Introduction to Computational Vaccinology and iVAX by EpiVax

99
Using Computa.onal Vaccinology to Design GenomeDerived Vaccines for Infec.ous Diseases, Cancer, Allergy and Autoimmune Disease 1 Anne S. De Groot, Lenny Moise, Leslie Cousens, Frances Terry, William Mar<n Ins<tute for Immunology and Informa<cs, University of Rhode Island and EpiVax, Inc. www.epvax.com www.immunome.org 22 January 2014 1

description

This presentation was developed for Dr. Anna Durbin&#x27;s vaccine class at Johns Hopkins. It was delivered simultaneously to my vaccine class at URI. Both classes had their first introductory lecture at the same time, so we joined them by webinar. The slides cover the EpiVax approach to computational vaccinology, which is relatively novel as compared to other groups working in the field. A number of case studies, including H7N9, are provided.

Transcript of Introduction to Computational Vaccinology and iVAX by EpiVax

Page 1: Introduction to Computational Vaccinology and iVAX by EpiVax

Using  Computa.onal  Vaccinology  to  Design  Genome-­‐Derived  Vaccines  for  Infec.ous  Diseases,  

Cancer,  Allergy  and  Autoimmune  Disease  

1  

Anne  S.  De  Groot,  Lenny  Moise,  Leslie  Cousens,  Frances  Terry,  William  Mar<n  Ins<tute  for  Immunology  and  Informa<cs,  University  of  Rhode  Island  and  EpiVax,  Inc.    www.epvax.com  www.immunome.org          

22  January  2014  

1  

Page 2: Introduction to Computational Vaccinology and iVAX by EpiVax

Your  Speaker  –  Annie  De  Groot  MD  

2  

Page 3: Introduction to Computational Vaccinology and iVAX by EpiVax

The  Company:  EpiVax  

3  hOp://bit.ly/EpiPubs    

Page 4: Introduction to Computational Vaccinology and iVAX by EpiVax

EpiVax  Collaborates  with  the    Ins*tute  for  Immunology  and  Informa*cs  @  URI  

Collabora<ve  Research  on  Immunome-­‐Derived  Accelerated  Vaccine  Design  and  Development  Funded  by  the  NIH  CCHI  U19,  COBRE,  and  P01  awards.  www.immunome.org  

4  hOp://bit.ly/EpiPubs    

Page 5: Introduction to Computational Vaccinology and iVAX by EpiVax

Addi.onal  Collaborators  

Bill  Mar<n  Lenny  Moise  Frances  Terry  Leslie  Cousens  Ryan  Tassone  Howie  La<mer  Mindy  Cote  Lauren  Levitz  Chris<ne  Boyle  

Alan  Rothman  Carey  Medin  Andres  Gui<errez  Danielle  Aguirre  Joe  Desrosiers  Thomas  Mather  Wendy  Coy  Loren  Fast  

Don  Drake,  Brian  Schanen  

Sharon  Frey  Mark  Buller  Jill  Schreiwer  

Hardy  Kornfeld  Jinhee  Lee  Liisa  Selin  

Connie  Schmaljohn  Lesley  C.  Dupuy  

Ted  Ross  

Mark  Poznansky  Tim  Brauns  Pierre  LeBlanc    

AI058326,  AI058376,    AI078800,  AI082642  

5  hOp://bit.ly/EpiPubs    

Page 6: Introduction to Computational Vaccinology and iVAX by EpiVax

•  Why Computational Immunology •  Tools to Produce IDVs

– Antigen selection – Vaccine design –  New concepts

•  Case Studies

6  

Outline

Page 7: Introduction to Computational Vaccinology and iVAX by EpiVax

Predic<ng  the  future  is  something  that  weather  experts  do  with  the  assistance  of  informa<cs  models.      These  forecasts  enable  us  to  make  decisions  on  a  daily  basis,  and  they  are  accurate  enough  to  mobilize  millions  if  and  when  severe  storms  are  predicted.      Why  then,  are  we  so  slow  to  use  informa<cs  in  vaccine  and  protein  therapeu<cs  design?    

Page 8: Introduction to Computational Vaccinology and iVAX by EpiVax

In  todays  talk,  I  will  discuss  the  use  of  immunoinforma<cs  tools  for  vaccine  design,  mechanism  of  ac<on  studies,  and  efficacy  evalua<ons.    I  believe  that  the  <me  is  ripe  for  vaccine  developers  to  ac<vely  apply,  evaluate  and  improve  vaccines  through  the  use  of  computa<onal  immunogenicity  predic<on  tools.  

Page 9: Introduction to Computational Vaccinology and iVAX by EpiVax

“Old  Style”  Vaccines    

Grow  .  .  .  and  use  whole  pathogen

Page 10: Introduction to Computational Vaccinology and iVAX by EpiVax

Whole  (live/killed)  vaccines  

Subunit  vaccines  (Flu,  Hepa<<s  B,  HPV  vaccines,  for  

example)  

Genome-­‐Derived,  Epitope  Driven  (GD-­‐ED)  

Vaccines  

BeOer  understanding    of  vaccine  MOA  

Improve  vaccine  safety  and  efficacy  

Accelerate  Vaccine  Design  

The  focus  of  our  work  Can  we  make  vaccines  beJer/faster    

10  hOp://bit.ly/EpiPubs    

Page 11: Introduction to Computational Vaccinology and iVAX by EpiVax

iVAX  Vaccine  Design  Toolkit  

Page 12: Introduction to Computational Vaccinology and iVAX by EpiVax

•  For Example: – HIV – HCV – Malaria – Universal Influenza Vaccine – Vaccines against Cancer – Vaccines for immunotherapy of AI – Vaccines for diseases affecting food animals

Why?  New  Vaccines  Needed  

Page 13: Introduction to Computational Vaccinology and iVAX by EpiVax

•  For Example: Pandemic influenza 2009 – Traditional flu vaccine production methods

require large lead time – 20 weeks to first vaccine dose –  “Pandemic” influenza had already peaked by

the time the first shots were being delivered. – Vaccine manufacturing failed the test. –  Is H7N9 the next pandemic? If so, we are

worried. . .

Why?  Unacceptable  Delays  

Page 14: Introduction to Computational Vaccinology and iVAX by EpiVax

Emergent  H7N9  disease  in  China  

14  hOp://bit.ly/EpiPubs    

Page 15: Introduction to Computational Vaccinology and iVAX by EpiVax

Spread  to  Beijing  on  4/13/13  .  .  .  Spread  to  Hong  Kong  on  12/6/  13  

15  

Page 16: Introduction to Computational Vaccinology and iVAX by EpiVax

Markedly  Increased  ac.vity  in  late  2013  and  early  2014!  

