

Sternb

usch

weg

Mozarts

tr.

Kammerstr.

Kammerstr.

Kammerstr.

Loth

arst

r.

Stern

busch

weg

Neud

orfe

r Str.

Neue

Fruc

htst

r.

Kalkweg

Kruppstr.

Koloniestr.

Masurenallee

Uhlen

horst

str.

Uhlenhorststr.

Bissingheimer Str.

Bissingheimer Str.

Wedauer Brücke

Masurenallee

Wedauer Str.

Wedauer Str.

Kalkweg

Kalkweg

Groß

enba

umer

Alle

e

Groß

enba

umer

Alle

e

Lindenstr.

Sittard

sberger A

llee

Groß

enba

umer

A

llee

Sittard

sberger A

llee

Altenbrucher Damm

Angertaler Str.

Angerhauser Str.

Ange

rtaler

Str.

Kaise

rswer

ther

Str.

Kaise

rsw

erth

er S

tr.

Schulz-Knaudt-Str.

Ehin

ger S

tr.

Ehingerstr.

Beim Knevelshof

Römerstr.

Düsseldorfer Landstr.Düsseldorfer Landstr.

Wedauer Str.

Neuenhofstr.

Ober

e Ka

isers

wer

ther

Str.

Rheintörchenstr.

Wan

heim

er S

tr.

Forsttr.

Kulturstr.

Nikolaistr.

Fischerstr.

Düss

eldo

rfer S

tr.

Im Schlenk

Im Schlenk

Wacholderstr.

Paul-Esch-Str.

Paul-Esch-Str.

Margarethen Str

.

Helmholtz str.

Mülheimer Str.

Bügelstr.

Koloniestr.

Emm

erich

er S

tr.

Papiermühlenstr.

str.

Gartsträucherstr.

Am S

chlü

ters

hof

Kalkweg

-Str.

Koloniestr.

Klemensstr.

Münzstr.

Unterst

r.

Kuhl

en-

Fuldastr.

wal

l

Pulverweg

Philosophenweg

Mos

elst

r.

Neck

arst

r.

Springwall

Niederstr.

Am Alten

Bohnen-

gasse

Ober

mau

erstr

.

Wieberpl.

Kuhstr.

Müllers-

gasse

Kasinostr.

Beek

str.

Salvatorweg

Königstr.

Börsenstr.

Land

geric

htss

tr.

König-Heinrich-Platz

Am Buchenbaum

Heus

erst

r.

Königstr.SonnenwallAbteistr

. Pete

rstal

Unterstr.

Beekstr.

K.-Strack-

Platz

Vom

-Rat

h- S

tr.

Gold

str.

An de

r Blee

k

Marientor

Werftstr.

Charlottenstr.

Vulkanstr.

Musfeld-

Tibistr.

Alte Rhein- str.

Quer-gasseKloster-

Christian-str. Universitätsstr.

Untermauerstr.

AmMühlenberg

Schmale Gasse

Hubertusstr.

Naffenbergshof

Heckershof

Lehnhofstr.

Fontanestr.W

eststr.

Pothmann-

str.Prinz-Heinrich-Str.

Krumm-

beeck

str.

Flottenstr.

Albert- Str.

Am Beeckbach

Bruckhauser Str.

Herzogstr.

Frankenstr.

Leibnizstr.

Welkenbergstr.

Schleiermacherstr.

Gotenstr.

Karolinger Str.Goeckingk-

Werntgenstr.

Coupettestr.

Spannagelstr.

Fried

hofst

r.

Kamanns-hof

Vogels-bergstr.

Hopfenstr.

Stockumer Str.

Möllershofstr.

Neande

rstr.

Sachsenstr.

Wandjesstr.

An der

Andreas-Hofer-Str.

Wygertstr.

Talstr.

Berlakstr.Neanderstr.

BruckhauserStr.

Sand

-

brück

Am Röns- berg

shof

Thomasstr.

Arndtstr.senstr.

Jahnst

r.

Werthstr.

Florastr.Florastr.

Schills

tr.

Frank- linstr.

Apostelstr.

Ewald- str.

Am Heck-

mannshof

Apostelstr.

Emscherhüttenstr.

Scholtenhofstr.

Rheinstr.

Kanz

lers

tr.

Am Hagen-beckshof

Spatenstr.

Deichstr.

Am Eisenbahnbassin

Rhein-brücken-str.

Fürst-Bismarck-Str.

König

-Fried

rich-

Wilh

elm-

S

tr.

Neumarkt

Damm

str.

Rich.-Hindorf-Pl.

Rheinallee

Harm

onies

tr.

Weinhagenstr.

Dr.-Hammacher-Str.

