Introduction to the Ventilation Experiment (VE) and Task A B. Garitte and A. Gens (CIMNE – UPC)...

32
Introduction to the Ventilation Experiment (VE) and Task A B. Garitte and A. Gens (CIMNE – UPC) Dept. of Geotechnical Engineering and Geosciences TECHNICAL UNIVERSITY OF CATALONIA (UPC) 3 rd DECOVALEX 2011 workshop, 21 th of April 2009, , Gyeongju, Korea
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    215
  • download

    0

Transcript of Introduction to the Ventilation Experiment (VE) and Task A B. Garitte and A. Gens (CIMNE – UPC)...

Introduction to the Ventilation Experiment (VE) and Task A

B. Garitte and A. Gens (CIMNE – UPC)

Dept. of Geotechnical Engineering and GeosciencesTECHNICAL UNIVERSITY OF CATALONIA (UPC)

3rd DECOVALEX 2011 workshop, 21th of April 2009, , Gyeongju, Korea

The Ventilation Experiment (VE)

I greet you all and I invite you to have a

meeting in Mont Terri and to visit the Mont Terri facility.

Task A

Step 0 (reminder)

Opalinus Clay and the Mont Terri site

Ventilation Test: description and observations

Summary

Index

Task A

Test case and Benchmark test (J. Hudson)

The main objective of the task is to examine the hydromechanical and

chemical changes that may occur in argillaceous host rocks, especially in

relation to the ventilation of drifts.

Step 0: Identification of relevant processes and of Opalinus Clay parameters. Modelling of the

laboratory drying test.

Step 1: Hydromechanical modelling up to the end of Phase 1.

Step 2: Hydromechanical modelling up to the end of Phase 2 using parameters backcalculated

from step 1. Advanced features as permeability anisotropy, rock damage and permeability

increase in the damaged zone may be considered (not inclusive).

Step 3: Hydromechanical and geochemical modelling of the full test. Conservative transport

and one species considered.

Step 4: Hydromechanical and geochemical modelling of the full test. Reactive transport and

full geochemical model (optional).

Task A

Step 0: Identification of relevant processes and of Opalinus Clay parameters. Modelling of the

laboratory drying test.

Step 1: Hydromechanical modelling up to the end of Phase 1.

Step 2: Hydromechanical modelling up to the end of Phase 2 using parameters backcalculated

from step 1. Advanced features as permeability anisotropy, rock damage and permeability

increase in the damaged zone may be considered (not inclusive).

Step 3: Hydromechanical and geochemical modelling of the full test. Conservative transport

and one species considered.

Step 4: Hydromechanical and geochemical modelling of the full test. Reactive transport and

full geochemical model (optional).

Apr

il 20

08

Oct

ober

200

8

Apr

il 20

09

Apr

il 20

10

Apr

il 20

11

Sep

tem

ber

2011

Project Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42Step 0Step 1Step 2Step 3Step 4Final report

Step 0 (reminder)

Apr

il 20

08

Oct

ober

200

8

Apr

il 20

09

Apr

il 20

10

Apr

il 20

11

Sep

tem

ber

2011

Project Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42Step 0Step 1Step 2Step 3Step 4Final report

10cm

28cm

1D

No flux

Evaporation is the process by which molecules in a liquid state (e.g. water) spontaneously become gaseous (e.g. water vapour)

wg v

0wv0g

p 100 100

pRH

Relative Humidity is a measurement of the amount of water vapour that exists in a gaseous mixture of air and water

Drying Test

Step 0 (reminder)

Apr

il 20

08

Oct

ober

200

8

Apr

il 20

09

Apr

il 20

10

Apr

il 20

11

Sep

tem

ber

2011

Project Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42Step 0Step 1Step 2Step 3Step 4Final report

Rel

ativ

e h

um

idit

y [%

]

20%

50%

142 days00.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50 100 150Time [days]

Wat

er l

oss

[kg

]