16  hOp://bit.ly/EpiPubs    

Page 17: Introduction to Computational Vaccinology and iVAX by EpiVax

Con.nuing  Expansion  of  H7N9  First  confirmed  cases  occurred  in  Shanghai  (3/30/13)  but  case  ac<vity  rapidly  increased  in  Zheijang  and  Jiangsu  provinces  shortly  aier.    Now,  we  have  a  problem!    

Image  credit  to  VDU  and  Dr.  Ian  M  Mackay  hOp://www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm  17  hOp://bit.ly/EpiPubs    

Page 18: Introduction to Computational Vaccinology and iVAX by EpiVax

Ci.es  that  are  one  stop  from  H7N9  

An  es<mated  70%  of  the  world  popula<on  resides  within  two  hours’  travel  <me  of  des<na<on  airports  (calculated  using  gridded  popula<on-­‐density  maps  and  a  data  set  of  global  travel  <mes,  map  supplied  by  A.  J.  Tatem,  Z.  Huang  and  S.  I.  Hay  (2013).    

Page 19: Introduction to Computational Vaccinology and iVAX by EpiVax

Quick  numbers...  •  Total  confirmed  human  cases  of  

influenza  A  virus  H7N9:  >  200  

•  Total  deaths  aOributed  to  infec<on  with  influenza  A  virus  H7N9:  >  50  

•  Case  Fatality  Rate  (CFR):  29%  (current)    

•  Average  <me  from  illness  onset  to  first  confirma<on  of  H7N9  (days):  <10    

•  Median  age  of  the  H7N9-­‐confirmed  cases  (including  deaths;  years):  63    

•  Males:  71%  of  cases,  74%  of  deaths    

•  Younger  pa<ents  are  recovering  .  .  .    

hOp://pandemicinforma<onnews.blogspot.com   hOp://www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm  

H7N9  Morbidity  and  Mortality  

19  

Page 20: Introduction to Computational Vaccinology and iVAX by EpiVax

Virus  Transmission  Mechanism  –    source  is  s.ll  at  large  •  Human  to  human  transmission  has  not  been  proved  (or  disproved)  many  cases  show  uninfected  family  members    

•  Poultry  iden<fied  as  poten<al  natural  host  and  H7N9  samples  were  found  in  poultry  market  environment  in  Shanghai.  However  not  many  poultry  vendors  infected  and  many  cases  have  no  indica<on  of  poultry  exposure   Image  credit  to  VDU  and  Dr.  Ian  M  Mackay  hOp://

www.uq.edu.au/vdu/VDUInfluenza_H7N9.htm   20  hOp://bit.ly/EpiPubs    

Page 21: Introduction to Computational Vaccinology and iVAX by EpiVax

Distribu.on  of  Cases  

This  picture  shows  the  

geographically  wide  distribu<on  of  flu  cases  -­‐  sugges<ng  widespread  

distribu<on  of  the  virus  rather  than  a  point  outbreak.    

 21  hOp://bit.ly/EpiPubs    

Page 22: Introduction to Computational Vaccinology and iVAX by EpiVax

Why  are  immunoinforma.cs  tools  important  in  this  sedng?  

•  Immunoinforma<cs  predicted  low  immunogenicity  of  ‘cri<cal  an<gen’  H7  HA  

•  hOp://bit.ly/H7N9_2013  

Page 23: Introduction to Computational Vaccinology and iVAX by EpiVax

(reminder)  Flu  Vaccine  –  HA  protein  

Ian  Mackey  hOp://www.uq.edu.au/vduVDUInfluenza_H7N9.htm  23  

hOp://bit.ly/EpiPubs    

Page 24: Introduction to Computational Vaccinology and iVAX by EpiVax

What  Can  We  Learn  About  H7N9?    

HA  (hemagglu<nin)  is  the  ‘Cri<cal  An<gen’  used  for  Flu  vaccines,  especially  recombinant  vaccines    –    –  which  are  currently  in  produc*on.    

24  hOp://bit.ly/EpiPubs    

Page 25: Introduction to Computational Vaccinology and iVAX by EpiVax

H7N9  is  a  unique  virus  

•  Low  conserva<on  of  HA,  NA  surface  proteins  is  not  surprising  

•  Internal  proteins  are  more  conserved  

25  hOp://bit.ly/EpiPubs    

Page 26: Introduction to Computational Vaccinology and iVAX by EpiVax

gB-2 (EPX Score: -24.56)

- 80 -

- 70 -

- 60 -

- 50 -

- 40 -

- 30 -

- 20 -

- 10 -

- 00 -

- -10 -

- -20 -

- -30 -

- -40 -

- -50 -

- -60 -

- -70 -

- -80 -

Thrombopoietin

Human EPO

Tetanus Toxin

Influenza-HA

Albumin

IgG FC Region

EBV-BKRF3

Fibrinogen-Alpha

Follitropin-Beta

HA  A/California/07/2009  (H1N1)  

HA  A/Victoria/361/2011  (H3N2)  

HA  A/Texas/50/2012    (H3N2)  

HA  A/Shanghai/1/2013  (H7N9)  .  .  .  .  .  .  .    ..  .  .  .  .  .  .  .  -­‐8.11  HA  A/mallard/Netherlands/09/2005  (H7N7)  .  .  .  .  .  .  -­‐8.63  

Random  Expecta.on  

HA  A/mallard/Netherlands/12/2000  (H7N3)  ..  .  .  .  .  .-­‐9.91  

HA  A/chicken/Italy/13474/1999  (H7N1)    .  .  .  .  .  .  .  .  .  -­‐6.23  

H7  HA  Immunogenic  Poten.al  

New  H7N9  Flu  is  Predicted  to  be  POORLY  IMMUNOGENIC  

hOp://bit.ly/EpiPubs    

Page 27: Introduction to Computational Vaccinology and iVAX by EpiVax

Why  are  immunoinforma.cs  tools  important  in  this  sedng?  

•  Immunoinforma<cs  predicted  low  immunogenicity  of  ‘cri<cal  an<gen’  H7  HA  

•  Vaccine  was  developed  but  is  low  immunogenicity  as  predicted.  

hOp://bit.ly/H7N9_NovaVax  

Page 28: Introduction to Computational Vaccinology and iVAX by EpiVax

Unadjuvanted Influenza Vaccine Effectiveness

Page 29: Introduction to Computational Vaccinology and iVAX by EpiVax

Why  are  immunoinforma.cs  tools  important  in  this  sedng?  