Amtsgerichtsstr.

Land

weh

rstr.

Hafenstr.

Milchstr.

Luise

nstr.

Bergiusstr.

Hani

el-

s

tr.

Karls

tr.

Karls

tr.Ca

rpstr

.Kr

uses

tr.

Jording-str.

Kasteelstr.

Krausstr.

Vinckepl.

Gild

enst

r.

G.-Sander-Pl.Vinckeufer

H.-Nieder-hellmann-Pl.

Vinckestr.Aug.-Hirsch-Str.

Vinckeweg

Alte

Ruhr

orter

Str.

AlteRu

hrorte

rStr

.

Speditionsinsel

Cont

aine

r-Ter

min

al

Kaßlerfelder Str.

Am Blumenkampshof

In der Rheinau

Emstermanns-

Arnoldstr.

Lierheggenstr.

Burbachstr.Bremmenkamp

Johannisstr.

Eggenkamp

kamp

Maistattstr.Schellen-

str.

Im Weidekamp

Am Schü

rman

nsho

f

Kochstr.Voßstr.

Hagenauer Str.

Lösorter Str

.

Löso

rter S

tr.

Neubreisacher Str.

Brückelstr.

Sundgaustr.

Joh.-

Mec

hman

n-St

r.

Schwarzwaldstr.

Stephanstr.

Vogesenstr.Talbahnstr.

Reinh

oldstr

.

Wasgaustr.

Emilstr.

Eikenstr.

Quadtstr.

Gerh

ards

tr.

Laaker Str.

Biesenstr.Winterstr.

Regenbergastr.

Gerh

ards

tr.

Regenbergastr.

Jako

bstr.

Baustr.

Rein

hold

str. Spessartstr.

Brüc

kelst

r.

Hühn

er-

orte

r Str.

Schloßstr.

Odenwaldstr.

M.-T

ilger

-Str.

Karo-linenstr.Franken-pl.

Gerhardpl.

Stöcken-

Augu

sta- str.

Herken-berger Str. Walzstr.

Am Alten Viehhof

Mylendonkstr.

Gelderblomstr.

Drakerfeld

In den Dörnen

Am Welschenhof

Kücken-

Rosenau

Rosenau

Winters

tr.

Laaker Str.

Eckershorst Enge Str.

Vohwink

elstr.

Herwarthstr.

Stick

ersk

amp

Herwarth-

Steinstr.

Diedenhofener Str.

Werderstr.

Nombericher Str. Franseckystr.

Dietr.-Rütten-Str.

Nombericher Pl.

Berchumer

Str.

Düppelstr.

Düppelstr.

Straßburger Str.

Spichern- str.

Metzer Str.

Neustr. Neustr.

Mühlenstr.

Mühlenstr.

Müh

len-

Bergstr.

Eupener Str.St.-Vither-Str.

Malm

edyer Str.

Tunnelstr.

Tunnelstr.

Mich

elsho

fAlse

nstr.

Waterloostr.

Kron

-pr

inze

nstr.

Bredowstr.

Bergstr.Bruch-feldstr.

Im Binnen-

dahl

Alten- kamp

Kronenstr.

Mauerstr.

Hoher Weg

Herbststr.

Sommerstr.Sommerstr.

Burgstr. Paul-Bäumer-Str.

Fauststr.

Weserstr.

Gerichtsstr.

Steinen-

kamp

Siegfriedstr.Weser-

Nalenzstr.

Dislichstr.Salm

str.

Lakumer Str.

Unter-führungsstr.

Wickrathstr.

Bleibtreustr.

Schliemannstr.

Schwaben-

ruhrstr.

Habsburgerstr.

Hogenweg

Lohengrinstr.

Schlickstr.

Heisingstr.

Herbststr.

Gabelsbergerstr.

Schnüranstr.

Stolze- str.

Schlachtenstr.

Am Stadtpark Letjens-

str.

Heinrich-Bongers- Str.

Tönniskamp

Ritte

rstr.

Nachbar-str.

Bork

hofe

r Str.

Philippstr.

Pfarrstr.

Dennewitzstr.Ritterstr.

Marktstr.

Rosenbleek

Haferacker

Hollenbergstr.

Kirc

hstr. W.-Wild-Str.

Martin-

Kaehler-Str.

Von-der-Mark-Str.

Weißenburger

Str.

Zoppenbrück-

In d

en G

roon

lande

n

Weizenkamp

Skrentnystr.

Korn

str.

Rogg

enka

mp

Welschenkamp

Untergard Hütte

kp.

Untergard

Am K

anal

Kanals

tr.

Am Giesenhof

Hofstr.

Düm

pter

Str.