CEA JAEA Quintessa UoE CAS Sample A Sample B Sample C

CAS CEA JAEA Quintessa UoE

Advective liquid water transport

Non advective vapour diffusion

Internal report TT conference

Granite200m – 450 m deepGeneric, purpose-built

Opalinus (hard) clay400m deepGeneric, not purpose-built

C-O argillite (hard clay)450m – 520 m deep Site-specific

Boom clay (plastic)230m deepGeneric, purpose-built

Rock salt490m – 800m deepGeneric, not purpose-built

Granite450m deepGeneric, not purpose-built

Opalinus Clay and Mont Terri

Mont Terri Project

• Located in Northern Switzerland

• Opalinus clay (shale)

• 400 m deep

• Operating since 1995

• Generic, not purpose - built

1: Mont Terri rock laboratory, 400 m beneath the hill2: Southern entrance of the motorway tunnelSource: Mont Terri website

Opalinus Clay and Mont Terri

Opalinus Clay and Mont Terri

• Overconsolidated clay

• Low porosity (±15%)

• Water content (±6%)

• Density (2.45 g/cm3)

• Low permeability (±10-13m/s)

• Variation of stiffness (2 to 10 GPa)

• UCS (10 to 20 MPa)

• Anisotropic material Temperature Mechanical (Strength and

stiffness) Hydraulic (?: selfhealing)

Stiff layered Mesozoic clay of marine origin

Opalinus Clay and Mont Terri

Ventilation test: description and observations

Location of the ventilation test

Raise bored horizontal microtunnel

Ventilation test: description and observations

30 m

Mai

n fa

ult

N

DI n icheHE

BFniche

SH GNniche

EPFLniche

FMCniche

MIniche

O Pniche

PPniche

PPniche

Motorway tunnel

Security gallery

SC ALE

0 2 0m 4 0m 6 0m

MicrotunnelEB

VE

New gallery

Location of the ventilation test

Ventilation test: description and observations

Test section

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

MI niche1.3m

Ventilation test: description and observations

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

Saturation 1: 11 months

Desaturation 1: 8 months

Saturation 2: 11.5 months

Desaturation 2: 20.5 months

0

10

20

30

40

50

60

70

80

90

100

11/03/1997

24/07/1998

06/12/1999

19/04/2001

01/09/2002

14/01/2004

28/05/2005

10/10/2006

22/02/2008

06/07/2009

18/11/2010

Time

Re

lati

ve h

um

idit

y o

f in

co

min

g a

ir

[%]

9/4

/98:

Exc

. NG

1/2

/99:

Exc

. MT

8/7

/02:

Sea

ling

ve

ntil

ate

d s

ect

ion

24/9/06

8/7/02

28/5/03 29/1/04 11/7/05

Saturation 1: 11 months

Desaturation 1: 8 months

Saturation 2: 11.5 months

Desaturation 2: 20.5 months

Ventilation test: description and observations

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

Phase 0

Phase 1

9/4/98 – 8/7/02

8/7/02 – 29/1/04

0

10

20

30

40

50

60

70

80

90

100

11/03/1997

24/07/1998

06/12/1999

19/04/2001

01/09/2002

14/01/2004

28/05/2005

10/10/2006

22/02/2008

06/07/2009

18/11/2010

Time

Re

lati

ve h

um

idit

y o

f in

co

min

g a

ir

[%]

9/4

/98:

Exc

. NG

1/2

/99:

Exc

. MT

8/7

/02:

Sea

ling

ve

ntil

ate

d s

ect

ion

24/9/06

8/7/02

28/5/03 29/1/04 11/7/05

Ventilation test: description and observations

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

RH measurements along the

test section

0102030405060708090

100

18-0

7-02

03-0

2-03

22-0

8-03

09-0

3-04

25-0

9-04

13-0

4-05

30-1

0-05

18-0

5-06

04-1

2-06

RH

[%

]

Ventilation test: description and observations

RH measurements along the

test section

0102030405060708090

100

18-0

7-02

03-0

2-03

22-0

8-03

09-0

3-04

25-0

9-04

13-0

4-05

30-1

0-05

18-0

5-06

04-1

2-06

RH

[%

] RH-HyV-In

RH-HyGrUp

TS-RH2

RH-HyCnt-R

RH-HyCnt-L

TS-RH1

RH-HyGR-Dn

RH-HyV-Out

Ventilation test: description and observations

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

RH measurements in the

“skin layer”