•  Immunoinforma<cs  predicted  low  immunogenicity  of  ‘cri<cal  an<gen’  H7  HA  

•  Vaccine  was  developed  but  is  low  immunogenicity  as  predicted  

•  Sero-­‐conversion  is  delayed,  diminished  in  pa<ents  infected  with  H7N9.  

hOp://bit.ly/H7N9_Serology  

.  .  .  Low  and  Slow  .  .  .  

Page 30: Introduction to Computational Vaccinology and iVAX by EpiVax

Why  are  immunoinforma.cs  tools  important  in  this  sedng?  

•  Immunoinforma<cs  predicted  low  immunogenicity  of  ‘cri<cal  an<gen’  H7  HA  

•  Vaccine  was  developed  but  is  low  immunogenicity  as  predicted  

•  Sero-­‐conversion  is  delayed,  diminished  in  pa<ents  infected  with  H7N9.  

•  New  vaccine  approaches  are  needed.  •  .  .  .  Now  that  you  are  convinced,  let’s  talk  about  computa<onal  vaccine  design  

Page 31: Introduction to Computational Vaccinology and iVAX by EpiVax

•  Why Computational Immunology •  Tools to Produce IDVs

– Antigen selection – Vaccine design –  New concepts

•  Case Studies

31  

Outline

Page 32: Introduction to Computational Vaccinology and iVAX by EpiVax

Computational Vaccinology: Genomes-to-Vaccines  

Page 33: Introduction to Computational Vaccinology and iVAX by EpiVax

•  Lots of Genomes now Published! •  On line tools for Pathogen Gene finding

(GLIMMER, ORPHEUS, GeneMark) •  Tools for selecting subsets of protein –

such as subcellular localization of hypothetical proteins (PSORTb, CELLO, Proteome Analyst)

Selection of vaccine antigens is key

Page 34: Introduction to Computational Vaccinology and iVAX by EpiVax

Strain 1

Strain 3

     Strain 2

core  genome  dispensable  genes  

strain-­‐specific  genes  pangenome  

Comparative Genomics Impacts Vaccine Immunogen Selection  

Page 35: Introduction to Computational Vaccinology and iVAX by EpiVax

.  .  .  Need  “informa*on”    =  T  cell  and  B  cell  epitopes  

 .  .  .  And  the  correct  “milieu”    

=  delivery  vehicle,  adjuvants/TLR  ligands    

“Fine  tune”  the  immune  response?  

. . And there is ample evidence that this approach to vaccine design produces protective immunity

Immunome-Derived Vaccines . . .  

Payload  

Adjuvant  

Delivery  Vehicle  

Vaccine  

Page 36: Introduction to Computational Vaccinology and iVAX by EpiVax

HLA (Human MHC), are comprised of peptide specific pockets

EpiMatrix predicts how well a peptide sequence will bind to a specific pocket.

Binding is the prerequisite for immunogenicity

8 class II HLA supertypes which taken together incorporate 95% of human

populations (and pockets) worldwide.

Each 9-mer/10-mer is analyzed for binding potential to each of those 8

allele matrices. .

Payload:  Predic.ng  Epitopes  that  Drive  Immune  Response  is  our  Exper.se  

Mature APC

Protein MHC II Pocket

Southwood et al. J. Immunology 1998 Sturniolo et al. Nature Biotechnology, 1999

The  EpiMatrix  Score  describes  the  binding  affinity  of  the  pep<de  sequence  to  the  HLA  complex  

Peptide Epitope

37  hOp://bit.ly/EpiPubs    

Page 37: Introduction to Computational Vaccinology and iVAX by EpiVax

epitope  

Vaccine  an<gen  

1    +    1    +    1        =    Response  

epitope  epitope  

Immune  response  to  a  vaccine  an<gen  can  be  predicted  by  measuring  the  number  of  T  cell  epitopes  contained  in  the  an<gen  with  immunoinforma<cs  tools.    

How  do  we  measure  Immunogenicity?    

hOp://bit.ly/EpiPubs    

Page 38: Introduction to Computational Vaccinology and iVAX by EpiVax

Non    Immunogenic  

proteins  

Immunogenic  proteins  

“Immunogenicity  Scale”  

41  hOp://bit.ly/EpiPubs    

Page 39: Introduction to Computational Vaccinology and iVAX by EpiVax

Easy  easy  to  deliver  as  pep<des  

42  

DRB1*0101

DRB1*0301

DRB1*0401

DRB1*0701

DRB1*0801

DRB1*1101

DRB1*1301

DRB1*1501

ClustiMer: Screen for Epitope Clusters

Page 40: Introduction to Computational Vaccinology and iVAX by EpiVax

43  

Conservatrix: Overcome the Challenge of Variability

HIV HCV Influenza

Page 41: Introduction to Computational Vaccinology and iVAX by EpiVax

44  

Identifying the most conserved 9-mers allows for protection against more strains with fewer epitopes

Conservatrix Finds Conserved 9-mers

Conserved epitope

CTRPNNTRK

CTRPNNTRK CTRPNNTRK

CTRPNNTRK CTRPNNTRK

CTRPNNTRK

CTRPNNTRK

Page 42: Introduction to Computational Vaccinology and iVAX by EpiVax

45  

BlastiMer: Epitope Exclusion

Confidential

In  all  of  our  vaccines  we  eliminate  cross-­‐reac<ve  epitopes  

Self  Foreign  

Page 43: Introduction to Computational Vaccinology and iVAX by EpiVax

Human

Pathogen

     Human

Microbiome

Protec.ve  epitopes  

Poten.ally  detrimental  cross-­‐reac.ve  epitopes  

Poten.ally  detrimental  cross-­‐reac.ve  epitopes  

Epitope  Cross-­‐Reac<vity  Impacts  Vaccine  Immunogen  Selec<on  

46  hOp://bit.ly/EpiPubs    

Page 44: Introduction to Computational Vaccinology and iVAX by EpiVax

Each MHC ligand has two faces, The MHC-binding face (aggretope), and the TCR-interacting face (epitope)

JanusMatrix  

TCR

MHC

The JanusMatrix algorithm searches for putative MHC ligands which are identical at the contact residues but may vary at the MHC-binding residues.

