INTRODUCTION - Diagramas dediagramas.diagramasde.com/otros/GCE-8481B Manual de Servicio.pdf · of...

60
3 INTRODUCTION FEATURES 1. General 1) Enhanced IDE interface. 2) Internal 5.25 inch, halfheight CD-R/RW Drive. 3) 2Mbytes buffer memory. 4) Audio CD like tray loading of a disc without using a caddy. 5) Power loading and power ejecting of a disc. The disc can also be ejected manually. 6) Supports Power saving mode and Sleep mode. 7) Vertical and Horizontal operation. 8) SuperLink Function. 2. Supported disc formats 1) Reads and writes data in each CD-ROM, CD-ROMXA, CD-I FMV, Video CD, and CD-EXTRA 2) Reads data in Photo CD (Single and Multi session). 3) Reads and writes standard CD-DA. 4) Reads and writes CD-R discs conforming to “Orange Book Part 2”. 5) Reads and writes CD-RW discs conforming to “Orange Book Parts 3”. 3. Supported write method 1) Disc at once (DAO), Session at once (SAO), Track at once (TAO), Variable packet, Fixed packet, and Multi-session. 4. Performance 1) Random 100 ms average access time. 2) CD-R Record speed : 8X, 12X, 16X, 22X~40X (PCAV), 48X CAV. 3) CD-RW Record speed : 4X, 10X, 12X, 16X, X24(PCAV). 4) CD-ROM : Max 7,200 KB/s(Max 48x) Sustained Transfer rate. 5) Supports real time error correction and real time layered error correction at each speed. 6) PIO Mode 4, Multi DMA Mode 2, UDMA Mode 2. 7) Multimedia MPC-3 Spec compliant. 8) Support CD-TEXT read/write. 5. Audio 1) Output 16 bit digital data over ATA interface. 2) 8 Times Digital Filter for CD Audio 3) Software Volume Control 4) Equipped with audio line output and headphone jack for audio CD playback. 5) Front panel Volume Control for Headphone Output. This service manual provides a variety of service information. It contains the mechanical structure of the CD- R/RW Drive and the electronic circuits in schematic form. This CD-R/RW Drive was manufactured and assembled under our strict quality control standards and meets or exceeds industry specifications and standards. This CD-R/RW drive is an internal drive unit designed for use with IBM PC, HP Vectra, or compatible computer. It can write as much as 700 Mbytes of digital data into CD-R/RW disc, and can read as much as 650 Mbytes of digital data stored in a CD-ROM, CD-R and CD-RW disc. This CD-R/RW Drive can easily meet the upcoming MPC level 3 specification, and its Enhanced Intelligent Device Electronics (E-IDE) and ATAPI interface allows Plug and play integration in the majority of today’s PCs without the need of an additional interface card.

Transcript of INTRODUCTION - Diagramas dediagramas.diagramasde.com/otros/GCE-8481B Manual de Servicio.pdf · of...

3

INTRODUCTION

FEATURES

1. General1) Enhanced IDE interface.2) Internal 5.25 inch, halfheight CD-R/RW Drive.3) 2Mbytes buffer memory.4) Audio CD like tray loading of a disc without using a caddy.5) Power loading and power ejecting of a disc. The disc can also be ejected manually.6) Supports Power saving mode and Sleep mode.7) Vertical and Horizontal operation.8) SuperLink Function.

2. Supported disc formats1) Reads and writes data in each CD-ROM, CD-ROMXA, CD-I FMV, Video CD, and CD-EXTRA2) Reads data in Photo CD (Single and Multi session).3) Reads and writes standard CD-DA.4) Reads and writes CD-R discs conforming to “Orange Book Part 2”.5) Reads and writes CD-RW discs conforming to “Orange Book Parts 3”.

3. Supported write method1) Disc at once (DAO), Session at once (SAO), Track at once (TAO), Variable packet, Fixed packet, and

Multi-session.

4. Performance1) Random 100 ms average access time.2) CD-R Record speed : 8X, 12X, 16X, 22X~40X (PCAV), 48X CAV.3) CD-RW Record speed : 4X, 10X, 12X, 16X, X24(PCAV).4) CD-ROM : Max 7,200 KB/s(Max 48x) Sustained Transfer rate.5) Supports real time error correction and real time layered error correction at each speed.6) PIO Mode 4, Multi DMA Mode 2, UDMA Mode 2.7) Multimedia MPC-3 Spec compliant.8) Support CD-TEXT read/write.

5. Audio1) Output 16 bit digital data over ATA interface.2) 8 Times Digital Filter for CD Audio 3) Software Volume Control4) Equipped with audio line output and headphone jack for audio CD playback.5) Front panel Volume Control for Headphone Output.

This service manual provides a variety of serviceinformation.It contains the mechanical structure of the CD-R/RW Drive and the electronic circuits inschematic form. This CD-R/RW Drive wasmanufactured and assembled under our strictquality control standards and meets or exceedsindustry specifications and standards.This CD-R/RW drive is an internal drive unitdesigned for use with IBM PC, HP Vectra, or

compatible computer. It can write as much as 700Mbytes of digital data into CD-R/RW disc, and canread as much as 650 Mbytes of digital data storedin a CD-ROM, CD-R and CD-RW disc.This CD-R/RW Drive can easily meet theupcoming MPC level 3 specification, and itsEnhanced Intelligent Device Electronics (E-IDE)and ATAPI interface allows Plug and playintegration in the majority of today’s PCs withoutthe need of an additional interface card.

LOCATION OF CUSTOMER CONTROLS

6

1. Disc trayThis is the tray for the disc. Place the disc on theejected disc tray, then lightly push the tray (orpush the eject button) and the CD will be loaded.NOTE: Don’t pull out or push in the disc trayforcibly. This might cause damage to the loadingsection of the drive.

