Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar...

79
IEEE New Hampshire Section Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems Engineering Lecture 3 Review of Signals, Systems and Digital Signal Processing Dr. Robert M. O’Donnell IEEE New Hampshire Section Guest Lecturer

Transcript of Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar...

Page 1: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

IEEE New Hampshire SectionRadar Systems Course 1Review Signals, Systems & DSP 1/1/2010 IEEE AES Society

Radar Systems Engineering Lecture 3

Review of Signals, Systems and Digital Signal Processing

Dr. Robert M. O’DonnellIEEE New Hampshire Section

Guest Lecturer

Page 2: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 2Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Block Diagram of Radar SystemTransmitter

WaveformGeneration

PowerAmplifier

T / RSwitch

PropagationMedium

TargetRadarCross

Section

PulseCompressionReceiver Clutter Rejection

(Doppler Filtering)A / D

Converter

General Purpose Computer

Tracking

DataRecording

ParameterEstimation Detection

Signal Processor Computer

ThresholdingConsole /Displays

Antenna

ReceivedSignal

Time

Sign

alSt

reng

th

Application of Signals and Systems, and Digital Signal Processing Algorithms to the Received Radar Signals Result

in Optimum Target Detection

Page 3: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 3Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Reasons for Review Lecture

• Signals and systems, and digital signal processing are usually one semester advanced undergraduate courses for electrical engineering majors

• In no way will this 1+ hour lecture to justice to this large amount of material

• The lecture will present an overview of the material from these two courses that will be useful for understanding the overall Radar Systems Engineering course

– Goal of lecture-

Give non EE majors a quick view of material; they may wish to study in more depth to enhance their understanding of this course.

• UC Berkeley has an excellent, free, video Signals and Systems course (ECE 120) online at //webcast.berkeley.edu

– http://webcast.berkeley.edu/course_details.php?seriesid=1906978405– Given in Spring 2007

Page 4: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 4Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Signal Processing

• Signal processing is the manipulation, analysis and interpretation of signals.

• Signal processing includes:– Adaptive filtering / thresholding– Spectrum analysis– Pulse compression– Doppler filtering– Image enhancement– Adaptive antenna beam forming, and– A lot of other non-radar stuff ( Image processing, speech

processing, etc.

• It involves the collection, storage and transformation of data– Analog and digital signal processing– A lot of processing “horsepower”

is usually required

Page 5: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 5Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals

• Sampled Data and Discrete Time Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 6: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 6Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Continuous Time Signal

( )tx

t0

( ) ( ) ( )( )( ) 532 t25tttx

300t12txt3cos79tsin100tx

−+−=

−=π−π=

Examples:

Page 7: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 7Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Continuous Time Signal

t0

( )tx ( )tx

t0

• Types of continuous time signals– Periodic or Non-periodic

Non-periodic

• • •• • •

( ) ( )txttx =Δ+

Periodic

Page 8: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 8Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Continuous Time Signal

t

• Types of continuous time signals– Periodic or Non-periodic– Real or Complex

Radar signals are complex

( )[ ]txRe

t0 0

( )[ ]txIm

• • • • • • • • • • • •

is a complex periodic signal( )tx

Page 9: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 9Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Continuous, Linear, Time Invariant Systems

ContinuousLinear Time

InvariantSystem

( )tx ( )ty

• Continuous– If and are continuous time functions, the

system is a continuous time system

• Linear– If the system satisfies

• Time Invariant– If a time shift in the input causes the same time shift in

the output

( )tx

( ) ( )[ ] == TtxTty

( )ty

( ) ( )[ ] ( ) ( )tytytxtxT 2121 β+α=β+α

Operator

Page 10: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 10Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Linear Time Invariant Systems (Delta Function)

• The impulse response is the response of the system when the input is

ContinuousLinear Time

InvariantSystem

( )tx ( )tyContinuousLinear Time

InvariantSystem

( )tδ ( )th

( )

( ) 1dtt

0t0t0

t

=∞≠

∫∞

∞−

Properties of Delta Function

( )tδ( )th

Page 11: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 11Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Linear Time Invariant Systems