MHC/HLA

TCR

•  Identical T cell-facing residues •  Same HLA allele and minimally

different MHC-facing residues

Find predicted 9-mer ligands with:

http://bit.ly/JanusMatrix

48

Page 45: Introduction to Computational Vaccinology and iVAX by EpiVax

HCV  T  Effector  Epitopes  

HCV_G1_1605

HCV_G1_DEXDC_1246

HCV_G1_NS5A_1988

HCV_G1_NS4B_1725

HCV_G1_2898

HCV_G1_2913

HCV_G1_ENV_359

HCV_G1_2941

HCV_G1_NS4B_1910

HCV_G1_ENV_255

HCV_G1_2440

HCV_G1_NS2_732

HCV_G1_NS2_748

HCV_G1_2840

HCV_G1_1941

HCV_G1_NS4B_1769

HCV_G1_NS2_909

HCV_G1_2485

HCV_G1_NS4b_1798 HCV_G1_NS4B_1790

HCV_G1_NS4B_1876

HCV_G1_2879

Page 46: Introduction to Computational Vaccinology and iVAX by EpiVax

Treg-­‐like-­‐Epitope:  HCV  

HCV_G1_NS2_794

Page 47: Introduction to Computational Vaccinology and iVAX by EpiVax

•  Why Computational Immunology •  Tools to Produce IDVs

– Antigen selection – Vaccine design

•  Case Studies

51  

Outline

Page 48: Introduction to Computational Vaccinology and iVAX by EpiVax

Epi-Assembler

Immunogenic consensus

CTRPNNTRK CTRPNNTRK

CTRPNNTRK CTRPNNTRK

CTRPNNTRK

CTRPNNTRK

EpiAssembler Constructs Immunogenic Consensus Sequences

Page 49: Introduction to Computational Vaccinology and iVAX by EpiVax

STRAIN 01 Q X S W P K V E Q F W A K H X W N X I S X I Q Y LSTRAIN 02 Q A S W P K V E X F W A K H M W N F I S G I Q Y LSTRAIN 03 Q X S W P K X E Q F W A K H M W N F I S G I Q Y XSTRAIN 04 Q A S W X K V E Q F W A K H M W N F X S X I Q Y LSTRAIN 05 Q X S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 06 Q A S W P K X E Q F W A X H M W N F I S G I Q Y XSTRAIN 07 Q X S W P K V E Q F W A K H M X N F I S G I Q Y LSTRAIN 08 Q A S W X K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 09 Q X S W P K X E Q F W A K H M W N F X S X I X Y XSTRAIN 10 Q A S W P R V E Q F W A K H M W N F I X G I Q Y LSTRAIN 11 Q A S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 12 Q A S W X K V E Q F W A X H M W N F I S G I Q Y XSTRAIN 13 Q A S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 14 Q A S W X K X E Q F W A K H M W N F I S X I Q Y LSTRAIN 15 Q A S W P K V E X F W X K H M W N F I S G I Q Y LSTRAIN 16 Q X S W P K V E Q F W A K H M W N F I X G I Q Y LSTRAIN 17 X A S W X K V E Q F W A K H M W N F I S G I Q Y XSTRAIN 18 Q X S W P K X E Q F W A K H M W N X I S G I Q Y LSTRAIN 19 Q A S W X K V E Q F W A K H M W N F I S X I Q Y LSTRAIN 20 Q A S W P K V E Q F W A X H M W N F I S G I Q Y L

x

F W A K H M W N F

EpiAssembler: Core Epitope

Page 50: Introduction to Computational Vaccinology and iVAX by EpiVax

STRAIN 01 Q X S W P K V E Q F W A K H X W N X I S X I Q Y LSTRAIN 02 Q A S W P K V E X F W A K H M W N F I S G I Q Y LSTRAIN 03 Q X S W P K X E Q F W A K H M W N F I S G I Q Y XSTRAIN 04 Q A S W X K V E Q F W A K H M W N F X S X I Q Y LSTRAIN 05 Q X S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 06 Q A S W P K X E Q F W A X H M W N F I S G I Q Y XSTRAIN 07 Q X S W P K V E Q F W A K H M X N F I S G I Q Y LSTRAIN 08 Q A S W X K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 09 Q X S W P K X E Q F W A K H M W N F X S X I X Y XSTRAIN 10 Q A S W P R V E Q F W A K H M W N F I X G I Q Y LSTRAIN 11 Q A S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 12 Q A S W X K V E Q F W A X H M W N F I S G I Q Y XSTRAIN 13 Q A S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 14 Q A S W X K X E Q F W A K H M W N F I S X I Q Y LSTRAIN 15 Q A S W P K V E X F W X K H M W N F I S G I Q Y LSTRAIN 16 Q X S W P K V E Q F W A K H M W N F I X G I Q Y LSTRAIN 17 X A S W X K V E Q F W A K H M W N F I S G I Q Y XSTRAIN 18 Q X S W P K X E Q F W A K H M W N X I S G I Q Y LSTRAIN 19 Q A S W X K V E Q F W A K H M W N F I S X I Q Y LSTRAIN 20 Q A S W P K V E Q F W A X H M W N F I S G I Q Y L

x

F W A K H M W N FW P K V E Q F W A

Q A S W P K V E Q N F I S G I Q Y LM W N F I S G I Q

EpiAssembler: Flanking Epitopes

Page 51: Introduction to Computational Vaccinology and iVAX by EpiVax

STRAIN 01 Q X S W P K V E Q F W A K H X W N X I S X I Q Y LSTRAIN 02 Q A S W P K V E X F W A K H M W N F I S G I Q Y LSTRAIN 03 Q X S W P K X E Q F W A K H M W N F I S G I Q Y XSTRAIN 04 Q A S W X K V E Q F W A K H M W N F X S X I Q Y LSTRAIN 05 Q X S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 06 Q A S W P K X E Q F W A X H M W N F I S G I Q Y XSTRAIN 07 Q X S W P K V E Q F W A K H M X N F I S G I Q Y LSTRAIN 08 Q A S W X K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 09 Q X S W P K X E Q F W A K H M W N F X S X I X Y XSTRAIN 10 Q A S W P R V E Q F W A K H M W N F I X G I Q Y LSTRAIN 11 Q A S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 12 Q A S W X K V E Q F W A X H M W N F I S G I Q Y XSTRAIN 13 Q A S W P K V E Q F W A K H M W N F I S G I Q Y LSTRAIN 14 Q A S W X K X E Q F W A K H M W N F I S X I Q Y LSTRAIN 15 Q A S W P K V E X F W X K H M W N F I S G I Q Y LSTRAIN 16 Q X S W P K V E Q F W A K H M W N F I X G I Q Y LSTRAIN 17 X A S W X K V E Q F W A K H M W N F I S G I Q Y XSTRAIN 18 Q X S W P K X E Q F W A K H M W N X I S G I Q Y LSTRAIN 19 Q A S W X K V E Q F W A K H M W N F I S X I Q Y LSTRAIN 20 Q A S W P K V E Q F W A X H M W N F I S G I Q Y L

x

F W A K H M W N FW P K V E Q F W A

Q A S W P K V E Q N F I S G I Q Y LM W N F I S G I Q

Q A S W P K V E Q F W A K H M W N F I S G I Q Y L

EpiAssembler: Final Immunogenic Consensus Sequence

Page 52: Introduction to Computational Vaccinology and iVAX by EpiVax

VaxCAD Identifies and Eliminates Junctional Epitopes

VaxCAD will identify junctional epitopes and rearrange chosen epitopes to reduce junctional epitope formation