2. Stop/Eject buttonThis button is pressed to open the CD tray.This button works only when power is supplied tothe drive.If an Audio CD is playing, pressing this button willstop it, and pressing it again will open the tray.

3. Emergency Eject HoleInsert a paper clip here to eject the Disc traymanually or when there is no power.

4. Volume controlThis is used to adjust the output volume of theheadphone jack. It can’t be used to adjust theoutput volume for the audio output connectors onthe rear panel.NOTE : Turn the volume down before turning onthe power. Sudden loud noises can damage yourhearing.

5. Headphone jackThis jack is for connecting headphones or mini-speakers.

6. Drive activity indicator(Read/Write)Two colored LED is used to indicate the operationof CD-R/RW Drive.

Headphone Jack

VolumeControl

Drive Activity Indicator

Stop/Eject Button

Disc Tray

Emergency Eject Hole

Front Panel

7

1. Power ConnectorConnects to the power supply (5-and 12-V DC) ofthe host computer.NOTE : Be careful to connect with the properpolarity. Connecting the wrong way may damagethe system (and is not guaranteed). Usually thisconnector can only be attached one-way.

2. IDE Interface ConnectorConnect to the IDE (Integrated DeviceElectronics) Interface using a 40-pin flat IDEcable.NOTE : Do not connect or disconnect the cablewhen the power is on, as this could cause a shortcircuit and damage the system. Always turn thepower OFF when connecting or disconnecting thecable.

3. Jumper ConnectorThis jumper determines whether the drive isconfigured as a master or slave. Changing themaster-slave configuration takes effect afterpower-on reset.

4. Analog Audio Output ConnectorProvides output to a sound card (analog signal).Generally you need this to play a regular audioCD.

5. Digital Audio Output ConnectorProvides output to a sound card (digital signal).

DIGITAL

AUDIO

ANALOG

AUDIO

INTERFACE

POWER

D G

3940

1+5 GND +12

2

C S MS L AR G L

Digital Audio OutputConnector

Jumper Connector

Analog Audio Output Connector IDE Interface Connector

Power Connector

Rear Panel

TROUBLESHOOTING GUIDE

Power check (Malfunction of LED and Tray).

52

Check the connection of 5V, 12V.Check the Reset (Pin 170, 122 of

IC101, pin2 of IC401).Check the input of oscillation (pin

109 of IC401).

Check SCLK, SDATA, XLAT (pin 122, 123, 124 of IC401).

1. Connect only the power cable

BD7907FS6Ch Servo DRIVE

MT1516RF AmpWobbleALPC

General port useEEPROM access

MT1508

DSPDecoderEncoder

ATIP DemodulatorWrite Strategy

Write S/H SignalI / F

Micro Processor

33.8688MHz

IC 101

IC 501 IC 103

IC 401

IC 102

3.3 V

Reset

12V 5V

AT49F002N512KB

Flash ROM

IC 50241

109

44

2

54

31

3

32

10 19 20

31

32

30

44 51 IC 202

2 170 PRST‘ L ’

122/ HRST‘ H ’

74 75

MCLK

55‘ H ’

/XRST

SDRAM

123

124

122

63

62

65SCLK

SDATA

XLAT

CN 100

MT1518

AT49F040

53

Check the Reference voltage(+/- 10%).

Check VC (1.4V) of Drive IC (pin27 of IC501).

Check voltage of VREF(1.4V)(pin 53 of IC101, pin 27 of IC501).

Check voltage of 2VREF(2.8V)(pin 52 of IC101).

Check HAVC/PDVC(2.0V)(pin 34 of IC401, pin 13 of CN201).

Check FVREF/FPDVC (2.8V) (pin 52 of IC401, pin22 of CN201).

Check FPDO(2.8V)(pin 54, 65 of IC401).

BD7907FS6Ch Servo DRIVE

MT1516 RF Amp Wobble ALPC

General port use EEPROM access MT1518

DSPDecoderEncoder

ATIP DemodulatorWrite Strategy

Write S/H SignalI / F

Micro Processor

IC 101

IC 501

CN 201

2.5 V

NJM3414

IC 503

76

75

32

1

IC 506

3

VHAVC

2VREF522.8 V

V28

IC 401

76 VREF531.4 V

V14

27

2

1.4 VVC

OpticalPick-upKRS-340B

LDDrive

17 28 76 134 1803.3 V

34

13

74

52

22

2.0 V

2.8 V

HAVC

VFVREF

FVREF

FPDVC

19FPDO 54

65

FPDO

FPDOLP

PDVC

20

FPDVcc

5 V

2.8V

54

Check the initial operation(Power-on state)

• Check the operating signal of Sled(pin 28, 29 of IC501 : SLIN1, 2).

• Check the output signal of Sled(pin 34, 35, 36, 37 of IC501).

• Check /SLEDIN_SW. (pin 104 of IC401).

• Check the control signal of DriverIC(pin 22, 23 of IC501).

• Check the power of DRIVE ICand VC.

Check SCLK, SDATA, XLAT (pin 122, 123, 124 of IC401).

Sled move to inside.

Spindle motor rotate.

Laser On. Check the Laser.

• Check the Spindle signal(pin 24 of IC501 : SPIN).

• Check FG input(pin 20 of IC101).

• Check the Hall signal(pin 1, 2, 3, 4, 5, 6 of IC501).

Check the operation of FocusFocus up / Down.

Laser Off / Spindle Stop.