Wildm

undstr.

Am Dehnenhof

Ober-

meider

icher

Pfad

Neuer Weg

Oste

nder

Str.

Hilfswerk

str.

Koopmannstr.Albrec

htstr.

Niebuhrstr.

Albrechtstr.

Im Heidekam

p

Speldorfer Str.

Dreibundstr.

Berli

ner S

tr.Hagensallee

Alexanderstr.

Taun

usst

r.

Nansenstr.

Pola

rpfa

d Pfin

gsts

tr.

Wetzlarer

Str.

Wies

bade

ner S

tr.

Berliner Str.

Grünstr.

Wiesbadener Str.

Nauh

eimer

Str.

Bonhoefferstr.

Berliner Str.

Emm

erich

er S

tr.

Krabbenkamp

Baldusstr.

Baldusstr.

Kremerskamp

Kiffward

Ruhrdeich

Schlickstr.

Schrot

tinsel

Kohle

ninse

l

Ölinse

l

Am Blumenkampshof

Rücker-

Ottw

eiler

Str.

Merzige

r Str.

Neunkirchener Str.

Benediktstr.Benediktstr.

Essenberger Str.

Essenberger Str.

Klever Str.

Rheinberger RingGeldernerStr.

Baerier Str.

Lilienthalstr

.

Diergardtstr.

BovefeldSulzbacher Str.

Völklinger Str.

Dillinger

Javastr.

Xantener Str. Am Parallelhafen

Lehm

str.

Am Deichtor

Am Außenhafen

Moerser Str.

Am Außenhafen

Juliusstr.

Julius- Weber-Str.

Bungertstr.

Hage

lstr.

Zirkelstr.

Walzenstr.

Ulrichstr.Marientorstr.

Tonh

alle

nstr.

Sonnenwall

Beginen-gasse

Fr.-Wilhelm-Pl.

Wal

lstr.Böningerstr.

Neue Marktstr.

Dell-

Krummach

er Str

.

Dellpl.

Grün

str.

Papendelle

G.-Könzgen-Str.

Realschulstr.

Realschulstr.

Musfeldstr.

Cecil

iens

tr.

Kölner Str.

Wittekindstr.

Hauptbahnhof

Tonh

alle

nstr.

Hohe

Str.

Gallenkampstr.Güntherstr.

Clau

berg

str.

Lenzmann- str.

Am B

urg-

Münzstr.

Lippestr.

Aver

dunk

-st

r.

Brüderstr.Junkernstr.

Am Rathaus Mai

nstr.

Wer

rast

r.

Nahestr.Nahestr.

Schillerpl.

Wupperstr.

Sieg

str.

Lenn

estr.

Erftstr.Erftstr

.

Fuldastr.

Angerstr.

Stresemannstr.

Philosophenweg

Burgpl.

Schinkel-pl.

Schifferstr.

Tann

str.

Kaßlerfelder Str.

Wra

ngel

str.

Wal

dem

ar-

str.

Bauk

amps

tr.

Stup

peric

hstr.

Andreas-str.

Bülow-

str.

Scharnhorststr.

Weidenweg

Am Hafen

Albe

rtstr.

Gablenzstr.

Am Churkam

p

Siechenhausstr.

Immen

dal

Walzenstr.

Brüc

ken- pl

.

Antonienstr.Vyge

nstr.

Hochfel

dstr. Friedenstr.

Bachstr.

Liebfrauenstr.

Im Bocksbart

Valenkamp

Brüc

kens

tr.Eigenstr.

ZumSchulhof

Blücherstr.

Dickelsbachstr.

Musfeldpl.Menzel-

Reitbahn

Musfeldstr.

Musfeldstr.

Bleichstr.W.-Tell-Str.

Tiergartenstr.Friedenstr.

Johanniterstr.

Fehr-bellinstr.

Eigenstr.

Königgrätzer Str.

Hoch

feld

-

str.

Brüc

kens

tr.

Paulusstr.

Gero

kstr.

Gitschiner Str.

Gitschiner Str.

Johanniterstr.

Curtiusstr.

Welkerstr.

Akazienhof

Kösterstr.

Brockhoffstr.

Pilgrimstr.

Zeppelinstr.

Aug.-Nieten-Str.

Merrem

str.Davidisstr.

Eichenhof

Königgrätzer Str.

Flie

ders

tr.

Heerstr.

Schultestr.Fröbelstr.

Tersteegen-str.

Fröbel- St. J

ohan

n-St

r. brücker Str.

Gravelottestr. Gravelottestr.

Moritzstr.

Wörthstr.

Steinmetzstr.

Trautenaustr.

Grunewaldstr.