Page 53: Introduction to Computational Vaccinology and iVAX by EpiVax

57  

-10

0

10

20

30

40

50

HP

4117

H

P41

79

HP

4007

H

P41

11

HP

4018

H

P40

70

HP

4034

H

P41

93

HP

4065

H

P41

81

HP

4157

H

P40

60

HP

4068

H

P41

64

HP

4160

H

P41

75

HP

4127

H

P41

20

HP

4126

H

P41

54

HP

4168

H

P41

19

HP

4100

H

P40

01

HP

4061

EpiM

atrix

Clu

ster

Sco

re

Peptides in Default order in construct HP_IIB

Epitope Cluster Score Junctional Cluster Score

-10

0

10

20

30

40

50

HP

4117

H

P40

61

HP

4181

H

P41

11

HP

4018

H

P40

70

HP

4060

H

P41

57

HP

4065

H

P40

01

HP

4193

H

P40

34

HP

4068

H

P41

68

HP

4160

H

P41

75

HP

4127

H

P41

26

HP

4007

H

P41

54

HP

4164

H

P41

19

HP

4100

H

P41

20

HP

4179

EpiM

atrix

Clu

ster

Sco

re

Peptides in Optimized order in construct HP_IIB

Epitope Cluster Score Junctional Cluster Score

VaxCAD Example

Page 54: Introduction to Computational Vaccinology and iVAX by EpiVax

58  

DNA Vector

DNA insert

Intended Protein Product: Many epitopes strung together in a “String-of-Beads”

Protein product (folded)

Multi-Epitope Gene Design

Page 55: Introduction to Computational Vaccinology and iVAX by EpiVax

DNA  –  chain  of  epitopes,  or  pep<de  in  liposomes   ICS-­‐op<mized  proteins  in  VLP  ICS-­‐op<mized  whole  proteins  

Immunogenic Consensus Sequence Formulations

Page 56: Introduction to Computational Vaccinology and iVAX by EpiVax

HLA A2

 HLA DR3

 HLA B7

 HLA DR2

 HLA A2/DR1

 HLA DR4

 

In Vivo Model for Validation: HLA Transgenic Mice

Page 57: Introduction to Computational Vaccinology and iVAX by EpiVax

•  Why Computational Immunology •  Tools to Produce IDVs •  Case Studies

– Tularemia – Smallpox – H. pylori – VEEV (multi-pathogen vaccine) –  Influenza

61  

Outline

Page 58: Introduction to Computational Vaccinology and iVAX by EpiVax

Burk/Tuly/MP

Current  Vaccine  Design  Pipeline  

Epitope Discovery

Epitope Validation

Construct Design

Immuno-genicity

HIV/TB Epitope Discovery

Epitope Validation

Construct Design

Immuno-genicity

Tularemia Epitope Discovery

Epitope Validation

Construct Design

Immuno-genicity

Animal Model Validation

Smallpox Epitope Discovery

Epitope Validation

Construct Design

Animal Model Validation

VEEV

Epitope Discovery

Epitope Validation

Construct Design

Animal Model Validation H. pylori

Epitope Discovery

Epitope Validation

Construct Design

Animal Model Validation

Animal Model Validation

Animal Model Validation

Immuno-genicity

Immuno-genicity

Immuno-genicity

62

Epitope Discovery

Epitope Validation

Construct Design

Animal Model Validation

Immuno-genicity Influenza

Page 59: Introduction to Computational Vaccinology and iVAX by EpiVax

GDV  Approach  Applied  to  F.  tularensis  

63  

McMurry  JA,  Gregory  SH,  Moise  L,  Rivera  DS,  Buus  S,  and  De  Groot  AS.  Diversity  of  Francisella  tularensis  Schu4  an<gens  recognized  by  T  lymphocytes  aier  natural  infec<ons  in  humans:  Iden<fica<on  of  candidate  epitopes  for  inclusion  in  a  ra<onally  designed  tularemia  vaccine.  Vaccine  2007  Apr  20;25(16):3179-­‐91.  

In 24 months:

•  Took one genome

•  Mapped class I + Class II

•  Selected 165 epitopes

•  Confirmed in human

•  Cloned into vaccine

•  Performed Challenge studies. . .

Page 60: Introduction to Computational Vaccinology and iVAX by EpiVax

High  Responder  Frequency  to  Class  II  Epitopes  in  Pa.ents  with  Prior  Exposure  

64  

Percent  of  subjects  responding  by  IFN  gamma  ELISpot  Significant  Spot  Forming  Cells  averaged  across  subjects  

22/25  pep<des;  Average  response  to  the  pool  was  over  1,000  gamma  producing  cells  per  million  above  background.  

 

Page 61: Introduction to Computational Vaccinology and iVAX by EpiVax

TulyVax:  6  epitope  in    LVS  Challenge  Strain  

Page 62: Introduction to Computational Vaccinology and iVAX by EpiVax

0

50

100

150

200

250

30030

04

3005

3017

3018

F102

F176

3001

3003

3015

3019

3007

3023

3024

3025

Schu4 peptides with perfect LVS match

Schu4 peptides with partial LVS match

Schu4 peptides without LVS match

IFN

-g S

FC

/10^

6 sp

leno

cyte

s ov

er b

ackg

roun

d

Placebo-immunizedFT_II_v1-immunized

950 -

900 -

TulyVax  Immunogenicity  in  HLA  Tg    Epitope-­‐specific  IFNγ  Response  

Nearly identical immunogenicity profile observed in HLA DR3 mouse immunizations performed in collaboration with Dr. Terry Wu (UNM), illustrating broad reactivity of immunoinformatic predicted epitopes.

Page 63: Introduction to Computational Vaccinology and iVAX by EpiVax

57%

0%0%

20%

40%

60%

80%

100%

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21Days after lethal bacterial challenge

Perc

ent S

urvi

val

TuliVax Immunized MicePlacebo Recipient Mice

14  epitopes:  T  cell-­‐epitope-­‐immunized  mice  were  protected  against  live  challenge  with  tularemia.  Placebo-­‐recipient  mice  died  within  10  days.  