BD7907FS6Ch Servo

DRIVE

MT1518DSPI / F

Micro Processor

IC 101

IC 501

FMO

271.4 V

VC

2021FG FG

2524SPIN DMO

18

11

9

OpticalPick-upKRS-340B

STEP Motor

SpindleMotor

65

4

23

CTL2

22

CTL1

29SLIN2

28SLIN1

373635

3

21

U

V

W

HU+ , HU-

7HB

B+ A- A+

27

26

FMO2

MT1516ALPC

General port use

IC 401

102101

123

124

122

63

62

65SCLK

SDATA

XLA T

DR

V-M

UT

E2

DR

V-M

UT

E1

HV+ , HV-

HW+ , HW-

,

,

,

34

B-

104

(From pin 1 of CN402)

/SLEDIN_SW

2 times iteration

55

1. Waveform when Sled moves to inside

SLIN1/SLEDINSW

A+

2. Waveform of Spindle rotation

HU+HV+HW+

3. Waveform of Spindle Kick

SPINFGU

Zoom in wave

Zoom in wave

Zoom in wave

Zoom in wave

When the sled moves to the inner position,the sine wave(refer to Fig1) inputs toSLIN1/SLIN2 (the input pins of drive IC).When Pick-Up unit approached to innermostposition, the /SLEDINSW signal(CN402 pin 1)becomes 0 V.The output pins A+ ,A-, B+, B- of the drive IC isPWM waveform and drives the Stepping Motor.

The output signal of Hall(HU+, HU-, HV+, HV,HW+, HW-) comes from a Hall sensor of spindlemotor and they were inputted to pin 1, 2, 3, 4, 5, 6of drive IC(BD7907FS) via CN402. When spindlemotor rotate, HU+, HW+, HV+ signals aregenerated in a regular order with 1200 phase delayeach other.(Refer Fig 2)

If waveforms of HU+, HU-, HV+, HV-, HW+, HW-different from Fig 2, check the pin 7(HB signal) ofdrive IC. The HB signal must be about 5V.

Wave of U,V,W assigned to pin 9,11,18 of DriveIC is a PWM waveform and they drive Spindlemotor.When spindle motor rotate, U/W/V signals aregenerated in a regular order with 1200 phase delayeach other. (Refer Fig 3)

If waveforms different from Fig 3, check pin27(VC), pin 51(VCC), pin22(CTL1), pin23 (CTL2),R514, R512, R510, R511.

When spindle kick, refer to Fig 4.

Fig.1

Fig.2

Fig.3

Fig.4

56

Check Tray operation.

Check /EJECT KEY (pin 11 of IC101).

Check the output signal of tray(pin 49, 50 of IC501).

Check the LED.

Check operating signal of tray(pin 26 of IC501).

• Check the control singal of Drive IC(pin 22, 23 of IC501).

• Check the power of DRIVE IC andVC.

Check operating signal of LED (pin96, 98 of IC401).

Check SCLK, SDATA, XLAT (pin122, 123, 124 of IC401).

Check operation S/W of tray(/OPEN SW:pin 94 of IC401/LOAD SW : pin 95 of IC401).

M

Tray Motor

MT1516 RF Amp

General port use

IC 401

123

124

122SCLK

SDATA

XLA T

MT1508

DSPDecoderEncoder

I / F

Micro Processor

IC 101

SW103

DETECTOR-TRAY

63

62

65

FR

ON

T

BD7907FS6Ch Servo DRIVE

IC 501

22

101

DRV-MUTE2 DRV-MUTE1

CTL2CTL1

271.4 V

VC

2426LDIN

49

50

SW102

EJECT-SW

11

2

1

94

95

/OPEN_SW

/LOAD_SW

TRAY -

TRAY +

PWMOUT

/EJECT_KEY

LED102

LED101

96

98

Q802

Q801

LED1

LED2

23

102MT1518

57

Check identification of Drive.

Check the connection of ATAPIcable.

Check the communication betweenPC and MT1518 (IC101).

Check SDRAM. (IC102)

Check Flash ROM (IC103).

2. Connection of Power and ATAPI cable

MT1508

DSPDecoderEncoder

ATIP DemodulatorWrite Strategy

Write S/H SignalI / F

Micro Processor

HOST

8MBSDRAM

I/Fcable

Address

Data

IC 101IC 103

IC 102

AT49F002N512KB

Flash ROM

33.8688MHz

74 75

Address

Data

Pin no. Pin name Pin no. Pin name39 DASP GND 4037 CS1 CS3 3835 DA0 DA2 3633 DA1 PDIAG 3431 INTRQ IO16 3229 DMACK GND 3027 IORDY CSEL 2825 IOR GND 2623 IOW GND 2421 DMARQ GND 2219 GND KEY 2017 HD0 HD15 1815 HD1 HD14 1613 HD2 HD13 1411 HD3 HD12 129 HD4 HD11 107 HD5 HD10 85 HD6 HD9 63 HD7 HD8 41 /HRST GND 2

CN101(ATAPI)

SDRAM

MT1518AT49F040

58

Check the identification of CD-ROM Disc (insert Disc).

Check the operation of Focus.

Check the operation of Tracking.

Check the Jump action.

• Check the drive signal of FCS-/+(pin 1, 2 of CN201).

• Check drive input signal of Focus(pin 53 of IC501 : FCIN).

• Check the input signal of FE(pin 42 of IC101 : FEI).

• Check the input signal of SBAD(pin 38 of IC101).

• Check the input signal of CSI (pin41 of IC401).

• Check the input signal of RFZC (pin60 of IC101 : HRFZC).

• Check the drive signal of TRK+/-(pin 3, 4 of CN201).

• Check the signal of Tracking (pin 52 of IC501 : TKIN).

• Check the signal of SLED(pin 28, 29 of IC501 : SLIN1, 2).

• Check control signal of Drive IC(pin 22, 23 of IC501: CTL1,2).

• Check power and VC of DRIVE IC.

Check signal of A~H (pin 39, 38, 37,36, 30, 31, 32, 33 of IC401).

Check the input signal of TE(pin 40 of IC101 : TEI).

