Introduction to Lasers -...

72
Introduction to Lasers OPTI 500 ABC Carl Maes September 6, 2012

Transcript of Introduction to Lasers -...

Page 1: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Introduction to Lasers

OPTI 500 ABCCarl Maes

September 6, 2012

Page 2: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Contents

• Introduction and Motivation • Interaction of Light and Matter• Light Amplification• Basics of Laser Operation• Laser Oscillation and Specific Laser Systems

Page 3: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Introduction & Motivation

• (Laser applications, particular properties of laser radiation, history of laser developments, references)

Page 4: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Borrowed from Thomas Halfmann Laser Physics course

Page 5: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 6: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 7: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 8: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

References• Laser Physics, by Simon Hooker and Colin Webb• Laser Material Processing, 4th ed., William Steen and Jyotirmoy Mazumder.  Online 

at http://www.springerlink.com/content/978‐1‐84996‐062‐5#section=823328&page=1

• Phontonic Simulation Software for Teaching: http://www.st‐andrews.ac.uk/~psst/• Lasers, by Anthony Siegman• Laser Physics, by Milonni and Eberly (2010)• Lasers, by Milonni and Eberly (1988)• Laser Resonators and Beam Propagation, by Hodgson and Weber, online at 

http://www.springerlink.com/content/n31g100834x7/• Solid State Lasers, by Koechner• Solid State Lasers, a Graduate Text, Koechner and Bass, online at 

http://www.scribd.com/doc/10565960/SolidState‐Lasers‐A‐Graduate‐Text‐koechner‐Mbass

• Laser Electronics, by Verdeyen• Principles of Lasers, by Orazio Svelto• Optical Electronics in Modern Communications, by Yariv

Page 9: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Amplification—General Case

Page 10: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Amplification—a Closer Look

Note the shape of the Gain curve…

Page 11: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Interaction of Light and Matter

Radiative processes: (a) absorption—an incident photon is absorbed while the atomic state is elevated from energy level E1 to E2(b) spontaneous emission—a photon is emitted while the atomic system descends from energy level E2 to E1(c) stimulated emission—an additional photon is emitted when an atomic system is under the action of an incident photon→”light amplification”

Page 12: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Light Amplification—Interaction of Light and Matter

• Light amplification not common in nature—Why?

• Thermal equilibrium between light and matter– Absorption of light much more dominant over gain because of Boltzmann’s Distribution of Matter

• Probability for transitions resulting in emission at optical frequencies at room temperature is about e‐40

TkEE

NN

B

12

1

2 exp

Page 13: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 13

Figure 5.5 Amplification of a traveling electromagnetic wave in (a) an inverted population (N2 N1) and (b) attenuation in an absorbing (N2 < N1) medium.

Page 14: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Light Amplification

• Requires Population Inversion, N2>N1

• Need some sort of external pump to raise atomic population from lower to upper energy level

Page 15: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Examples of Pumping 

Page 16: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 17: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 17

Spectral LineshapeGain (or Absorption) Profile

Frequency dependent phase shiftn is index of refraction

Transition Wavelength: Center Wavelength with Finite Spectral Width

Page 18: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Laser Operation• Light Amplification by Stimulated Emission of Radiation• Maximize light amplification/stimulated emission by use of optical resonator

• Stimulates emission along optical axis• Narrows spectral linewidth typically

Pump

Page 19: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Gain Medium Requirements

• Lasing not possible with only two energy levels due to saturation: N1=N2 with maximum pumping so no population inversion

• Solution: Pump to higher energy level that decays to upper lasing level; laser transition between upper and lower lasing energy levels

• Require at least three energy levels to obtain population inversion 

Page 20: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 20

Idealized 3‐Level Laser

Page 21: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yarivand Yeh

Idealized 4‐Level Laser

Note advantage over 3‐level laser: if decay from E1 to E0 is very rapid, then any nonzero population in E2 results in population inversion!

Page 22: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 22

Figure 5.6 Energy levels and transition rates of a four‐level laser system. (The fourth level, which is involved in the original excitation by the pump, is not shown and the pumping is shown as proceeding directly into levels 1 and 2.) The total lifetime of level 2 is t2, where 1/t2 = 1/tspont + 1/t20, where 1/t20 is the decay rate to the ground state (0).