ContinuousLinear Time

InvariantSystem

( )tx ( )tyContinuousLinear Time

InvariantSystem

( )tδ ( )th

Definition : Convolution of Two Functions

( ) ( ) ( ) ( ) ττ−τ≡∗ ∫∞

∞−

dtxxtxtx 2121

Reversedand

Shifted

Page 12: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 12Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Linear Time Invariant Systems

ContinuousLinear Time

InvariantSystem

( )tx ( )tyContinuousLinear Time

InvariantSystem

( )tδ ( )th

( ) ( ) ( ) ( ) ( ) ττ−τ=∗= ∫∞

∞−

dthxthtxty

Convolution of and( )tx ( )th

• The output of any continuous time, linear, time-invariant (LTI) system is the convolution

of the input with the impulse response of the system

( )tx( )th

Page 13: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 13Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Why not Analog Sensors and Calculation Systems ?

Voltmeter

Torpedo Data Computer (1940s)

SlideRule

• Measurement Repeatability

• Environmental Sensitivity

• Size

• Complexity

• Cost

Disadvantages

Courtesy of US Navy

Courtesy of Hannes Grobe

Courtesy of oschene

Page 14: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 14Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems– General properties– A/D Conversion– Sampling Theorem and Aliasing– Convolution of Discrete Time Signals– Fourier Properties of Signals

Continuous vs. Discrete Periodic vs. Aperiodic

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 15: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 15Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Sampled Data Systems

• Digital signal processing deals with sampled data

• Digital processing differs from processing continuous (analog) signals

• Digital Samples are obtained with a “Sample and Hold”

(S/H) Amplifier followed by an “Analog-to-Digital”

(A/D) converter

– Sampling rate– Word length

Page 16: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 16Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Waveform Sampling

• Sampling converts a continuous signal into a sequence of numbers

• Radar signals are complex

Continuous-timeSystem

( )tx

Discrete-timeSystem

[ ]nx

A/D Converter

Page 17: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 17Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems– General properties– A/D Conversion– Sampling Theorem and Aliasing– Convolution of Discrete Time Signals– Fourier Properties of Signals

Continuous vs. Discrete Periodic vs. Aperiodic

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 18: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 18Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Ideal Analog to Digital (A/D) Converter

INV

A/DConverter

OUTVINV

12q2

VERROR=σ

OUTV

2VFS

2VFS−

q)V(P ERROR

q1

2q

2q

−INOUTERROR VVV −=

INV

2q

2q

Page 19: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 19Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

“Non-Perfect Nature”

of A/D Converters

Output

InputOffset

Actual

Ideal

• Gain• Missing bits• Monotonicity• Offset• Nonlinearity• Missing bits

Input

Out

put

Missing Bit

Non-

Monotonic

Page 20: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 20Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Single Tone A/D Converter Testing

Frequency (MHz)

Pow

er L

evel

(dB

m)

0 2 4 6 8-100

-80

-60

-40

-20

0

Fundamental

HighestSpur

Spur Free Dynamic Range(SFDR)

For Ideal A/D S/N=6.02N + 1.76 dB

Page 21: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 21Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

A/D Word Length

• A / D output is signed N bit integers – Twos complement arithmetic– Quantization noise power =

• Signal-to-noise ratio must fit within the word length:

– = maximum signal power (target, jamming, clutter)

– = thermal noise power in A / D input

– Typically, to reduce clipping (limiting)

• Required word length:

( ) ,N/S,SNR o2

oN

2S

4≈α

SNRlog10SNR 10DB =

o1L N12/1S2 <α>−

( ) 2.16/SNRL DB +>

12/1

A/D Saturation

Maximum Signal

Noise Quantization

Noise Signal

Head Room (~10 dB)

Foot Room (~10 dB)

ReceiverDynamic Range

Page 22: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 22Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems– General properties– A/D Conversion– Sampling Theorem and Aliasing– Convolution of Discrete Time Signals– Fourier Properties of Signals

Continuous vs. Discrete Periodic vs. Aperiodic

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 23: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 23Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Waveform Sampling

• Sampling converts a continuous signal into a sequence of numbers

• Radar signals are complex

Continuous-timeSystem

( )tx

Discrete-timeSystem

[ ]nx

A/D Converter

Page 24: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 24Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Sampling -

Overview

• Sampling Theorem constraint (a.k.a. Nyquist criterion) to prevent “aliasing”:

– For continuous aperiodic signals:

• Nyquist criterion:– Permits reconstruction via a low pass filtering– Eliminates Aliasing

=≥ ss FB2F Sampling Frequency

Page 25: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 25Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Signal Sampling Issues

• Signal Reconstruction

• Elimination of “Aliasing”

( )FX

0

• • •

sF2sF

LPF ( )FXc

0

B2B2Fs >

( )FX

0• • •

sF sF3sF2 sF4sF−• • •

Overlapping, Aliased Spectra

B2Fs <

Page 26: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 26Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

The Sampling Theorem

• If is strictly band limited,

then, may be uniquely recovered from its samples if

The frequency is called the Nyquist frequency, and the minimum sampling frequency, , is called the Nyquist rate

)t(xc

BF0)F(X >= for

)t(xc [ ]nx

B2T2F

SS ≥

π=

B2FS =B

Page 27: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 27Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Spectrum of a Sampled Signal

• Sampling periodically replicates the spectrum– Fourier transform of a sampled signal is periodic

• If and are the spectra of and ( )FXc ( )FX

( ) ( )

( ) ( ) ( )

[ ] sF/nF2j

n

Ft2j

n

Ft2jcc

enx

dtenTttgFX

dtetxFX

π−∞

−∞=

∞−

π−∞

−∞=

∞−

π−

∫ ∑

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−δ=

=

( )txc [ ]nx

( )FXc

0

( )FX

0

• • •sF sF3sF2sF−

• • •

Page 28: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 28Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Distortion of a Signal Spectrum by “Aliasing”

• Assume band limited so that1

B

( )FXc

B− F

ST/1

B

( )FX

B− SFSF−

ST/1

2/FS

( )FX

SFSF− 2/FS−

)t(xc

Bf,0)f(X >=

• If is sampled with

• If is sampled with

B2FS ≥)t(xc

)t(xc

B2FS <Aliased parts of spectrum

for

F

F

No Aliasing

● ● ● ● ● ●

● ● ● ● ● ●

Page 29: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 29Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Effect of Sampling Rate on Frequency

00

t (sec)

1.0

0.5

- 5 5

0

)t(xc

22ctA

c )F2(AA2)F(X0A,e)t(xπ+

=>= −

Sampled Signal

Its Fourier TransformContinuous Signal

Its Fourier Transform

[ ] ( )T1F,eaaee)nT(xnx S

ATnnATnTAc ====== −−−

( ) [ ]S

2

2nj

n FF2,

acosa21a1enxX π=ω

+ω−−

==ω ω−∞

−∞=∑

( ) ( ) ( ) ==−= ∑∞

−∞=

FX̂FFXT1FX ccc l

l

( )2FFFXT S≤

2FF0 S>

)t(x̂c

InverseFourierTransformReconstructed Signal

Adapted from Proakis and Manolakis, Reference 1

Page 30: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 30Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Spectrum of Reconstructed SignalFrequency Spectrum

( )FXc

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Hz3FS =

Hz1FS =

Signal

)t(xc

[ ] ( )nTxnx c=

[ ] ( )nTxnx c=

t (sec)

t (sec)

t (sec)

sec31T =

sec1T =

0

1.0

0.5

1.0

1.0

0.5

0.5

0

0 0

0

0

5

- 5

- 5

- 5

5

5

0

0

0

0

0

0

1

1

1

2

2

2

2

- 2 4

- 2

2

2- 4

- 4 - 2 4

4

- 4

Continuous

Signal

Sampled

Signal

Sampled

Signal

Adapted from Proakis and Manolakis, Reference 1

Page 31: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 31Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems– General properties– A/D Conversion– Sampling Theorem and Aliasing– Convolution of Discrete Time Signals– Fourier Properties of Signals

Continuous vs. Discrete Periodic vs. Aperiodic

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 32: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 32Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Convolution for Discrete Time Systems

( ) ( ) ( ) ττ−τ= ∫∞

∞−

dtxhty

ContinuousLinear Time

InvariantSystem

( )tx ( )tyContinuous-time

System

( )tx

Discrete-timeSystem

[ ]nx

DiscreteLinear Time

InvariantSystem

[ ]ny[ ]nx

[ ] [ ] [ ]knxkhnyk

−= ∑∞

−∞=

Page 33: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 33Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=