In case of Focus Up/Down

MT1516 RF Amp

General port use

IC 401

123

124

122SCLK

SDATA

XLA T

MT1518

DSPDecoderEncoder

I / FMicro Processor

IC 101

63

62

65

BD7907FS6Ch Servo

DRIVE

IC 501

DRV-MUTE2

DRV-MUTE1CTL2

CTL1

271.4 V

VC

45TEO

40

43CSI

41

49SBAD

38

NJM3404

7

IC 505

1

52

53

6

2

23

22

OpticalPick-upKRS-340B

45 46

1 2

47 48

3 4

FC

S-

FC

S+

TR

K+

TR

K-

22

23

101

102

FCIN

TKIN

FOO

TRO

FOSO

TRSO

A ~ D

E ~ H

CN 201

TEI

CSI

SBAD

42FEO

42 FEI

FMO

29SLIN2

28SLIN1

27

26

FMO2

126RFZC

60 HRFZC

59

4. Operation of Focus Up/Down

FESBADFCS+

5. Waveform of Track Following

6. Waveform of Track Jump

TE

EQRF

CE

SLIN1

7. Waveform of Spindle Servo On

SPIN

FG

U

Zoom in wave

Focus Search Focus Servo On

Zoom in wave

Zoom in wave

Waveform of Focus Search refer to Fig 5.In Focus Search, FE signal and SBAD signal areused to Focus Servo On.Therefore, in case of Focusing Fail, check the FEsignal and SBAD signal.

Waveform of Track Following(Sequential Read)refer to Fig 6.By Sled Servo, SLIN1, SLIN2 (pin 28, 29 of DriveIC) drive the Sled Motor(Stepping Motor) forlocating the lens on the center axis of Pick-up.

Waveform of Track Jump refer to Fig 7.Center level of TE,CE is 1.4V.SLIN1, SLIN2 signal (pin 28, 29 of Drive IC)assume the form of Pulse. And they drive the SledMotor(Stepping Motor).RFZC(RF Ripple Zero Cross) signal is Pulse formand it lags behind TE signal 900.

To maintain constant rpm(CAV) or l inearvelocity(CLV), the drives control spindle motor.The Fig 8 shows the waveforms when spindleservo is on.

TERFZC

CESLIN1

Fig.5

Fig.6

Fig.7

Fig.8

60

Check RF and Spindle(Insert CD-ROM Disc).

Check the identification of CD-R Disc(Insert Blank CD-R).

Check the identification of CD-RWDisc (Insert Blank CD-R).

Check EQRF input signal(pin 45 of IC101)

Check the signal of A~H (pin 39, 38,37, 36, 30, 31, 32, 33, of IC401)

Check the operation signal of Spindle(pin 24 of IC501).

Check SCLK, SDATA, XLAT (pin 122, 123, 124 of IC401).

Check FG input(pin 20 of IC101).

Check the input signal of ATFG(pin 69 of IC101).

• Check the control signal of Drive IC(pin 22, 23, of IC501).

• Check power/VC of DRIVE IC.

BD7907FS6Ch Servo

DRIVE

MT1518

DSPDecoderEncoder

I / F

ATIP Demodulator

Micro Processor

IC 101

IC 501

271.4 V

VC

2021FG FG

2524SPIN DMO18

11

9

OpticalPick-upKRS-340B

STEP Motor

SpindleMotor

65

4

23

CTL2

22

CTL1

3

21

U

V

W

HU+ , HU-

7HB

MT1516RF AmpWobble

General port use

IC 401

102101

123

124

122

63

62

65SCLK

SDATA

XLA T

HV+ , HV-

HW+ , HW-

,

,

,

A ~ D

E ~ H

DRV-MUTE2 DRV-MUTE1

116 69ATFG

21EQRF

45

61

Check point of Writing

Check the compatibility betweenDrive and Tool.

Check Disc state (Fingerprint,Scratch, Dust...).

Check whether or not additionalwriting is allowed.

(Given in the Disc Info of writing tool)

Check whether or not Disc iswriteable (CD-R/CD-RW).

MT1516

ALPC

EEPROM access

MT1508

DecoderEncoder

Micro Processor

IC 101

110 EEP-CS IC 401

107 EEP-SDATA

123

124

122

63

62

65SCLK

SDATA

XLA T

108 EEP-CLK

AT93C862KB

EEPROM

IC 2031

4DO

CS

3DI

2SLK

(ALPC initial value before ‘Laser Power Setting’)

MT1518

Check Laser 1(Check EEPROM)

Activate ‘Addition Func.’ window inTest Tool(GGOOM6).

Execute ‘S/N’ (Identify SerialNumber).

Execute ‘ALPC Parameters’(Identify ALPC Parameters).

Check the communication lineof EEPROM.

Execute ‘C. Laser Powersetting’ in Test Tool(GGOOM6).

Check whether or not ‘ALPCParameters is initial value.

NG

NG

OK

62

Check Laser 2 (No disc).

Execute ‘E.ALPC Test for AS’ inTest Tool (GGOOM6) (select‘VRDC Loop’, and ‘Trigger’).

E

E

Check Read Laser

Initial value of FPDO : 2.8V +/- 10%.

OFF LEVEL.

VRDC LEVEL FPD.

Execute ‘D. Laser Inspection’ inTest Tool (GGOOM6).

Check the input of ENBL(pin 33 of CN201 : ‘H’).

Check the input of VRDC(pin 25 of CN201 : 0.4~0.8V).

Check the input of FPDO (pin 54,65 of IC401 : FPDO~0.1V).

• Check the input of RLDON(pin 128 of IC401 : ‘H’).

• Check SCLK, SDATA, XLAT(pin 122, 123, 124 of IC401).

Check Reference voltage.

NG

F

NG

G

VWDC1 LEVEL FPD.

VWDC2 FPD.