Energy Levels and Rates

Note: Require tspont > t1 to build population inversion 

Page 23: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Threshold and Pumping   • Initially active medium is at thermal equilibrium• Pumping increases population into upper lasing level• Higher pumping results in population inversion…but still no 

lasing yet• Still higher pumping required to overcome losses

– Optical resonator losses due to transmitted beam– Internal losses due to scattering, absorption, etc.

• Finally, with more pumping, obtain Pump Threshold: laser amplifier gain equals system losses.

• Still higher pumping increases output power; however gain is clamped at threshold value due to gain saturation of population  

Page 24: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

24

Laser Gain and Threshold

Losses Gain :lasingfor Condition

ln1

4

)()(

:) of linewidth FWHM is recenter whe lineat Gain

)(8

)()(

mediumgain oflength ,ty reflectivi , loss internal ), Lineshapefrequency , refraction ofindex , spopulation ,constant Gain

21threshold

spont2

2

120

spont

2

12

RRl

tNN

g(υ

gt

NN

lRg(υnN

i

i

Page 25: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Gain Saturation• Reduction of population inversion and hence gain due to intense radiation in gain medium

σ(υ)Nγ(υ)

gt

hI

σ τI

NNNI

ININ

N

*

RR

s

Rs

1gg

2*

s

*

1

2

:Note

and )(8

)( where)(

section crossgain ,imerecovery t , Instensity Saturation

where1

)0()(

Population Saturated

2spont

2

**

Page 26: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh

Threshold Pump Power, Pth

Pump Threshold and Efficiency

Minimum pump power required: Must obtain population inversion, N2> N1

ANDMust have sufficient gain (stimulated emission) to overcome losses (mirrors, etc.)

1

αTl

2TAIP

2

g2s 0modeout

2

Page 27: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 27

Figure 6.7 Useful power output (Po) versus mirror transmission T for various values of internal loss Li in an He–Ne 6328 Å laser.(After Reference [3].)

Output Power Dependence on Mirror Reflectivity and Internal Losses

Note: •Optimal value for mirror reflectivity•Internal losses strongly impact output power•Internal loss examples: dirty mirrors, scattering, etc.

Page 28: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 28

Figure 6.1 Schematic drawing of multiple reflections inside a Fabry–Perot cavity and the corresponding partially transmitted beams. E1 isthe first transmitted beam, E2 is the transmitted beam after one round‐trip inside the cavity, E3 is the transmitted beam after two round‐tripsinside the cavity, and so on.

•Optical Resonator acts as a Fabry‐Perot cavity•Low loss modes transmitted only at specific frequencies (longitudinal modes)

Optical Resonator

Page 29: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 29

Figure 6.10 (a) Inhomogeneously broadened Doppler gain curve of the 6328 Å Ne transition and position of allowed longitudinal‐mode frequencies. (b) Intensity versus frequency profile of an oscillating He–Ne laser. Six modes have sufficient gain to oscillate (After Reference [5].)

Note relative width of Gain curve  and Resonator Modes

Longitudinal Modes and Gain Profile

Page 30: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Atomic Gain Lineshape Broadening

• Lineshape broadening causes:– Radiative lifetime (spontaneous emission)– Collisions of gas atoms (phase perturbation)– Phonons in solids (shifts linecenter)– Doppler effect (linecenter velocity dependence)– Asymmetric strain in substrate (shifts linecenter)

• Homogenous broadening (all atoms experience same magnitude of effect)

• Inhomogenous broadening (different groups of atoms experience different magnitude of effect

Page 31: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Homogeneous Broadening Below and Above Threshold

Page 32: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Inhomogeneous Broadening Below and Above Threshold

Page 33: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yarivand Yeh33

Figure 6.9 (a) Single‐pass gain curves for a homogeneous atomic system (A—below threshold; B—at threshold; C—well above threshold).(b) Mode spectrum of optical resonator. (c) Oscillation spectrum (only one mode oscillates). (d) Single‐pass gain curves for an inhomogeneous atomic system (A—below threshold; B—at threshold; C—well above threshold). (e) Mode spectrum of optical resonator. (f) Oscillation spectrum for pumping level C, showing three oscillating modes.