Graustr.

Krumm

enhakstr.

Rud.-Schönstedt-Str.

Liebigstr.

Gießereistr.

Forba

chstr

.

Wörthstr.

Adele

nstr.

Blücherpl.

Fährstr.

Im Ec

k

Deichstr.

In den

Rheinau

Am Berns’schen Hof

Hochfelder Str.

Lisastr.

Lisa-Rosastr.

Irmgard-

Giselastr.W

erthauser Str.W

erthauser Str.

Berthapl.

Olgastr.Ernastr.

Ursulastr.

Karolastr.

Kopenhagener Str.

Liverpooler Str.

Osloer Str.

Europaallee

Rotte

rdam

er St

r.

Euro

paall

ee

Antwerpener Str.

Gaterweg

Blier

sheim

er St

r.

Dach

sstr.

Dachsstr.

Forststr.

Elsterstr.

Eichhornstr.

Eberstr.

Fuchsstr.

Schmiedestr.

Kauf

str.

Esch

enst

r.Es

chen

str.

Alter Kalkweg

Schlosserstr.

Glaserstr.

Esch

enst

r.

Gärtn

erst

r.

Gießingstr.

Gießingstr.

Bodelschwinghstr.

Michaelstr.

Posener Str.

Kulm

er S

tr.

Thor

ner S

tr.

Mar

kuss

tr.

Michaelstr.Michael-pl.

Fischerstr.

Erle

nstr.

Bussardstr.

Buchholzstr. Buchholzstr.

Kranichstr.Buchenstr.

Hults

chin

er S

tr.

Ahorn- str.

Tannen- str.

Ulmenstr.

Dornstr.

Birk

enst

r.

Ginsterstr.

Platanen-str.

Holu

nder

str.

Hults

chin

er S

tr.

Calv

inst

r.

P.-Gerhardt-Str.

Melanch-thonpl.

Fr.-Naumann-Str.

W.-Ketteler-Str.

Damaschkestr.

Max-Brandts-

Str.

Berlepschstr.

Sperlingsgasse

Fasanenstr. Im Waldfrieden

Im B

aum

hof

Im SiepenIm Hagen

Im Hort

Im Vogelsang

Vogelsangpl.

Zum

LithAdlerstr.

Kieb

itzst

r.

Dros

sel-

str.

Amse

l-st

r.

Mei

sen- str.

Eule

n- str.

Habi

cht- str.

Sper

ber- str.

Sternstr.Sternstr.

Am Tannenhof

Zu den Rehwiesen

Lintorfer Str.

Humm

el-pfad

Am Schützenhaus

Sebastianstr.Bienen-

pfad

BuchenhainH.-Lö

ns-Weg

Pregelweg

Friedrich

-Alfred-Str.

Eichenweg

Margaretenstr.

Bertaallee

Grüner Weg

Kiefernweg

Diepen-brocker W

.

AmBahndamm

Memelstr.

Hard

tstr.

Engel-bertstr.

Waldstr.

Wildstr.Nibelungenstr.

H.-Pfitz

ner-S

tr.

Verdi

str.Lor

tzing

str.

Strau

ßstr.

Derfflin

gerst

r.

Gaußstr.

Hertzstr.

Fraun

hofer

Str.

Bunsenstr.Wegnerstr.

Fraunhofer Str.

Akazienstr.

Krautstr.Graben

str.

Graben

str.

Richard

-Wag

ner-S

tr.

Kreutzerstr.

Brucknerstr.

Wildstr

.

Kortumstr.

Silcherstr.

Gneise

naus

tr.

Gneise

naus

tr.

Uthman

nstr.

Gabrielstr.

Rich.-D

ehmel-

Str.

Lotharstr.

Lotharstr.

Waldhornstr.

Steinbruchstr.

Kammerweg

Kräh

enw

eg

NachtigallentalNachtigallental

Rundweg

Aktienweg

Forsthausweg

Rund

weg

Drachensteig

Esels

bruc

hweg

Klöcknerweg

Aktienweg

Kom

man

dant

enst

r.

Neudorfer Str.

AlteSch

anze

Rhein-

babenstr.

Schumannstr.

Scheffelstr.

Hebbelstr.

Seilerstr.

Gustav-Adolf-Str.

Blumen

str.

Tulpenstr.

Blumen

str.

Haroldstr.

Schemkes- weg

Graben

str.

Gustav-Adolf-Str.

Liliencronstr.

Händelstr.

Oststr.

Sche

nken

-do

rfstr.

Nettel- beckstr.

Eich

endo

rff-

Ande

rsens

tr.

Mörikestr.

Harden-bergstr.

Lena

ustr.

Bürger- str.