0102030405060708090

100

18-0

7-02

03-0

2-03

22-0

8-03

09-0

3-04

25-0

9-04

13-0

4-05

30-1

0-05

18-0

5-06

04-1

2-06

RH

[%

]

Ventilation test: description and observations

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

-6000

-5000

-4000

-3000

-2000

-1000

0

18/0

7/02

03/0

2/03

22/0

8/03

09/0

3/04

25/0

9/04

13/0

4/05

30/1

0/05

18/0

5/06

04/1

2/06

Time [days from VE start]

Wa

ter

lost

in e

ach

pan

[g

ram

s]

0

10

20

30

40

50

60

70

80

90

100WaterPan-1WaterPan-2

78.5cm2/pan

Water pans

Ventilation test: description and observations

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

Mass water balance from

RH-in and RH-out

(First desaturation phase)

0

100w w v wg g g

RH p M

R T

/ww ggq hq kg

10 cm ring

0

100

200

300

400

500

600

28/0

6/03

06/1

0/03

14/0

1/04

23/0

4/04

01/0

8/04

09/1

1/04

17/0

2/05

28/0

5/05

Ext

ract

ed w

ater

[kg

]

0102030405060708090100

RH

[%]

Measured water flux; calculated using qgout =qgin

Measured water flux; calculated using qgout

Wat

er c

omin

g ou

t fr

om t

he s

ectio

n

Ventilation test: description and observations

1

3

5

7

9

0.0 0.5 1.0 1.5 2.0

Distance from bh mouth [m]

wa

ter

co

nte

nt

[%]

BVE_104: Water content [%] (Fernandez ??)

BVE_108: Water content [%] (Fernandez ??)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0

Distance from bh mouth [m]

Co

nc

en

tra

tio

n

[mo

l/l]

Vertical borehole (Traber, 2004)

Horizontal borehole (Traber, 2004)

Drilling campaigns

0

10

20

30

40

50

60

70

80

90

100

19/04/2001

01/09/2002

14/01/2004

28/05/2005

10/10/2006

22/02/2008

06/07/2009Re

lati

ve

hu

mid

ity

of

inc

om

ing

air

[%

] 5/7/02 26/1/04 1/5/05 4/10/06

50556065707580859095

100

18-0

7-02

03-0

2-03

22-0

8-03

09-0

3-04

25-0

9-04

13-0

4-05

30-1

0-05

18-0

5-06

04-1

2-06

RH

[%

]

HC-SB1/Sur (0.67m)HC-B71 (0.9 m)

HC-B64 (1 m)

HC-B75 (1.15 m)

HC-B66 (1.4 m)

HC-B69 (1.65 m)

HC-B73 (1.9 m)

HC-B77 (2.15 m)

Section B1

Ventilation test: description and observations

RH evolution

16 sensors

Ventilation test: description and observations

Water pressure

evolution

-1000

100200300400500600700800900

13-0

7-02

29-0

1-03

17-0

8-03

04-0

3-04

20-0

9-04

08-0

4-05

25-1

0-05

13-0

5-06

29-1

1-06

Pre

ssu

re [

kPa]

0102030405060708090100P-B62/2.13 P-B59/2.12 P-B55/2.11 P-B56/2.11 P-B57/1.80 P-B61/1.80 P-B58/1.10 P-B60/1.50

Sec

tio

n A

2

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0.65 1.15 1.65 2.15 2.65

Distance from MT center [m]

pw

[kP

a]

28/07/2002 (horizontal)

28/07/2002 (45º)

28/07/2002 (vertical)