MT1516

ALPC

MT1518

DecoderEncoder

Write StrategyWrite S/H Signal

Micro Processor

IC 101CN 201

5 ENBL

IC 401

OpticalPick-upKRS-340B

LDDrive

33

0.4~0.8V

19FPDO 54

65

FPDO

FPDOLP

ENBL

FPDO-0.1V

123

124

122

63

62

65SCLK

SDATA

XLAT6325 VRDCOVRDC

128 57RLDON

H

H

63

Execute ‘E.ALPC Test for AS’ inTest Tool(GGOOM6) (Select

‘CD-R Rec Mode’, and ‘Trigger’)

FInspection of CD-R Recording Laser

Execute ‘E. ALPC Test for AS’ inTest Tool (GGOOM6) (Select

‘CD-RW Rec Mode’, and‘Trigger’)

GInspection of CD-RW writing Laser

Chect input of ENBL(pin 33 of CN201 : ‘H’).

• Check input of VWDC1(pin 26 of CN201 : 0.4~1.0V).

• Check input of VWDC2 (pin 27 of CN201 : 0.1~0.5V).

• Check input of WLDON(pin 27 of IC401 : ‘H‘)

• Check SCLK, SDATA, XLAT(pin 122, 123, 124 of IC401)

MT1516

ALPC

MT1518

DecoderEncoder

Write Strategy Write S/H Signal

Micro Processor

IC 101

CN 201

5 ENBL IC 401OpticalPick-upKRS-340B

LDDrive

33

1330

0.4~1.0V

WXRWXR

19FPDO 54

65

FPDO

FPDOLP

ENBL

123

124

122

63

62

65SCLK

SDATA

XLAT

6226 VWDC1OVWDC1

6127 VWDC2OVWDC20.1~0.5V

1531 ODONODON

127 58WLDON

WXR

ODON

FPDO

CD-R Recording Pulse

CD-RW Recording PulseWXR

ODON

FPDO

H

H

• Check input of WXR(pin 30 of CN201 : Pulse)

• Check input of ODON(pin 31 of CN201 : Pulse)

Check input of FPDO(pin 54, 65 of IC401 : Pulse).

Initial value of FPDO :2.8V/-10%)

64

Check Audio signal(Insert Audio Disc).

Identify playback of Audio Disc(Play Mode).

Check Output signal of AUIO L/R(pin 51, 54 of CN100).

Check Output signal of AUDIOL/R (pin 165, 167 of IC101).

Check Output signal of /AUD-MUTE (pin 103 of IC401).

Check SCLK, SDATA, XLAT (pin 122, 123, 124 of IC401).

Check Output signal of AUDIOL/R (pin 1, 7 of IC801).

Check Input signal of AUDIO L/R(pin 3, 5 of IC801).

Check Input signal of /AUD-MUTE (pin 3 of IC801).

Output of Headphone

MT1516 RF Amp

General port use

MT1508DSP

DecoderEncoder

I / FMicro Processor

IC 101

BH3544F

AUDIO AMP

IC 801 103

IC 401

LO165

RO167

AUDIO Line Out

51 54

CN 100

JK101

H-JACK

SB

3

5

3

AudioMute

Circuit

1

7

123

124

122

63

62

65SCLK

SDATA

XLAT

L-CH R-CH

ROUT

LOUT

ROUT

LOUT

/AUD-MUTE

ROUT

LOUT

MUTE

FRONT

MT1518

65

A. Start1. Install GCE-8481B -> PC Power ON -> Execute Windows.2. Execute GGOOM6.exe on Windows (GGOOM6.exe & GGOOM6.cfg should be on the same Directory).3. If you use GCE-8481B, “GGOOM6(Ver x.xx)” will be displayed on the Window Frame.4. Select I/F Setup on the menu bar.5. Select ATAPI I/F and then Click OK.6. Select Target Select on the menu bar.7. Select Number of Host(#0 or #1) appropriately, then “GCE-8481B” displays on Target Device. 8. Select “GCE-8481B” on Target Device, and then Click OK.

B. Check ALPC Parameters1. Select VIEW on the menu bar. 2. Click Addition Func. on VIEW window -> New frame will be displayed.3. Click ALPC Para tab.

[ALPC Parameters]1) CD-R READ Reference DAC : 60 ~1852) CD-RW READ Reference DAC : 60 ~1853) VWDC1 : 200 ~ 2964) VWDC1 Offset : 30 ~ 175 5) VWDC2 : 499 ~7876) VWDC2 Offset : -55 ~ 75

4. Close Calibration window.

• How to use Test Tool (GGOOM6)

[I/F Setup Menu] [Target Select window]

[ALPC Parameters Menu][Additional Function Menu]

C. Laser Power Setup (VWDC / VWDC 1, 2 re-setup)1. Remove disc on the tray.

2. Select ALPC/OPC on the menu bar, and then select Laser Power Setup menu.

3. Setup LD Power meter (Frequency :780nm, Measure Range : 0.01mW unit).

4. Click VRDC button on the Laser Power Setup window. Laser beam will be emitted from LD.

5. Measure LD Power with LD Power meter. Type the result in the blank(Read Power box).

[Ex] 2.11mW ->211

6. Click VWDC1 button and follow above step 5. But VWDC1 result should be filled in the Write Power box.

[Ex] 19.32mW ->1932

7. Click Setup button, and result will be displayed with OK or NG.

8. Close Laser Power Setup window.

66

[Laser Power Setup window]

[Laser Power Setup Frame] [Laser Power Setup Result]

67

[Laser Inspection]

[Laser Power Test Frame] [Laser Power Test Result]

D. Laser Inspection (VRDC/VWDC1, 2 FPD & Level check)1. Remove disc on the Tray.2. Select ALPC/OPC on the menu bar and select Laser Inspection menu, then Laser Power Test window

will appear.3. Click Trigger button, then the result will be displayed with OK or NG separately.4. Close Laser Power Test window.