Example:

0 1 2

1

23

[ ]=kh1 2 3 4 5

[ ]=kx 2

4

3

11

• Step 1 : Plot the sequences, and[ ]kx [ ]kh

Page 34: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 34Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=

Example:

0 1 2

1

23

[ ]=kh1 2 3 4 5

[ ]=kx 2

4

3

11

• Step 2 : Take one of the sequences and time reverse it

[ ]=− kh-2 -1 0

12

3

Page 35: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 35Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=

Example:

0 1 2

1

23

[ ]=kh1 2 3 4 5

[ ]=kx 2

4

3

11

• Step 3 : Shift by , yielding– a shift to the left– a shift to the right

[ ]kh −

[ ]=− kh-2 -1 0

12

3

n

0n >0n < [ ]=− knh

n-2,n-1,n

12

3

Page 36: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 36Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=

Example:

0 1 2

1

23

[ ]=kh1 2 3 4 5

[ ]=kx 2

4

3

11

• Step 4 : For each value of ,multiply the sequences and ; and add products together for all values of to produce

[ ]knh −

[ ]=− kh-2 -1 0

12

3

nk

[ ]kx

[ ]ny

Page 37: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 37Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

No overlap –

= 0

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− kh-2 -1 0

12

30nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− kh1

2

3

-2 -1 0 1 2 3 4 5

[ ]ny

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 38: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 38Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

One sample overlaps –

= (1x1) = 1

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k1h-1 0 1

12

31nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k1h1

2

3

-1 0 1 2 3 4 5

[ ]ny

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 39: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 39Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

Two samples overlaps –

= (1x2)+(2x1) = 4

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k2h0 1 2

12

32nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k2h1

2

3

0 1 2 3 4 5

[ ]ny

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 40: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 40Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

Three samples overlaps –

= (1x3)+(2x2)+(4x1) = 11

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k3h 12

33nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k3h1

2

3

0 1 2 3 4 5

[ ]ny

1 2 3

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 41: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 41Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

Three samples overlaps –

= (2x3)+(4x2)+(3x1) = 17

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k4h2 3 4

12

34nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k4h1

2

3

0 1 2 3 4 5 6

[ ]ny

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 42: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 42Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

Three samples overlaps –

= (4x3)+(3x2)+(1x1) = 17

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k5h3 4 5

12

35nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k5h 12

3

0 1 2 3 4 5 6

[ ]ny

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 43: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 43Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

Two samples overlaps –

= (3x3)+(1x2) = 11

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k6h 12

36nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k6h1

2

3

0 1 2 3 4 5 6 7

[ ]ny

4 5 6

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 44: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 44Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

One sample overlaps –

= (1x3) = 3

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k7h5 6 7

12

37nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k7h1

2

3

0 1 2 3 4 5 6 7 8

[ ]ny

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 45: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 45Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Graphical Implementation of Convolution

No overlap –

= 0

[ ] [ ] [ ] [ ] [ ]knhkxknxkhnykk

−=−= ∑∑∞

−∞=

−∞=Example:

0 1 2

1

23

[ ]=kh [ ]=− k8h6 7 8

12

38nfor =

1 2 3 4 5

[ ]=kx 2

4

3

11

0 1 2 3 4 5

[ ]=kx2

4

3

11

[ ]=− k8h1

2

3

0 1 2 3 4 5 6 7 8

[ ]ny

10

15

5

0O

utpu

t of

Con

volu

tion

Sample Number

[ ]ny

0 1 2 3 4 5 6 7 8 9

Page 46: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 46Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Summary-

Linear Discrete Time Systems

• Any Linear and Time-Invariant (LTI) system can be completely described by its impulse response sequence

• The output of any LTI can be determined using the convolution summation

• The impulse response provides the basis for the analysis of an LTI system in the time-domain

• The frequency response function provides the basis for the analysis of an LTI system in the frequency-domain

[ ] [ ]nhnH→δ

[ ] [ ] [ ] ∞<<∞−−= ∑∞

−∞=

n,knxkhnyk

Adapted from MIT LL Lecture Series by D. Manolakis

Page 47: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 47Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems– General properties– A/D Conversion– Sampling Theorem and Aliasing– Convolution of Discrete Time Signals– Fourier Properties of Signals