Gneise

naus

tr.

Gneis

enau

str.

Wal

ram

sweg

Heinestr.

Aktienstr.

Finken- str.

M.-Reger-Str.

Forsthausweg

Flurstr.

Holteistr.

Holtei- str.

Hessenstr.

Gelle

rtstr. Geibelstr.Gr

aben

str.

Carl-

Benz

-Str.

Brehmsweg

Mülheimer Str.

Am W

alde

ssau

m ZumDrachensteig

Lerchenstr.

Pappenstr.

Memelstr.

Otto

-Kel

ler-S

tr.

Kettenstr.

Ankerstr.

Schön-

hauser Str.

Oststr.

Klöcknerstr.

Blum

enstr

.

Hammer-

str.

H.-Lersch

Gerhart-Hauptmann-Str.

Danziger Str.

Hedwigstr.

Winkelstr.

Lützowstr.

Man-

teuffelstr.

G.-Freytag-Str.

Oststr.

Brauer- str.

Prinzenstr.

Lutherstr.M

oltkestr.

Aakerfährstr.

Denkmalstr.

Parkstr.

Am Botan. Garten

AmKaiserberg

Hohenzollernstr.

Zieglerstr.

Tonstr.Hohensta

ufenstr.

Heckenstr.

Konradin-

Pr.-Albrecht- Str.

Martinstr.Bechemstr.

manstr.

Roßstr.

Zieglerstr.

Felsenstr.

Malteserstr.

Templerstr.Duissernstr.

Blumenthalstr.

Königsberger Allee

Königsberger Allee

Pappenstr.

Hansastr.

Hansastr.

Wilhelm

shöhe

Kiefernweg

Waldsteige

Am Freischütz

Steubenstr.Carl-Schulz Str.

Hasenkampstr.

d. Kirche

Hinter

Ottilienpl.

Schreiber- str.

Falkstr.Falkstr.

Falkstr.

Hansastr.

Butter-

Wal

lens

tein

str.

Rübenstr.

AmSchnabel-huck

Gottf

ried-

In der Ruhrau

Esmarchstr.

Zanderstr.Aakerfährstr. Dörnerhofstr.

Scha

fsweg

Kolkerhofweg

Tilsiter Ufer

Platane

Schwiesenkamp

Schw

iesen

kamp

Werthacker

L.-KrohneFutterstr.

Am Unkelstein

Rehweg

Rehweg

Rundweg

Rundweg

Werkstättenstr.

Sternstr.

Kenia

str.

Tiroler Str.

Im Licht

Marienburger Ufer

Dirschauer Weg

Allenst

einer

Ring

Allenste

iner Ring

Am Nord-

graben

Märchenweg

Finkenschlag

Am Brunnen

Teichgraben

Zum Ellen- berg

B

Waldlehne

Berglehne

Bissingheimer Str.

Zum Holzenbe

Am Holderstrauch

Dorfpl.

Vor dem Tore

Am Südgraben

Finkenschlag

Vor dem Tore

Herm.-Grothe-Str.

Herm.-Grothe-Str.An den Platanen

Masurenallee

Am See

Kurt-Heintze-Str.

Seitenhost

Ulmenweg

Zur Wolfskuhl

Rüsternstr.An den Linden

WedauerMarkt

Zu den Eichen

Zu den Eichen

Im Grünen

WinkelBirkenweg

Heimweg

Fliederbusch

Braunsberger Weg

Braunsberger Weg

Neidenburger Str.

Riesenburger Str.Orte

lsbur

ger

Graudenzer

Insterburger Weg

Am Kirchm

annshof

Sterneckstr.Sternstr.

Sternstr.

Dachsteinstr.

Semmeringstr.

Wat

zman

nstr.

Zugs

pitz

str.

Sterneckstr.

Masurenallee

Tauern- str.

Hauw

eg

Am Dickerhorst

Am Schellberg

Am B

ollh

eist

erGr

oßgl

öckn

erst

r.

Südstr.

E.-Kuss-Str.

Eibenweg

Breithof

Am Dickelsbach

Am GolfplatzWei

ßdor

nstr.

W

Jasminstr.

Ligusterstr.

Am Krähen-horst

Am Maa

shof

Am D

ickel

s-

Im Dic

Saarn

er Str

.

Zum Verschwiegenen Zoll

Im Kn

eipp-

grund

Stro

hweg

Allgäu

er Str

.

Allgäuer Str.

Zimmerstr.

Zillertaler Str.Gasteiner Str.

Am Grünen Grund

Am Spick

Otawistr.

Windhu

ker St

r.

Swako

pmun

der St

r.