68

[ALPC Test For AS]

[ALPC Test Mode]

E. ALPC Test for AS1. Remove disc on the Tray.2. Select ALPC/OPC on the menu bar and select ALPC Test for AS menu, then window will appear.3. Select specific mode of ALPC Test mode and click Trigger button, then LD will be on.4. Implement test like measuring LD Power.5. Click Stop button, then LD Off .

* Caution : Laser beam is emitted continuously on the VRDC Loop and CW Power Test.Pulse_Type Laser output like real writing is emitted on the CD-R Rec Mode and CD-RW Rec Mode.

71

BD

7907FS

6Ch

Servo

DR

IVE

MT

1516R

F A

mp

Wo

bb

leA

LP

CG

eneral po

rt use

EE

PR

OM

access

MT

1518

DS

PD

ecod

erE

nco

der

AT

IP D

emo

dulato

rW

rite Strateg

yW

rite S/H

Sig

nal

I / F

Micro

Pro

cessor

Au

dio

Mu

teC

ircuit

HOST

33.868MH

zO

pticalP

ick-upK

RS

-340B

SD

RA

M2M

B

I/Fcab

le

Data

Address

ST

EP

Motor

FC

ST

RK

Spindle

Motor

Writing

Pulse

Servo S

/H,

Write S

/H S

ignal

Data, C

lock, XLA

TR

eset

Lin

e Ou

t

L,R

AT

93C86

2KB

EE

PR

OM

EQ

RF

,R

RF

,F

EI,T

EI,C

SI

DM

O

FO

OT

RO

SL

O

Address/

Data

PW

M o

ut

F P

DA

BC

DE

FG

HIC

401

IC 101

IC 501

IC 103

IC 102

Au

dio

L,R

3.3 V

Reset

5V

12V

IC 203

AT

49F002N

512KB

Flash

RO

M

LD

Drive

VW

DC

VR

DC

2.5 V

FG

M

Tray M

oto

r

Drive M

ute

LE

D C

on

trol

Mech

anism

S/W

Detect

Functional Block Diagram

AT

49F040

MAJOR IC INTERNAL BLOCK DIAGRAM AND PIN DESCRIPTIONIC401 (MT1516) : CD-R/RW Analog Signal Processor

Block Diagram

36

A P C

RFZC1M

CLK

D IG.R E G .

M P X 1

M P X 2

VCON

RR

FX

AD

BC

O

BC

O

AD

O

FPDOX

TELP

MPPO

SPPO

DRCLP

RFRP

MP

X1

TZC

MP

X2

MPX1

ASH

BSH

DSH

ESH

CSH

FSH

GSH

HSH

MP

X2

MP

X2B

VW

DC

2O

VW

DC

1O

VR

DC

O

W R E F 1V W D C 1

V W D C 1 N

F P D O L P

F V R E FF P D O

R R E FV R D C

V R D C N

RF

PD

SH

WF

PD

SH

RLD

ON

WLD

ON

FPDOX

R R F

RR

FX

EQ

RF

GAINUP

SE

RV

SH

WB

LSH

AD

BC

O

AD

OB

CO

FE

O

MP

PO

SB

AD

O

SP

PO

S /H&

M AT R I XR O P C

F ED R C O 2

C ET ES B A DTEIN

R F Z C

S H P CR F Z C 1 V CS H B C

DEFECT

DataSlicer

RE

CD

IN

TEFE

CE

SBADOLP

INA

INB

INC

IND

HAVC

INA

INB

INC

IND

HAVC

INA

INB

INC

IND

HAVC

E Q R F

VC

ON

GAINUP

EQRF

RF

SU

M

MP

XO

UT

1

VR

EF

MP

X

AV D D 1AV S S 1AV D D 2AV S S 2AV D D 3AV S S 3AV D D 4AV S S 4AV D D 5AV S S 5AV D D 6AV S S 6AV D D 7AV S S 7AV D D 8AV S S 8AV D D 9AV S S 9

S DATAX L AT

S C L K DRCSO

DRCMO

SLP

FN

SLP

FP

XD

EF

MD

EF

M

RR

FX

LP

H11

T

I NH

ING

INF

INE

D R C O

INA

HAV

C

IND

INB

INC

T R O P E NT R AYO U T #

TRAYIN#L E D 1L E D 2

LIMIT#F R

E N D MM U T E

S BD E V S E L

E E P _ S DATAE E P _ S C L K

E E P _ C SE N B L

GIO1~GIO7

GeneralI /O

S U B G N D

T R C L O S E

ATIP

10-BitA D C

S E RVO&

Detect ion

SBAD

A S P R E Q

OS

TC

CR

FAG

CC

EQ

BIA

SE

QR

F

RO

PC

CR

OP

CO

AU X 2AU X 3

AU X 1W

RF

SU

M

RR

F

WR

F

RFZC1

TZC

Vol tageRef & DAC

VD

AC

1V

DA

C0

VR

EF

VF

VR

EF

V14

VH

AVC

V28

P /BDetect

x1

MP

XO

UT

2MPX2B

X R S T

DV

SS

2D

VD

D2

DV

SS

1D

VD

D1

S B A D L P

RE

CD

IN/R

RF

SU

M

RR

FX

LPR

RF

/WR

F

ATFMX

FPDO

ROPCO

RFAGCC

FVREF

VRDCB

VWDC1B

WREF1

VRDCO

RREF

WRFSH

AUX1AUX2

AUX3

VWDC1OVWDC2O

VD

AC

0

ATF

G

ATF

M

AG

C3C

AG

C2C

AG

C1C

WB

LCLK

37

• Pin Assignment

Pin Numbers

Symbol Type Description

RF Signals & S/H Control Pulses

36 INA Analog Input Input of Main Beam Signal (A) 37 INB Analog Input Input of Main Beam Signal (B) 38 INC Analog Input Input of Main Beam Signal (C) 39 IND Analog Input Input of Main Beam Signal (D) 30 INE Analog Input Input of Side Beam Signal (E) 31 INF Analog Input Input of Side Beam Signal (F) 32 ING Analog Input Input of Side Beam Signal (G) 33 INH Analog Input Input of Side Beam Signal (H) 34 HAVC Analog Input Reference Voltage Input of Main and Side Beams (2.0V)