Continuous vs. Discrete Periodic vs. Aperiodic

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 48: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 48Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Frequency Analysis of Signals

• Decomposition of signals into their frequency components– A series of sinusoids of complex exponentials

• The general nature of signals– Continuous or discrete– Aperiodic or periodic

• Radar echoes, from each transmitted pulse, are continuous

and aperiodic, and are usually transformed into discrete signals by an A/D converter before further processing

– Complex signals

Page 49: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 49Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Time and Frequency Domains

Analysis

Synthesis

Fourier Transform

Inverse Fourier Transform

Time History Frequency Spectrum

Frequency DomainTime Domain

Page 50: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 50Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Fourier Properties of Signals

• Continuous-Time Signals– Periodic Signals: Fourier Series– Aperiodic Signals: Fourier Transform

• Discrete-Time Signals– Periodic Signals: Fourier Series– Aperiodic Signals: Fourier Transform

Page 51: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 51Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Fourier Transform for Continuous-Time Aperiodic Signals

0 0

Adapted from Manolakis et al, Reference 1

Time DomainContinuous and Aperiodic Signals

Frequency DomainContinuous and Aperiodic Signals

)t(x )F(X

t

∫∞

∞−

π−= tde)t(x)F(X tF2j

∫∞

∞−

π= dFe)F(X)t(x tF2j

F

Page 52: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 52Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Fourier Properties of Signals

• Continuous-Time Signals– Periodic Signals: Fourier Series– Aperiodic Signals: Fourier Transform

• Discrete-Time Signals– Periodic Signals: Fourier Series– Aperiodic Signals: Fourier Transform

Page 53: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 53Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Fourier Transform for Discrete-Time Aperiodic Signals

Frequency DomainContinuous and Periodic Signals

Time DomainDiscrete and Aperiodic Signals

4− 2− 20 4 2− π −π 0 π 2πn

[ ]nx

ω

[ ]ωX

Adapted from Malolakis et al, Reference 1

[ ] ∫π

ω ωωπ

=2

nj de)(X21nx

[ ] nj

nenX)(X ω−

−∞=∑=ω

Page 54: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 54Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Summary of Time to Frequency Domain Properties

01

P

FT

=

2( ) ( ) j FtX F x t e dt∞ − π

−∞= ∫

2( ) ( ) j Ftx t X F e dF∞ π

−∞= ∫

( )x t

Continuous and Aperiodic Continous and Aperiodic

( )X F

Discrete-

Time Signals

21

0

1 [ ]N j kn

Nk

nc x n e

N

π− −

=

= ∑21

0

[ ]N j kn

Nk

k

x n c eπ−

=

=∑

[ ]x n kc

N− N0

Discrete and Periodic Discrete and Periodic

n k

Continuous-

Time Signals

021 ( )P

j kF tk T

P

c x t e dtT

− π= ∫02( ) j kF t

kk

x t c e∞

π

=−∞

= ∑

( )x t

0

Time-Domain Frequency-Domain

Continuous and Periodic Discrete and Aperiodic

t 0

kc

FPT− PT

( ) [ ] j n

nX x n e

∞− ω

=−∞

ω = ∑

2

1[ ] ( )2

j nx n X e dω

π= ω ω

π∫

[ ]x n ( )X ω

4− 2− 204 2− π −π 0 π 2π

Continous and Periodic

n ω

Time-Domain Frequency-Domain

Ape

riodi

c Si

gnal

sFo

urie

r Tra

nsfo

rms

Perio

dic

Sign

als

Four

ier S

erie

s

Discrete and Aperiodic

0 t 0 F

N− N0

Adapted from Proakis and Manolakis, Reference 1

Page 55: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 55Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems

• Discrete Fourier Transform (DFT)– Calculation

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 56: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 56Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Direct DFT Computation

• 1. evaluations of trigonometric functions• 2. real ( complex) multiplications• 3. real ( complex) additions• 4. A number of indexing and addressing operations