Swako

pmunder

Pfad

Lomest

r.La

mbaren

astr.

Windhuker

Pl.

Dare

ssala

mstr

.

Lüderitzallee

Togost

r.

Togo

str.

Keni

astr.

Münchener Str.

Maf

iastr.

Pem

bastr

.

Water-

bergstr.

Waterbergpfad

Pfronten

er

Weg

Salzburger Platz

Innsbrucker Alle

Linzer Str.

Füssener Str.

Kufsteiner Str.

Dregenzer Str.

Im Dreispitz

Eckstr.

v. Sp

ree

Str.

Rosen-heimerWeg

Im Königsbusch

Str.

Land

shut

er S

tr.Konstanzer Str.

Traunsteiner Str.

Str.

Grazer Str.

Passauer Str.Tiroler Str.

Kärntener Str.Burgenlandstr.

Im Domänen-wald

Lindauer Str.

Sudetenstr.

Steiermarkstr.

Straubinger Str.

Sudetenstr.

Heinrich-Albrod-Str.

Alte

Kas

erne

Wan

heim

er St

r.

Industriestr.

Neuenhofstr.

Windthoratstr.

Pollm

anns

tr.

Hitz

estr.

Mal

linck

rodt

str.

Am Duisburger Richtw

eg

Am Bierweg

Zum Eichelskam

p

Am Gebranten Heldgen

Forststr.

Efeustr.

Asternweg

Iriss

tr.

Dahlienstr.

Dahlienstr.

Landwehr

Auf demAuf der Heg

Ferd.-Hoser-Str.Hortensienstr.

ImHeckdahl

An der

Pützkate

Marktpl.

Alte Duisburger Str.

Zum

Posadowskipl.

Schönenhofweg

Höschen-

hofweg

Ring

Ring

Am Ziegelkamp

Biegerfelder Weg

St

Biegerfelder Weg Peschenstr.

Otto-Hellwig-Str.

Zum Mühlkotten

Spieckerstr.

Gustavsburger Str.

Cramer-Klett-Str.

Krokusstr.

Gerberstr.

Buzstr.

Haindt-str.

Graf

-Spe

e-St

r.

Kolu

mbu

s- Ange

r-or

ter S

tr.

Am Müh

lstein

Rinne-Str,

Berzeliusstr.Fer- dinandstr.Go

etzk

estr.

Steinbrinkstr.

Holeypl.

Am W

indhö

vel

Rich.-

Seiffert-Str.

Am K

reuz

acke

r

Petersstr.

Molbergstr.

Beim

Gör

tzho

f

Suitbertusstr.

Am Tollberg

Am St

einbe

rgsho

f

Heiligen- baumstr.

Rahm

er S

tr.

Atroper Str.

Augs

burge

r Str.

Nürnberger

Str.

Wanhe

imer

Str.

Knevelspfädchen

Bliers-

heimer Str.Friemersheimer Str.

Honnenpfad

Honn

enpf

ad

Witt

laere

r Str.

KalkumerStr.Brisenweg

KlagenfurterStr.

NeudorferMarkt

Oststr.

Karmelpl.

Heu-

Quadtstr.

Am Bahnhof

Karl-

Flottenstr.

str.

Mag

dale

nens

tr.

Brauerei

Neanderstr.

Schuir-

Im

hof

Haxt

er-

grun

d

str.

str.

str.

Gansstr.

str.

dellstr.

Laaker Str.

str.

kamp

Düm

pter

Pfad

Am Inge

n-

hammsh

of

Brücke

lstr.

Talbahnstr.

Wat

tstr.

Bess

e-m

erstr

.

Zwinglistr.

Rheinstr.

Kanz

lers

tr.

Zwinglistr.

Schif

ferhe

im-

str.

Karlspl.

Fabr

ikst

r.

Fabr

ikstr.

Land

weh

rstr.

Am

Rosen-

hügel

Str.

Paul-

Str.

Im

Kalkarer Str.

GocherStr.

Wehrgang

Flachsmarkt

str.Leiden-

froststr.

Kiefer-str.

str.

str.

acke

r

Am Innenhafen Speicher-

gracht

Hanse-gracht

str.

Gras

str.

Kinke

l-Str.

Heckenstr.str.

Prinzen- str.Zieglerstr.

Keet-

Geibelstr.

Aktien- str.

str.

Str.

Krautstr.

Saar-

str.Teils

tr.

str.

Schultestr.

Erle

nstr.

Flie

ders

tr.

Mar

kuss

tr.

Zum

L

ith

A.-Wagner-Str.

In der

Hochfelder Str.

Werthen

str. str.

Esch

enst

r.

Rüsternstr.