120 SERVSH Digital Input (TTL),

SMT S/H Control Pulse of Main and Side Beam Signals

118 WBLSH Digital Input (TTL),

SMT S/H Control Pulse of Wobble Signal

Focus/Tracking Error & Servo Control Signals

40 DRCO Analog Output Output of Differential Radial Contrast (DRC) Signal 41 DRCO2 Analog Input Re-Input of Differential Radial Contrast (DRC) Signal 42 FE Analog Output Output of Focusing Error Signal 45 TE Analog Output Output of Tracking Error Signal 43 CE Analog Output Output of Center Error Signal 49 SBAD Analog Output Output of SBAD Signal 44 TEIN Analog Input Input of Out-of-Track Detection Circuit 50 SBADLP Analog Input Input of SBAD Signal after LPF for DEFECT Detection 46 SHPC Analog Output External Capacitor Connection for Peak Hold of RFRP Signal 47 RFZC1VC Analog Output Reference Voltage for RFRP Peak/Bottom Hold 48 SHBC Analog Output External Capacitor Connection for Bottom Hold of RFRP Signal

126 RFZC Digital Output

(TTL), 4 mA Driving Output of RF Zero Crossing Binary Signal

EQRF (RF Equalizer Filter and Data Slicer) Circuit

19 RFSUM Analog Input Input of RF Summing Signal from PUH to EQRF Block 11 EQBIAS Analog Output External Bias Connection for Circuits in EQRF Block

13 OSTCC Analog Output External Capacitor Connection for Offset Cancellation Circuit of Equalizer Output

16 RFAGCC Analog Output External Capacitor Connection for RF AGC in EQRF Block 21 RFOUT Analog Output Output of RF EFM Signal after Equalizer Filter

4 DEFM Digital Output

(TTL), 6 mA Driving Binary Output of EFM Signal after Slicing (Positive)

3 XDEFM Digital Output

(TTL), 6 mA Driving Binary Output of EFM Signal after Slicing (Negative)

8 SLPFP Analog Input Input ( ) of Auto Slicing Level 9 SLPFN Analog Input Input of Auto Slicing Level

RRF & ROPC (Running OPC) Related Signals

22 RECDIN/ RRFSUM

Analog Input (1). Input of RF Signal for Recorded Area Detection (2). Input of Read RF Summing Signal from PUH to RRF Block

70 RRFXLP Analog Output Low Pass Output of RRF Signal

38

Pin Numbers

Symbol Type Description

24 RRF/WRF Analog Output (1). Output of Read RF (RRF) Signal (2). Output of Write RF (WRF) Signal

26 WRFSUM Analog Input Input of Write RF (WRF) Summing Signal to ROPC Block 27 ROPCO Analog Output Output of Amplified B-Level of Write RF Signal 28 ROPCC Analog Input Vin(-) of Amplifier for Sampled B-Level of WRF Signal

125 H11T Digital Input (TTL),

SMT S/H Control Pulse of WRF Signal

ATIP (Absolute Time In Pre-groove) 81 AGC1C Analog Output External Capacitor Connection for AGC1 in ATIP Block 82 AGC2C Analog Output External Capacitor Connection for AGC2 in ATIP Block 83 AGC3C Analog Output External Capacitor Connection for AGC3 in ATIP Block 85 ATFM Analog Output Output of Analog Wobble Signal

116 ATFG Digital Output

(TTL), 4mA Driving Digital Output of Wobble Signal after Slicing

114 WBLCLK Digital Input (TTL),

SMT External Clock Input for Wobble BPF (SCF)

APC (Auto Power Control for Laser)

54 FPDO Analog Input Input of Laser Monitor Voltage 65 FPDOLP Analog Input Input of Laser Monitor Voltage after Low Pass Filtering 52 FVREF Analog Input Reference Voltage of APC Loops

128 RLDON Digital Input (TTL) Laser Diode Control for Read Mode 127 WLDON Digital Input (TTL) Laser Diode Control for Write Mode

112 RFPDSH Digital Input (TTL),

SMT S/H Control Pulse for Read APC Mode

111 WFPDSH Digital Input (TTL),

SMT S/H Control Pulse for Write APC Mode

55 RREF Analog I/O (1). Input of Power Setting Voltage for Read APC; (2). Output of Read APC Reference Voltage Generated by Built -in DAC

59 VRDCN Analog Input Vin(-) of Midcourse Amplifier for Read APC Loop 58 VRDC Analog Output Midcourse Output of Laser Diode Controlling in Read Mode 63 VRDCO Analog Output Output Voltage of Laser Diode Controlling in Read APC

53 WREF1 Analog I/O (1). Input of Power Setting Voltage for Write APC 1; (2). Output of Write APC Reference Voltage Generated by Built-in DAC

57 VWDC1N Analog Input Vin(-) of Midcourse Amplifier for Write APC 1 56 VWDC1 Analog Output Midcourse Output of Laser Diode Controlling in Write APC 62 VWDC1O Analog Output Output Voltage of Laser Diode Controlling in Write APC 61 VWDC2O Analog Output Output Voltage 2 of Laser Diode Controlling in Write APC