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]∑

=

=

π−−

=

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛ π

−⎟⎠⎞

⎜⎝⎛ π

−=

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛ π

+⎟⎠⎞

⎜⎝⎛ π

=

=−≤≤=

1N

0nIRI

1N

0nIRR

N/nkj2knN

knN

1N

0n

nkN2cosnxnk

N2sinnxkX

nkN2sinnxnk

N2cosnxkX

eW1Nk0WnxkX

2N22N4

)1N(N −

2N)2N(N4 −

2N≈ ComplexMADS

MADSMultiply

AndDivides

Adapted from MIT LL Lecture Series by D. Manolakis

Aka “Twiddle Factor”

Page 57: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 57Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 58: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 58Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Fast Fourier Transform (FFT)

• An algorithm for each efficiently computing the Discrete Fourier

Transform (DFT) and its inverse

• DFT

MADS (Multiplies and Divides)

• FFT

MADS

• FFT algorithm Development -

Cooley / Tukey (1965) Gauss (1805)

• Many variations and efficiencies of the FFT algorithm exist– Decimation in Time (input -

bit reversed, output -

natural order) – Decimation in Frequency (input -

natural order, output -

bit reversed)

• The FFT calculation is broken down into a number of sequential stages, each stage consisting of a number of relatively small calculations called “Butterflies”

( )2NO

⎟⎠⎞

⎜⎝⎛ Nlog

2NO 2

Page 59: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 59Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Radix 2 Decimation in Time FFT Algorithm

• Divide DFT of size N into two interleaved DFTs, each of size N/2

– Example will be – Input to each DFT are even and odd s , respectively

• Solve each stage recursively, until the size of the stage’s DFT is 2.

[ ] [ ] [ ] N/nkj2knN

knN

1N

0n

N/nkj21N

0neW1Nk0WnxenxkX π−

=

π−−

=

=−≤≤== ∑∑

82N 3 ==[ ]nx

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] kl2/N

12N

0l

kN

kl2/N

12N

0l

k)1l2(N

12N

0l

klN

12N

0l

knN

Oddn

knN

Evenn

knN

1N

0n

WlhWWlgWlhWlg

WnxWnxWnxkX

∑∑∑∑

∑∑∑−

=

=

+

=

=

=

+=+=

+==

Even index and odd index terms of N/2 point DFT of

N/2 point DFT of [ ] [ ]kGlg =

[ ]nx [ ] [ ]kHlh =

Page 60: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 60Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Radix 2 Decimation in Time FFT Algorithm (continued)

• Using the periodicity of the complex exponentials:

• And the following properties of the “twiddle factors”:

• A block diagram of this computational flow is graphically illustrated in the next chart for an 8 point FFT

[ ] [ ] [ ]kHWkGkX knN+=

[ ] [ ] ⎥⎦⎤

⎢⎣⎡ +=⎥⎦

⎤⎢⎣⎡ +=

2NkHkH

2NkGkG

( )( ) )k(HW2/NkHW

WWWWkN

)2/N(kN

kN

2/NN

kN

)2/N(kN

−=+

−==+

+

then

Page 61: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 61Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

8 Point Decimation in Time FFT Algorithm (After First Decimation)

4 –

PointDFT

4 –

PointDFT

[ ]0x

[ ]1x

[ ]2x

[ ]3x

[ ]4x

[ ]5x

[ ]6x

[ ]7x

[ ]0G

[ ]1G

[ ]2G

[ ]3G

[ ]0H

[ ]1H

[ ]2H

[ ]3H

[ ]0X08W[ ]1X

[ ]2X

[ ]3X

[ ]4X

[ ]5X

[ ]6X

[ ]7X78W

68W

58W

18W

48W

28W

38W

Page 62: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 62Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Decimation of 4 Point into two 2 point DFTs

• If N/2 is even, and may again be decimated

• This leads to:

[ ] [ ] [ ] [ ] nk2/N

12N

Oddn

nk2/N

12N

Evenn

nk2/N

12N

0nWngWngWngkG ∑∑∑

−−−

=

+==

[ ] [ ] [ ] nk4/N

12N

0n

k2/N

nk4/N

14N

0nW1n2gWWn2gkG ∑∑

=

=

++=

[ ]ng [ ]nh

2 –

PointDFT

2 –

PointDFT

[ ]0x

[ ]2x

[ ]4x

[ ]6x

[ ]0G

[ ]1G

[ ]2G

[ ]3G

04W

14W

24W

34W

2 –

PointDFT

Page 63: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 63Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Butterfly for 2 Point DFT

[ ] [ ] [ ]1q0q0Q +=[ ]0q

[ ]1q [ ] [ ] [ ]1q0q1Q −=

[ ]kq [ ]kQ

1−

Now, Putting it all together…..