4_liquid_pressure.xls

24 sensors

Water pressure profile before start of controlled ventilation

Ventilation test: description and observations

-3.5-3

-2.5-2

-1.5-1

-0.50

0.51

1.52

18-0

7-02

03-0

2-03

22-0

8-03

09-0

3-04

25-0

9-04

13-0

4-05

30-1

0-05

18-0

5-06

04-1

2-06

Re

lati

ve d

isp

lace

me

nt

[mm

]0

10

20

30

40

50

60

70

80

90

100

RH

[%

]

46 (vert) 47 (hor) 48 (vert) 49 (hor)

Compression

Expansion

Relative

displacements

8 extensometers

BVE-49

BVE-48

BVE-46

BVE-47

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Section D1

MT

0.5m

1m

1m

0.05%

-0.15%

Step 1: modelling

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

Plane strain

0-flow on all borders,

excepted on top

Isothermal (T=15º)

130m

130m 1.85MPa

1.21MPa

2.49MPa

4.9MPa

3.2MPa

6.6MPa

σ =3.2MPa, pw =1.21MPa

pw σ

Isotropic conditions

Step 1: case specifications

Section SA3

In flow

RH-out

Water pan 1SA1

SB1 SC1SA2 SD1 SE

SC2 SB2SD2 SA4

SA3

Rear doors

Out flow

RH-outRH-in RH-1 RH-2

Water Pan 2

RH-in

Instru m ented section:SA : M in i P ie zo m e tersSB : H um id ity se ns orsSC : T D RsSD : Exten so m e te rsSE : G e oe le ctric

Forward doors

Le gend :

R H-n : hyg ro m e te rRH-rRH-l

10 m

7 m

1,50 m

1,00 m

0,65 m

0,65 m

0,60 m

0,60 m

0,60 m

0,60 m

1,00 m

0,65 m

0,65 m

1,50 m

Plane strain

0-flow on all borders,

excepted on top

Isothermal (T=15º)

130m

130m 1.85MPa

1.21MPa

2.49MPa

4.9MPa

3.2MPa

6.6MPa

σ =3.2MPa, pw =1.21MPa

pw σ

1.3m

Application of Relative Humidity

Summary

CAS CEA JAEA Quint. UoE

Physical

Solid grain density ρs [kg/m3] 2710   2710 2710   2700  

Porosity φ 0.165   0.16  0.162  0.16  

Hydraulic

Intrinsic permeability k [m2]  7.5E-20 2E-20  2E-20  1.69E-19 1.9E-20 

Dynamic viscosity μ [Pa.s] 1E-3 2.9E-4

Liquid relative permeability λ’  0.4  0.68  0.65 0.3   

Vapour diffusion coefficient  6E-6     5E-6   

Mechanical

Young modulus E [GPa]    6   1.5  

Poisson coefficient ν    0.27    0.3  

Friction angle φ [º]          

Cohesion c [MPa]          

Hydro-Mech. coupling

Suction bulk modulus Ks [GPa]          

Air entry value (retention curve) P0 [MPa]  3.9  3.9  8  3.9  

Shape parameter (retention curve) λ 0.128  0.128  0.15 0128   

Maximum suction (retention curve)* Ps [MPa] 700 700 700 700

Second shape parameter (retention curve)* λs  2.73  2.73 2.73  2.73   

Residual and maximum saturation (retention curve) Srl – Srs  0 – 1  0 – 1  0 - 1  0 - 1  

2 /wgD m s

* Modified Van Genuchten

Parameters from step 0

Summary

Modelling team CAS CEA JAEA Quintessa UoE

Person Liu Xiaoyan Alain Millard Shigeo Nakama Alex Bond Chris McDermott

On behalf of CAS IRSN JAEA NDA NDA

Country China France Japan UK UK

Comparison issues between different teams:

(T)H(M) formulation

Parameter set for Opalinus Clay

Model setup

Model results

Summary

Modelling team CAS CEA JAEA Quintessa UoE

Person Liu Xiaoyan Alain Millard Shigeo Nakama Alex Bond Chris McDermott

On behalf of CAS IRSN JAEA NDA NDA

Country China France Japan UK UK

Comparison issues between different teams:

(T)H(M) formulation

Parameter set for Opalinus Clay

Model setup

Model results: comparison with measurements