Zur Wolfskuhl

Kehrwieder

Am

Am H

and-

werkshof

Sans

ibar

-str

.

Herm.-

str.

Steinbrinkstr.

Am K

reuz

acke

r

Dorn

Bergische

Cramer-Klett-Str.

Arlberger Str.

Böhmer

Tolzer

Grazer Str.

Hohe

Str.

Str.

bach

Lahn- str.

Am Mismahlshof

Sonderburger Str.

Unter-öderich Kühli

ngs-

gass

e

Rheinberger Ring

Carstanjen-

str.

Ludgeri-str.

Ludgeristr.

Beim Alten Hebeturm

Busbahnhof

Radstation

LAAR

MEIDERICH

BEECK

UNTERMEIDERICH

OBERMEIDERICH

RUHRORT

DUISSERN

ALTSTADTKASSLERFELD

WANHEIM

NEUDORFHOCHFELD

DELLVIERTEL

NEUENKAMP

WANHEIMERORT

ANGERHAUSEN

WEDAU

BUCHHOLZ

BISSINGHEIM

GROSSENBAUM

STADTPARK

HAFENKANAL

INNENHAFEN

RUHR

RHEIN-HERNE-KANAL

KANALHAFEN

BOTAN.GARTEN

HOLZ-HAFEN

KAISERBERG

DUISBURGERSTADTWALD

BERTASEE

BARBARASEE

SPORTPARK DUISBURG

REGATTABAHN

MARGARETENSEE

MASURENSEEWAMBACHSEE

WOLFSSEEBÖLLERTSEE

HAUBACHSEE

WILDFÖRSTERSEE

ERHOLUNGSPARK

AUSSENHAFEN

HAFE

N RH

EINHA

USEN

RHEIN

RHEI

N

PARALLELHAFEN

HAFENKANAL

RUHR

VINCKEKANAL

NORDHAFEN

SÜDHAFE

N

RUHR

PARALLELKANAL

Universität

DUISPORT

Unter-öderich

921.923.924.926.928.929.933.934.937.939.944.NE1.2.3.4

U79

921.

924.

944

923

933

929.NE1.2

934

934

934

NE4

939

NE1.N

E3

934

934

934.939.NE4

939.

NE4

903.

901

923.926.928.929.933.939.NE1.2.4

921.

922.

944

Saars

tr.

Post

str.Gutenbergstr.

Landfermannstr.

Ruhrorter Str.

Köhnenstr.

Stapeltor Kardinal-Galen-Str.

Oberstr.

Friedrich-Wilhelm-Str.

Schiffe

rstr.

Schiffe

rstr.

Düss

eldo

rfer S

tr.

Mer

cato

rstr.

Mercatorstr.

Kremerstr.

Plessingstr.

Auf der Höhe

Max-Peters- Str.

Neue

Fruc

htst

r.

Münzstr.

Kuhl

en-

Fuldastr.

wal

l

Pulverweg

Philosophenweg

Mos

elst

r.

Neck

arst

r.

Springwall

Niederstr.

Am Alten

Bohnen-

gasse

Ober

mau

erstr

.

Wieberpl.

Kuhstr.

Müllers-

gasse

Kasinostr.

Beek

str.

SalvatorwegBörsenstr.

Land

geric

htss

tr.

Am Buchenbaum

Heus

erst

r.

Königstr.SonnenwallAbte

istr.

Pete

rstal

Unterstr.

Beekstr.

Klosterstr.

K.-Strack-

Platz

Vom

-Rat

h- S

tr.

Gold

str.

An de

r Blee

k

Werftstr.

Musfeld-

Tibistr.

Alte Rhein- str.

Quer-gasse

Kloster-

Christian-str.Universitätsstr.

AmMühlenberg

Schmale Gasse

Kühli

ngs-

gass

e

Juliusstr.

Julius- Weberstr.

Hage

lstr.

Zirkelstr.

Ulrichstr.Marientorstr.

Tonh

alle

nstr.

Beginen-gasse

Wal

lstr.Böningerstr.

Neue Marktstr.

Dell-

Krummach

er Str

.

Dellpl.

Grün

str.

Papendelle

G.-Könzgen-Str.

Realschulstr.

Realschulstr.

Musfeldstr.

Cecil

iens

tr.

Kölner Str.

Wittekindstr.

Hauptbahnhof

Tonh

alle

nstr.

Hohe

Str.

Gallenkampstr.Güntherstr.

Clau

berg

str.

Lenzmann- str.

Am B

urg-

Münzstr.

Lippestr.

Aver

dunk

-st

r.

Brüderstr.Junkernstr.

Am Rathaus Mai

nstr.

Wer

rast

r.

