Introduction to Automated Computational Modelling · Symbolic ⇧(u) r = programming @u K = @r @u...

2
Introduction to Automated Computational Modelling COURSE May 8 th , 9-11 Aula 8, Polo Nuovo Via Ferrata, 3 – Pavia The seminar will introduce basic notions of Automated Computational Modelling. Applications for the solution of nonlinear problems and the analysis of nonlinear constitutive laws will be shown. The lecture will conclude with a brief overview of the potentialities in the context of Finite Elements Michele Marino, PhD, MSc, Group Leader “Predictive Simulations in Biomechanics” Institute of Continuum Mechanics Leibniz Universität Hannover, Germany Università degli Studi di Pavia Computational Mechanics & Advanced Materials Group - DICAr Symbolic programming (u) Theory r = @@u , K = @r @u Numeric

Transcript of Introduction to Automated Computational Modelling · Symbolic ⇧(u) r = programming @u K = @r @u...

Page 1: Introduction to Automated Computational Modelling · Symbolic ⇧(u) r = programming @u K = @r @u (1) 1 Theory ⇧(u) r = @⇧ @u, K = @r @u (1) 1 Numeric 10 20 30 40 X 10 20 30 40

Introduction to Automated Computational Modelling

CO

UR

SE

May 8th, 9-11Aula 8, Polo Nuovo

Via Ferrata, 3 – Pavia

The seminar will introduce basic notions of Automated ComputationalModelling. Applications for the solution of nonlinear problems and theanalysis of nonlinear constitutive laws will be shown. The lecture willconclude with a brief overview of the potentialities in the context of FiniteElements

Michele Marino, PhD, MSc,Group Leader “Predictive Simulations in Biomechanics”Institute of Continuum MechanicsLeibniz Universität Hannover, Germany

Università degli Studi di PaviaComputational Mechanics & Advanced Materials Group - DICAr

Symbolicprogramming⇧(u) r =

@⇧

@uK =

@r

@u(1)

1

Theory⇧(u) r =

@⇧

@u, K =

@r

@u(1)

1

Numeric

10 20 30 40X

10

20

30

40

50

60

Y

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 tn t un hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 un, tn u, t hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 tn t un hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 un, tn u, t hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 h = [ghg hg =

0

@"p↵�

1

A

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

Page 2: Introduction to Automated Computational Modelling · Symbolic ⇧(u) r = programming @u K = @r @u (1) 1 Theory ⇧(u) r = @⇧ @u, K = @r @u (1) 1 Numeric 10 20 30 40 X 10 20 30 40

Symbolicprogramming⇧(u) r =

@⇧

@uK =

@r

@u(1)

1

Theory⇧(u) r =

@⇧

@u, K =

@r

@u(1)

1

Numeric

10 20 30 40X

10

20

30

40

50

60

Y

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 tn t un hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 un, tn u, t hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 tn t un hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0 un, tn u, t hgn

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 hg =

0

@"p↵�

1

A h = [ghg

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

Qg(u,hg) = 0

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

" = "e + "p f(�, q) < 0 f(�, q) = 0

f(�, q) = �vm(�)� (�yo � q)

("e,↵) =1

2"e · C"e +

1

2H↵2

� =@

@"e, q =

@

@↵

"̇p = �̇@f

@�, ↵̇ = �̇

@f

@q

�̇ � 0 , f(�, q) 0 , �̇f = 0

R(u,h) = 0 h = [ghg hg =

0

@"p↵�

1

A

Qg(u,hg) =

0

@Q✏(u,hg)Q↵(u,hg)Q�(u,hg)

1

A =

0

@"p � "pn � (�� �n)n�

↵� ↵n � (�� �n)nq

f(�, q)

1

A = 0 n� =@f

@�nq =

@f

@q

�hg = A�1g Qg|u,hg hg ! hg +�hg

Ag =@Qg

@hg

�u = K�1totR|u,h u ! u+�u

Ktot =@R

@u+

@R

@h⌦ @h

@u

@h

@u= �

✓@Q

@h

◆�1 @Q

@u

2

6666666666664

K11 K12 0 · · · 0

K21 K22 K23 0...

.... . .

. . .. . .

...0 · · · 0 Kk k�1 Kk k Kk k+1 0 · · · 0...

. . .. . .

. . ....

... Knn�1 Knn Knn+1

0 · · · 0 Kn+1n Kn+1n+1

3

7777777777775

0

BBBBBBBBBBBBBBBB@

u1......

uk�1

ukuk+1......

un+1

1

CCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

f1......fk......

fn+1

1

CCCCCCCCCCCCA

4

Automated Computational Modelling for the Finite Element Method

CO

UR

SE

May 8th, 11-13 May 9th, 9-11 & 11-13

Aula MS1, DICArVia Ferrata, 3 – Pavia

This seminar will introduce to applications of Automated ComputationalModelling for Finite Element problems. Starting from standard linear elasticproblems, lectures will guide through the generalization to mixedformulations in linear elasticity and to nonlinear problems in finite strainkinematics. The lecture will conclude with a brief overview on approachesfor material nonlinearities, such as elasto-plasticity

Michele Marino, PhD, MSc,Group Leader “Predictive Simulations in Biomechanics”Institute of Continuum MechanicsLeibniz Universität Hannover, Germany

Università degli Studi di PaviaComputational Mechanics & Advanced Materials Group - DICAr