Summary of Broadening, Saturation, and Threshold Effects on Lasing

Page 34: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 34

Figure 6.39 Pumping–oscillation cycle of a typical laser.

Page 35: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Specific Laser Examples

• Nd:YAG, • Ruby• Erbium• Ti:sapphire• Perhaps most common: laser pointer

Page 36: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 37: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 38: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 38

Figure 6.46 Energy‐level diagram of Nd3+ in YAG. (After Reference [42].) The unit 1 cm–1 corresponds to  = 30 GHz, or h = 1.24 × 10–4 eV.

Page 39: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 39

Figure 6.47 Spontaneous emission spectrum of Nd3+ in YAG near the laser transition at 0 = 1.064 m. (After Reference [43].)

Page 40: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 40

Figure 6.48 Typical continuous solid‐state laser arrangement employing an elliptic cylinder housing for concentrating lamplight onto laser.

Page 41: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 41

Figure 6.50 Fluorescent emission of the 1.06 m line of Nd3+ at 300 K in various glass bases. (After Reference [44].)

Page 42: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 42

Figure 6.51 Nd3+ absorption spectrum for a sample of glass 6.4 mm thick with the composition 66 wt.% SiO2, 5 wt.% Nd2O3, 16 wt.% Na2O, 5 wt.% BaO, 2 wt.% A12O3, and 1 wt.% Sb2O3. (After Reference [44].)

Page 43: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 44: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 45: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 46: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 47: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 48: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 48

Figure 6.44 Typical setup of a pulsed ruby laser using flashlamp pumping and external mirrors.

Page 49: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 50: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 51: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 51

Figure 6.40 Energy levels pertinent to the operation of a ruby laser. The unit 1 cm–1 corresponds to v = 30 GHz, or hv = 1.24 × 10–4 eV.(After Reference [38].)

Page 52: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 52

Figure 6.41 Absorption coefficient and absorption cross section as functions of wavelength for E || c and E  c. The 300 K data were derived from transmittance measurements on pink ruby with an average Cr ion concentration of 1.88 × 1019 cm–3. (After Reference [39].)

Page 53: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 53

Figure 6.43 Linewidth of the R1 line of ruby as a function of temperature. (After Reference [40].)

Page 54: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 54

Figure 6.45 Spectral output characteristics of two commercial high‐pressure lamps. Output is plotted as a fraction of electrical input tolamp over certain wavelength intervals (mostly 200 Å) between 0.4 and 1.4 m. (After Reference [41].)

Page 55: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 55

Figure 6.55 Energy levels of Ti3+ ions in sapphire crystal showing the effect due to crystal–field, spin–orbit, and Jahn–Teller splitting.

Page 56: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 56

Figure 6.56 Absorption cross section (in units of 10–20 cm2) for the transition 2T2 2E in the Ti:sapphire laser as a function of wavelength(in units of nm). E = polarization of electric field; c = axis of symmetry of crystal. (Data from Reference [52].)

Page 57: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 57

Figure 6.57 Emission spectra of the Ti:sapphire laser. E = polarization of electric field; c = axis of symmetry of crystal. (Data from Reference [52].)

Page 58: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 59: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

Photonics, 6th edition    Yariv and Yeh 59

Figure 6.53 Energy levels of Er3+ ion and some dominant transitions. The unit 1 cm–1 corresponds to  = 30 GHz, or h = 1.24 × 10–4 eV.

Page 60: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 61: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 62: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 63: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic

pump

Wikipedia: Kerr‐lens modelocking

Page 64: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 65: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 66: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 67: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 68: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 69: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 70: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 71: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic
Page 72: Introduction to Lasers - opti500.cian-erc.orgopti500.cian-erc.org/supercourse/classes/Fall2012/Lecture_4_Intro_to_Lasers.pdfPhotonics, 6th edition Yariv and Yeh 28 Figure 6.1 Schematic