Rapidity:  from  genome  to  candidate  vaccine  in  24  months  .  .  .    Efficacy:  14  epitope  vaccine  protects  against  live  challenge  

TulyVax Efficacy

McMurry et al. Vaccine 2007;25:3179-91 and Gregory et al. Vaccine 2009 27:5299-306

Page 64: Introduction to Computational Vaccinology and iVAX by EpiVax

           

Vaccine  

Immunogenic Epitopes

Shared Immunogenic Epitopes

                    smallpox

vaccinia

Immunome-Derived Smallpox Vaccine: VennVax

Page 65: Introduction to Computational Vaccinology and iVAX by EpiVax

88%  of  predicted  T  cell  epitopes  confirmed  in  vitro  using  hu  PBMC  

20  

VennVax Class II Epitopes are Antigenic in Dryvax Vaccinees

Moise et al. Vaccine. 2009 27:6471-9

Page 66: Introduction to Computational Vaccinology and iVAX by EpiVax

Immunogenicity Day 56

1. epitope DNA vaccine prime (IM) 2. epitope peptide boost (IN)

Immunizations Days 0, 14, 28, 42

Challenge Day 65

VennVax Immunization in HLA DR3 Transgenic Mice

Moise L et al. Vaccine. 2011;29:501-11

Page 67: Introduction to Computational Vaccinology and iVAX by EpiVax

Survival  of  VennVax-­‐Vaccinated  Mice  Aqer  Aerosol  Challenge  

73  

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Perc

ent S

urvi

val

Day Post Immunization

Placebo

Vaccinated

DNA   DNA   boost   boost   Challenge  17%    

0 20 40 60 80 100

100%  survival  of  Vaccinated  mice  vs.  17%  of  placebo    

Moise et al. Vaccine. 2011; 29:501-11

Page 68: Introduction to Computational Vaccinology and iVAX by EpiVax

0

0.5

1

1.5

2

2.5

3

100 200 400 800 1600 3200 6400 12800

OD

490

1/Dilution Factor

Pre-challenge Placebo

Pre-challenge Vaccine

Post-challenge Placebo

Post-challenge Vaccine

Post-challenge

Pre-challenge

Protection Without Vaccine-Induced Antibodies

Page 69: Introduction to Computational Vaccinology and iVAX by EpiVax

Therapeutic H. pylori Vaccination

Week 0 Week 6 Week 12-19 Week 51

IFN-gamma and IL-4 ELISpot

Histology

1. epitope DNA vaccine prime IM 2. epitope peptide boost IN

H. pylori SS1

H. pylori SS1

H. pylori SS1

H. pylori SS1 lysate IN

1. epitope DNA vaccine prime IN 2. epitope peptide boost IN

1. control DNA prime IN 2. control peptide boost IN

H. pylori SS1

Page 70: Introduction to Computational Vaccinology and iVAX by EpiVax

IFN-gamma Secretion in Response to Splenocyte Restimulation following immunization

0

100

200

300

400

500

600

700

HP

4009

HP

4029

HP

4032

HP

4040

HP

4054

HP

4055

HP

4067

HP

4071

HP

4077

HP

4152

HP

4153

HP

4156

HP

4165

HP

4174

HP

4189

HP

4197

HP

4199

HP

POO

L 1

HP

POO

L 2

HP

POO

L 3

HP

4018

HP

4060

HP

4068

HP

4070

HP

4111

HP

4117

HP

4119

HP

4120

HP

4127

HP

4154

HP

4157

HP

4160

HP

4164

HP

4175

HP

4179

HP

POO

L 4

HP

POO

L 5

HP

POO

L 6

Con

A

SFC/

10̂6

over

bac

kgro

und

Average Helico-Vax

Average SS1

SS1 (whole lysate-immunized mice) recognized few epitopes (white bars); HelicoVax-immunized mice recognized 45 of 50 (dark bars). 45/50 were immunogenic.

HelicoVax: Broad Epitope Recognition

Page 71: Introduction to Computational Vaccinology and iVAX by EpiVax

Lysate pVAX DNA IM DNA IN

0

20

40

60

80

100

120

140

160

180

600

800

H. p

ylor

i qPC

R(S

SA/G

APDH

)

***  P<0.001  

**  P<0.01  

***  P<0.001  

HelicoVax Eradicates H. pylori Infection

This result accomplished in just over 24 months . . .

Moss et al, Vaccine 2011;29:2085-91

Page 72: Introduction to Computational Vaccinology and iVAX by EpiVax

Two Whole Gene Constructs –  Ebola Zaire GP –  VEEV 26S* –  subcloned into pWRG-7077

*Dupuy LC, Richards MJ, Ellefsen B, Chau L, Luxembourg A, Hannaman D, Livingston BD, Schmaljohn CS. A DNA Vaccine for Venezuelan Equine Encephalitis Virus Delivered by Intramuscular Electro-poration Elicits High Levels of Neutralizing Antibodies in Multiple Animal Models and Provides Protective Immunity to Mice and Nonhuman Primates. Clin Vaccine Immunol. 2011 Mar 30.

One Multi-Epitope Construct –  Ebola Zaire/Sudan GP epitopes –  VEEV 26S epitopes –  subcloned into pWRG-7077

VS.

VEEV IDV Development: Comparison with Whole Antigen Vaccine

Page 73: Introduction to Computational Vaccinology and iVAX by EpiVax

IFNγ ELISpot responses to VEEV peptide pools

VEEV E1 VEEV E2

Page 74: Introduction to Computational Vaccinology and iVAX by EpiVax

USAMRIID DR3 Mouse StudyVEEV Challenge Group ELISA

Day 56 Serum Samples

Neg Con Arm Pos Con Arm Vaccine Arm0

1

2

3

4

5

Log 1

0 Ti

ter

VEEV IDV Elicits Antibody Response

Negative Control

Negative Control

Whole Antigen Vaccine

Whole Antigen Vaccine

Epitope-Driven Vaccine

Epitope-Driven Vaccine

Page 75: Introduction to Computational Vaccinology and iVAX by EpiVax

VEEV IDV Protects Against Lethal Challenge

USAMRIID DR3 Mouse StudyVEEV Challenge Survival

0 5 100

102030405060708090

100Neg Con ArmPos Con ArmVaccine Arm

Days postchallenge

Perc

ent s

urvi

val

USAMRIID DR3 Mouse StudyVEEV Challenge Weights

0 1 2 3 4 5 6 7 8 9 10 11 12 1350

60

70

80

90

100 Neg Con ArmPos Con ArmVaccine Arm

Days Postchallenge

% M

ean

Star

ting

Wei

ght

Whole Antigen Negative Control

Epitope-Driven

Vaccine

Page 76: Introduction to Computational Vaccinology and iVAX by EpiVax

Negative Control

Whole Antigen Vaccine

Epitope-Driven Vaccine

T  helper  Epitopes   B  cell  epitopes  

Other?    CTL?    Th2?    