Nahestr.Nahestr.

Schillerpl.

Wupperstr.

Sieg

str.

Lenn

estr.

Erftstr.Erf

tstr.

Fuldastr.

Angerstr.

Stresemannstr.

Philosophenweg

Burgpl.

Schinkel-pl.

Am Hafen

Am Churkam

p

Im Bocksbart

Bleichstr.W.-Tell-Str.

Otto

-Kel

ler-S

tr.

Falkstr.Falkstr.

Am Unke

Wehrgang

Flachsmarkt

str.

Leiden-

froststr.

str.

str.

acke

r

Am Innenhafen Speicher-

gracht

Hanse-gracht

Reitbahn

r.

Lahn- str.

ALTSTADTINNENHAFEN

HOLZ-HAFEN

Untermauerstr.

Kiefer-str.

Unterst

r.

Karmelpl.

König-Heinrich-Platz

11 AS DU-Zentrum

Portsmouth-platz

CITY-ZOOM

Garten derErinnerung

U79

HaltestelleBrückenpl. 90

3

Hohe

Str.

901.

901.903.U79

SonnenwallFr.-Wilhelm-Pl.

Steinsche Gasse

929. 933.NE1.2

Marientor

Schwanen- str.

Busbahnhof

Radstation

Immanuel-Kant-Park

Mer

cato

rstr.

Zeichenerklärung

Bus

Straßenbahn

U-Bahn

Bundesautobahn

Fußgängerzone

Stadtgrenze

Hauptbahnhof

Bahnhof fürSchienenverkehr

Friedhof

Legende

Landschaftspark DU-Nord

Museum der Deutschen Binnenschifffahrt

Hafenstadtteil Ruhrort | Schifferbörse

Innenhafen | Museum Küppersmühle

Innenhafen | Marina | Five Boats

Kultur- und Stadthistorisches Museum

Steiger Schwanentor | Hafenrundfahrt

Rathaus

Salvatorkirche

Theater Duisburg | Opernplatz

Königsgalerie

Lifesaver-Brunnen

CityPalais | Mercatorhalle | Casino

Einkaufszentrum Forum

Galeria Kaufhof

LehmbruckMuseum

Theater am Marientor

Museum DKM

Zoo Duisburg

Sportpark Duisburg | Wasserwelt WedauSchauinsland-Reisen-Arena

Nachtexpress

901

NE1.2.3

U79

923

Radstation

RUHR.VISITORCENTERDuisburgTourist Information

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

AnlegestelleMühlenweide

Immanuel-Kant-Park

Garten derErinnerung

Am G

üter

-

ba

hnho

f

Portsmouth-platz

11AS DU-Zentrum

Mer

cato

rstr.

10

AK Duisburg-Nord

AK Duisburg

AS DU-Duissern

13AS DU-Wedau

14AS DU-Buchholz

AK Kaiserberg

14AS DU-Kaiserberg

12AS DU-Häfen/Zentrum

12 AS DU-Hochfeld

Land

scha

ftspa

rk D

U-No

rd

Mus

eum

der

Deu

tsch

en B

inne

nsch

ifffa

hrt

Hafe

nsta

dtte

il Ru

hror

t | S

chiff

erbö

rse

Inne

nhaf

en |

Mus

eum

Küp

pers

müh

le

Inne

nhaf

en |

Mar

ina

| Fiv

e Bo

ats

Kultu

r- un

d St

adth

istor

ische

s Mus

eum

Stei

ger S

chw

anen

tor |

Haf

enru

ndfa

hrt

Rath

aus

Salv

ator

kirc

he

Thea

ter D

uisb

urg

| Ope

rnpl

atz

Köni

gsga

lerie

Life

save

r-Bru

nnen

City

Pala

is | M

erca

torh

alle

| Sp

ielb

ank

Duisb

urg

Eink

aufs

zent

rum

For

um

Gale

ria K

aufh

of

Lehm

bruc

kMus

eum

Thea

ter a

m M

arie

ntor

Mus

eum

DKM

Zoo

Duisb

urg

Spor

tpar

k Du

isbur

g | W

asse

rwel

t Wed

au |

Scha

uins

land

-Rei

sen-

Aren

a

Sech

s-Se

en-P

latte

Land

mar

ke A

nger

park

„Ti

ger &

Turtl

e –

Mag

ic M

ount

ain“

RUHR

.VIS

ITOR

CENT

ERDu

isbur

gTo

urist

Info

rmat

ion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22Lege

nde

1

2122

P

Venu

e: N

ETZ

Car

l-Ben

z-St

raße

199

4705

7 D

uisb

urg

Mai

n st

atio

n an

d IB

IS h

otel