Page 64: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 64Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Flow of 8-Point FFT (Radix 2 -

Decimation in Time Algorithm)

[ ]0x

08W

[ ]0X

18W

08W

08W

08W

08W

08W

08W

28W

28W

28W

38W

1−

1−

1−

1−

1−

1−

1− 1−

1−

1−

1−

1−

[ ]4x

[ ]2x

[ ]6x

[ ]1x

[ ]5x

[ ]3x

[ ]7x

[ ]1X

[ ]2X

[ ]3X

[ ]4X

[ ]5X

[ ]6X

[ ]7X

Page 65: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 65Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Basic FFT Computation Flow Graph

• Each “Butterfly”

takes 2 MADS (Multiplies and Adds)• Twiddle Factors (For 8 point FFT)

• 12 Butterflies implies 12 MADS vs. 64 MADS for 8 point DFT

• 512 point FFT more than 100 times faster than 512 DFT

( )( ) 2/j1eWjeW

2/j1eeW1eW4/j33

82/j2

8

4/j8/j218

008

−−==−==

−=====π−π−

π−π−−

N/nkj2nkN eW π−=

Checkover

“Butterfly”

“Twiddle”

Factor

1−b

a

rNW

bWaA rN+=

bWaB rN−=

nkr =

Page 66: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 66Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Computational Speed –

DFT vs. FFT

• Discrete Fourier Transform (O ~ N2)• Fast Fourier Transform (O ~ N log2 N)

Num

ber o

f Com

plex

Mul

tiplic

atio

ns

Number of points in Radix 2 FFT

LinesDrawn

Through Data

PointsDFT

FFT

104103102101101

103

105

107

109

Adapted from Lyons, Reference 2

Page 67: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 67Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Fast Fourier Transform (FFT) -

Summary

• Fast Fourier Transform (FFT) algorithms make possible the computation of DFT with O ((N/2) log2 N) MADS as opposed to O N2

MADS

• Many other implementations of the FFT exist:– Radix 2 decimation in frequency algorithm– Radar-Brenner algorithm– Bluestein’s algorithm– Prime Factor algorithm

• The details of FFT algorithms are important to the designers of real-time DSP systems in software or hardware

• An interesting history of FFT algorithms – Heideman, Johnson, and Burrus, “Gauss and the History of FFT,”

IEEE ASSP Magazine, Vol. 1, No. 4, pp. 14-21, October 1984

Page 68: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 68Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 69: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 69Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Finite and Infinite Response Filters

• Infinite Impulse Response (IIR) Filters– Output of filter depends on past time history– Example :

• Finite Impulse Response (FIR) Filters– Output depends on the finite past– Example: DFT

– Other examples:

( )∞−

[ ] [ ] [ ]1nyM

1MnxM1ny −

−+=

[ ] [ ] N/nkj21N

0nenxkX π−

=∑=

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]1,nx2,nxnyor

1xnxn,kaky1N

0n

−=

= ∑−

=

Page 70: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 70Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Four Basic Filter Types-

An Idealization

Ideal Low Pass Filter

Ideal Bandstop FilterIdeal Bandpass Filter

Ideal High Pass Filter

1

11

1

ω

ω

ω

ω

cω cωcω− cω−

π1ω−1ω−

π−

1ω 2ω2ω−2ω− 1ω 2ω

π−

π−π−

ππ

π

( )jweH

( )jweH

( )jweH

( )jweH

Page 71: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 71Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Outline

• Continuous Signals and Systems

• Sampled Data and Discrete Time Systems

• Discrete Fourier Transform (DFT)

• Fast Fourier Transform (FFT)

• Finite Impulse Response (FIR) Filters

• Weighting of Filters

Page 72: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 72Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Windowing / Weighting of Filters

• If we take a square pulse, sample it M times, and calculate the Fourier transform of this uniform rectangular “window”:

• This is recognized as the sinc function which has 13 dB sidelobes

• If lower sidelobes are needed , at the cost of a widened pass band, one can multiply the elements of the pulse sequence with one of a number of weighting functions, which will adjust the sidelobes appropriately

( ) ( ) ( )( )

( ) ( )( ) π≤ω≤π−ωω

ωω

=−−

==ω −−ω−

ω−−

=

ω−∑

2/sin2/Msin

W

2/sin2/Msine

e1e1eW 2/1Mj

j

Mj1M

0n

nj

Page 73: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 73Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Commonly Used Window Functions

• Rectangular

• Bartlett (triangular)

• Hanning

• Hamming

• Blackman

[ ]=nw

[ ]=nw

[ ]=nw

[ ]=nw

[ ]=nw

,0Mn0,1 ≤≤

otherwise

,0Mn2/MM/n222/Mn0,M/n2

≤<−≤≤

otherwise

otherwise

otherwise

( ),0

Mn0,M/n2cos5.05.0 ≤≤π−

( ),0

Mn0,M/n2cos46.054.0 ≤≤π−

( ) ( ),0

Mn0,M/n4cos08.0M/n2cos5.042.0 ≤≤π+π−

otherwise

Page 74: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 74Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Comparison of Common Windows

Type of Window Peak Sidelobe Amplitude (dB)

Approximate Width of Main

LobeRectangular

Bartlett(triangular)

Hanning

Hamming

Blackman

( )1M/4 +π

M/8π

M/8π

M/8π

M/12π

13−

57−

31−

25−

41−

Page 75: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 75Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

HammingRectangular

Comparison of Rectangular & Hamming Windows

10−

20−

30−

40−

50−

60−

20 lo

g 10|W

(ω|

0 0.1 0.2 0.3 0.4 0.5

Normalized frequency (f = F/Fs

)

Page 76: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 76Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Summary

• A brief review of the prerequisite Signal & Systems, and Digital Signal Processing knowledge base for this radar course has been presented

– Viewers requiring a more in depth exposition of this material should consult the references at the end of the lecture

• The topics discussed were:– Continuous signals and systems– Sampled data and discrete time systems– Discrete Fourier Transform (DFT)– Fast Fourier Transform (FFT)– Finite Impulse Response (FIR) filters– Weighting of filters

Page 77: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 77Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

References

1. Proakis, J, G. and Manolakis, D. G., Digital Signal Processing, Principles, Algorithms, and Applications, Prentice Hall, Upper Saddle River, NJ, 4th

Ed., 20072. Lyons, R. G., Understanding Digital Signal Processing, Prentice

Hall, Upper Saddle River, NJ, 2nd

Ed., 20043. Hsu, H. P., Signals and Systems, McGraw Hill, New York, 19954. Hayes, M. H., Digital Signal Processing, McGraw Hill, New York,

19995. Oppenheim, A. V. et al, Discrete Time Signal Processing, Prentice

Hall, Upper Saddle River, NJ, 2nd

Ed., 19996. Boulet, B., Fundamentals of Signals and Systems, Prentice Hall,

Upper Saddle River, NJ, 2nd

Ed., 20007. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw

Hill, New York, 20058. Skolnik, M., Radar Handbook, McGraw Hill, New York, 2nd

Ed., 19909. Skolnik, M., Introduction to Radar Systems, McGraw Hill, New York,

3rd Ed., 2001

Page 78: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 78Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Acknowledgements

• Dr Dimitris Manolakis• Dr. Stephen C. Pohlig• Dr William S. Song

Page 79: Introduction to Radar Systems 2004 - gmoein.github.io › files › MIT Graduate Radar...Radar Systems Course 1 Review Signals, Systems & DSP 1/1/2010 IEEE AES Society Radar Systems

Radar Systems Course 79Review Signals, Systems & DSP 1/1/2010

IEEE New Hampshire SectionIEEE AES Society

Homework Problems

• From Proakis and Manolakis, Reference 1– Problems 2.1, 2.17, 4.9a and b, 4.10 a and b, 6.1, 6.9 a and b,

8.1 and 8.8

• Or

• And from Hays, Reference 4– Problems 1.41, 1.49, 1.54, 1.59, 2.46, 2.57, 2.58, 3.27, 3.28,

3.34, 6.44, 6.45