Subset of Th epitopes stimulate IFNγ secretion""Combination of immunogenic Th epitopes that overlap B cell epitopes???" "Contribution from other Th epitopes (stimulate other cytokines) that overlap with B-cell epitopes""""Th epitopes that stimulate different subpopulations""""What is clear: that whole Ag is not necessary for protection"

What Drives Protection?

Page 77: Introduction to Computational Vaccinology and iVAX by EpiVax

T  cells  =  Immune  System  Body  Armor  

T  cell  response  cannot  prevent  Infec<on  but  .  .  .    

T  cell  response  can  arm  against  Disease  

Page 78: Introduction to Computational Vaccinology and iVAX by EpiVax

The "New" Flu (H1N1 2009 California)

84  hOp://bit.ly/EpiPubs    

Page 79: Introduction to Computational Vaccinology and iVAX by EpiVax

2009  Worry:  CDC  –    No  Cross-­‐reac.ve  Ab  

•  Preliminary  studies  of  individuals  showed  that  an<bodies  induced  by  seasonal  influenza  vaccina<on  were  not  cross-­‐reac<ve  with  novel  H1N1.  

•  What  if  the  T  cell  epitopes  were  cross-­‐reac<ve?  Would  that  help?    

•  (Note  that  the  situa<on  is  very  similar  for  H7N9  –  no  cross-­‐reac<ve  an<body).    

   

Centers  for  Disease  Control  and  Preven<on.  Serum  an<body  response  to  a  novel  influenza  A  (H1N1)  virus  aier  vaccina<on  with  seasonal  influenza  vaccine.  MMWR  Morb  Mortal  Wkly  Rep  2009;58(19):521–4.    

85  hOp://bit.ly/EpiPubs    

Page 80: Introduction to Computational Vaccinology and iVAX by EpiVax

2009  H1N1  contains  conserved  epitope  Sequences  –  Predicted  Cross  Protec.on  

                               TIV    

2008-­‐2009  HA  and  NA  

 

Novel    H1N1  

HA  and  NA    

Conserved  T-­‐Cell  Epitopes  

Immunogenic    T  cell    

epitopes  

                               TIV    

2008-­‐2009  HA  and  NA  

 

Novel    H1N1  

HA  and  NA    

Conserved  T-­‐Cell  Epitopes  

Immunogenic    T  cell    

epitopes  

                               TIV    

2008-­‐2009  HA  and  NA  

 

Novel    H1N1  

HA  and  NA    

Conserved  T-­‐Cell  Epitopes  

Immunogenic    T  cell    

epitopes  

                               TIV    

2008-­‐2009  HA  and  NA  

 

Novel    H1N1  

HA  and  NA    

Conserved  T-­‐Cell  Epitopes  

Immunogenic    T  cell    

epitopes  

Conserved T-Cell

Epitopes

Immunogenic T cell

epitopes

De Groot et al. Vaccine 2009;27:5740-7

Enough  Cross-­‐protec<ve  Epitopes  that  Seasonal  Flu  vaccina<on  or  

exposure  may  protect  

86  hOp://bit.ly/EpiPubs    

Page 81: Introduction to Computational Vaccinology and iVAX by EpiVax

hOp://www.ncbi.nlm.nih.gov/pubmed/19660593  

EpiVax  Predicted  Cross-­‐Protec.on  

87  hOp://bit.ly/EpiPubs    

Page 82: Introduction to Computational Vaccinology and iVAX by EpiVax

1.00E+06  

1.00E+07  

1.00E+08  

Placebo   FluVax  2009  

Placebo   FluVax  2009  

PFU/m

l  

2  Days   4  Days  

*P=  0.002  

Immuniza.on  with  FluVax  cross-­‐conserved    T  cell  epitopes  decreases  lung  viral  load  

108  

107  

106  

Post-­‐Infec.on  

 A  handful  of  conserved  epitopes  protected  against  disease  

hOp://bit.ly/Moise_Universal_Flu  hOp://bit.ly/H1N1_DR3_2013  

90  hOp://bit.ly/EpiPubs    

Page 83: Introduction to Computational Vaccinology and iVAX by EpiVax

H1N1  Conclusions  

•  This work recapitulates other projects already completed: Complete protection using ONLY T cell epitopes (H. pylori, Tularemia, VennVax)

•  Results of our published studies demonstrate that conserved T cell epitope sequences, important to viral fitness, also may be immunologically significant contributors to protection against newly emerging influenza strains.

•  The conserved epitope approach promises to answer the need for prompt preparedness and delivery of a safe, efficacious vaccine without requiring a new vaccine for every emergent influenza strain.

hOp://bit.ly/Moise_Universal_Flu  hOp://bit.ly/H1N1_DR3_2013  

91  hOp://bit.ly/EpiPubs    

Page 84: Introduction to Computational Vaccinology and iVAX by EpiVax

What about H7N9?

92  hOp://bit.ly/EpiPubs    

Page 85: Introduction to Computational Vaccinology and iVAX by EpiVax

What  Can  We  Learn  About  H7N9?    Epitopes  Novel  or  Conserved?  

H7N9   Circula<ng  Flu  

As  it  turns  out  -­‐  -­‐  -­‐  Very  Poor  Cross-­‐Conserva<on  –  Only  within  Internal  Proteins  

93  hOp://bit.ly/EpiPubs    

Page 86: Introduction to Computational Vaccinology and iVAX by EpiVax

gB-2 (EPX Score: -24.56)

- 80 -

- 70 -

- 60 -

- 50 -

- 40 -

- 30 -

- 20 -

- 10 -

- 00 -

- -10 -

- -20 -

- -30 -

- -40 -

- -50 -

- -60 -

- -70 -

- -80 -

Thrombopoietin

Human EPO

Tetanus Toxin

Influenza-HA

Albumin

IgG FC Region

EBV-BKRF3

Fibrinogen-Alpha

Follitropin-Beta

HA  A/California/07/2009  (H1N1)  

HA  A/Victoria/361/2011  (H3N2)  

HA  A/Texas/50/2012    (H3N2)  

HA  A/Shanghai/1/2013  (H7N9)  .  .  .  .  .  .  .    ..  .  .  .  .  .  .  .  -­‐8.11  HA  A/mallard/Netherlands/09/2005  (H7N7)  .  .  .  .  .  .  -­‐8.63  

Random  Expecta.on  

HA  A/mallard/Netherlands/12/2000  (H7N3)  ..  .  .  .  .  .-­‐9.91  

HA  A/chicken/Italy/13474/1999  (H7N1)    .  .  .  .  .  .  .  .  .  -­‐6.23  

H7  HA  Immunogenic  Poten.al  

New  H7N9  Flu  is  Predicted  to  be  POORLY  IMMUNOGENIC  

hOp://bit.ly/H7N9_HVandI  

Page 87: Introduction to Computational Vaccinology and iVAX by EpiVax

This  is  a  unique  virus  

•  Low  conserva<on  of  HA,  NA  surface  proteins  is  not  surprising  

•  Internal  proteins  are  more  conserved  •  And  –  HA  is  has  unusually  low  immunogenicity  •  Could  that  explain  why  infec<on  is  widespread?  

•  Difficult  to  make  an<bodies  to  the  HA  

96  hOp://bit.ly/EpiPubs    

Page 88: Introduction to Computational Vaccinology and iVAX by EpiVax

Differen<al  Cross-­‐reac<vity  with  the  human  genome-­‐  significance?    

H1N1   H7N9  

97  hOp://bit.ly/EpiPubs    

New  and  unpublished:  The  “Classic  Epitope”  Is  much  more  cross-­‐conserve  with  the  human  genome  in  the  case  of  H7N9.  

Page 89: Introduction to Computational Vaccinology and iVAX by EpiVax

This  is  a  unique  virus  

•  Unusually  low  immunogenicity  •  Cross-­‐reac<vity  with  human  genome  •  How  do  we  overcome  this  problem?  

98  hOp://bit.ly/EpiPubs    

Page 90: Introduction to Computational Vaccinology and iVAX by EpiVax

99  hOp://bit.ly/EpiPubs    

Page 91: Introduction to Computational Vaccinology and iVAX by EpiVax

•  EpiMatrix – maps T cell epitopes •  ClustiMer - Promiscuous / Supertype Epitopes •  BlastiMer - Avoiding “self” - autoimmunity •  Conservatrix – Identifies Conserved Segments •  EpiAssembler - Immunogenic Consensus Sequences •  Aggregatrix – Optimizing the coverage of vaccines •  VaxCAD - Processing and Assembly

Immunoinforma.cs  Toolkit  

Seamless  Vaccine  Design  

 Integrated  toolkit  is  

unique  to  iVax  

100  hOp://bit.ly/EpiPubs    

Page 92: Introduction to Computational Vaccinology and iVAX by EpiVax

FastVax: Vaccines on demand

•  High throughput computing

•  Immunoinformatics

•  Vaccine design algorithms

•  Vaccine Production

•  Delivery device

•  Animal safety/tox/immunogenicity/validation

•  Deployment by established distribution systems

Prebuilt  

 Rapid  deployment  when  genome  

sequence  is  in  hand    

Pilot  program    Funded  by  DARPA  

101  hOp://bit.ly/EpiPubs    

Page 93: Introduction to Computational Vaccinology and iVAX by EpiVax

20  hours  -­‐  April  05  –  April  06  2013  Extremely  Rapid  H7N9  Vaccine  Design  

April  05,  2013:  Obtain  H7N9  Sequences  (4  human-­‐sourced;  GISAID)    

EpiMatrix  Analysis:  Iden<fica<on  of  H7N9  Class  I  and  Class  II  Epitopes  

101  H7N9  ICS*  Class  II  Epitopes  +  586  Class  I  Epitopes      

April  06,  2013:  H7N9  Vaccine:  Two  Constructs,  Class  I  and  Class  II  

Eliminate  Epitopes    highly  conserved  with  Human  Design  vaccine:  12  hours  (Logged).  

Compare  with  previous  epitopes  (IEDB)  And  other  H7N9  strains;  create  final  list  20  hours  (Logged).  

Obtain  all  available    H7N9  sequences  

102  hOp://bit.ly/EpiPubs    

Page 94: Introduction to Computational Vaccinology and iVAX by EpiVax

Regulatory  Agency  approval  

As  Currently  Proposed  with  Genome-­‐derived  Epitope-­‐driven  Influenza  Vaccines  (R21  /  NIAID  /  NIH)  

Gedng  FastVax  into  the  clinic:  4  Steps  

1.  In  silico  Design  

2.  Produc<on  and  Packaging  

3.  Clinical  Trial  

(correlates  of  immunity)  

4.  Deployment  

Emergency  use  authoriza<on  

104  hOp://bit.ly/EpiPubs  

Page 95: Introduction to Computational Vaccinology and iVAX by EpiVax

H7N9  at  EpiVax  

•  String-­‐of-­‐epitopes  DNA  vaccine  (Doug  Lowrie)  •  String-­‐of-­‐epitopes  Phage  vaccine  (Ft.  Detrick)  •  Op<mized  HA  (fix  epitopes)  recombinant  (TBD?)  

•  Op<mized  HA  +  epitope  string  VLP  (Ted  Ross)  •  Collabora<on  with  NIID/Japan  –  in  progress  

EpiVax  Contacts:    Anthony  Marcello,  BDA,  [email protected]    Anne  S.  De  Groot  CEO/CSO  [email protected]  

105  

Page 96: Introduction to Computational Vaccinology and iVAX by EpiVax

DNA  –  chain  of  epitopes,  or  pep<de  in  liposomes   ICS-­‐op<mized  proteins  in  VLP  ICS-­‐op<mized  whole  proteins  

H7N9 Delivery vehicles

Page 97: Introduction to Computational Vaccinology and iVAX by EpiVax

And  .  .  .  Cancer,  Allergy  and  Autoimmune  Disease?  

107  107  

•  Cancer  Vax  =  Epitopes  +  Adjuvant  +  ?    

•  Tregitope  =  Novel  “adjuvant”  that  induces  tolerance  

•  Allergy  Vax  =  Epitopes  +Tregitope+Delivery  vehicle  

•  Autoimmunity  Vax=  AutoAg+Tregitope+Del.  vehicle  

•      Payload+Adjuvant+  Delivery  vehicle  =  Vaccine  

Page 98: Introduction to Computational Vaccinology and iVAX by EpiVax

•  Why Computational Immunology •  Tools to Produce IDVs

– Antigen selection – Vaccine design –  New concepts

•  Case Studies •  . . . Questions?

108  

Outline

Page 99: Introduction to Computational Vaccinology and iVAX by EpiVax

EpiVax:  Four  Core  Strengths  

Confiden<al  

Contact:  Anthony  Marcello,  BDA,  [email protected]