Reference Voltages & DACs 75 VHAVC Analog Output Output of Voltage Reference (2.0V) 78 VREF Analog Output Output of Voltage Reference (2.0V) 77 V14 Analog Output Output of Voltage Reference (1.4V) 76 V28 Analog Output Output of Voltage Reference (2.8V) 74 VFVREF Analog Output Output of Voltage Reference (2.5V~3.0V) 69 VDAC0 Analog I/O Output of General Purposed 8-Bit DAC (0V ~ 2.0V) 51 VDAC1 Analog Output Output of General Purposed 10-Bit DAC (0V ~ 4V)

MPXOUT (Multiplexer Circuit for Various Signals) and Testing Interface 68 AUX1 Analog Input Auxiliary Input 1 for Signal Monitoring 67 AUX2 Analog Input Auxiliary Input 2 for Signal Monitoring 66 AUX3 Analog Input Auxiliary Input 3 for Signal Monitoring

39

Pin Numbers

Symbol Type Description

71 MPXOUT1 Analog Output Multiplexer Output 1 for Signal Monitoring 72 MPXOUT2 Analog Output Multiplexer Output 2 for Signal Monitoring

Serial Interface & Other Digital Control Signals

1 ASPREQ Digital Output

(TTL), 4 mA Driving ASP request signal output to MT1508 to send control signals via serial interface.

122 SCLK Digital Input (TTL),

SMT Clock Input for Register Setting

123 SDATA Digital I/O (TTL),

4 mA Driving Data Input/Output for Register Setting

124 XLAT Digital Input (TTL),

SMT Latch Input for Register Setting

2 XRST Digital Input (TTL),

SMT Digital Input for Register Resetting

109 MCLK Digital Input (TTL),

SMT Digital Input of Main Clock

95 TRAYIN# Digital Input (TTL), 50K Pull-Up, SMT

Tr n Input, A Logical Low Indicates the Tray is IN. Feedback Flag from Tray Connector.

94 TRAYOUT# Digital Input (TTL), 50K Pull-Up, SMT

Tr Input. A Logical Low Indicates the Tray is OUT. Feedback Flag from Tray Connector.

99 LIMIT# Digital Input (TTL), 50K Pull-Up, SMT

Sledge Inner Limit Input, Active Low.

106 DEVSEL Digital Input (TTL), 50K Pull-Up, SMT

Device Select. Cleared to ZERO Indicates the Driver is Master Device. Set to ONE Indicates the Driver is Slave Device.

100 FR Digital Input (TTL), SMT Spindle Motor Reverse Detection Input.

93 TROPEN Digital Output (TTL), 4 mA Driving Tray Open Output. Initial Output.

92 TRCLOSE Digital Output (TTL), 4 mA Driving Tray

96 LED1 Digital Output (TTL), 4 mA Driving LED Control Output. Initial Output.

98 LED2 Digital Output (TTL), 4 mA Driving LED Control Output. Initial Output.

101 ENDM Digital Output

(TTL), 4 mA Driving Enable/Disable Disk Motor. A Logical High Enables Disk Motor. Initial Output.

102 MUTE Digital Output (TTL), 4 mA Driving Servo Control Power Driver Enable Output. Initial Output.

103 SB Digital Output (TTL), 4 mA Driving Spindle Motor Short Break Control Output. Initial Output.

110 EEP_CS Digital Output (TTL), 4 mA Driving EEPROM Chip Select Output.

108 EEP_SCLK Digital Output (TTL), 4 mA Driving EEPROM Transmit Clock Output.

107 EEP_SDATA Digital I/O (TTL), 50K Pull-Down, 4mA Driving

EEPROM Transmit Data Input/Output.

5 ENBL Digital Output

(TTL), 4 mA Driving

Laser Diode Enable Signal Output

40

88 GIO1

Digital I/O (TTL), 50K Pull-Up, 4 mA Driving

(1). General I/O 1 for Mass Production Use (Initial Input Mode) (2). Output of Internal Digital Signal ( VWDC1 )

Pin Numbers

Symbol Type Description

89 GIO2 Digital I/O (TTL),

50K Pull-Up, 4 mA Driving

(1). General I/O 2 for Mass Production Use (Initial Input Mode) (2). Output of Defect Detection Signal ( DEFEC )

90 GIO3 Digital I/O (TTL), 50K Pull-Down, 4 mA Driving

(1). General I/O 3 for Mass Production Use (Initial Input Mode) (2). Output of the State of Seeking ON Control Setting

91 GIO4 Digital I/O (TTL), 50K Pull-Down, 4 mA Driving

(1). General I/O 4 for Mass Production Use (Initial Input Mode) (2). Output of Internal Digital Signal ( )

104 GIO5 Digital I/O (TTL),

50K Pull-Up, 4 mA Driving

(1). General I/O 5 for Mass Production Use (Initial Input Mode) (2). Output of Out-of-Track Detection Signal

105 GIO6 Digital I/O (TTL),

50K Pull-Up, 4 mA Driving

(1). General I/O 6 for Mass Production Use (Initial Input Mode) (2). Output of Out-of-Track Detection Signal ( XTOR )

119 GIO7 Digital I/O (TTL),

50K Pull-Up, 4 mA Driving

(1). General I/O 7 for Mass Production Use (Initial Input Mode) (2). Output of Recorded Area Detection Signal ( RECD1

Power Supplies 86 , 87 SUBGND Analog Ground Ground Pin for Substrate Bias of Internal Digital Circuitry

29 AVDD1 Analog Power Power Pin for Internal Analog Circuitry (5V) 35 AVSS1 Analog Ground Ground Pin for Internal Analog Circuitry 60 AVDD2 Analog Power Power Pin for Internal Analog Circuitry (5V) 64 AVSS2 Analog Ground Ground Pin for Internal Analog Circuitry 80 AVDD3 Analog Power Power Pin for Internal Analog Circuitry (5V) 84 AVSS3 Analog Ground Ground Pin for Internal Analog Circuitry 20 AVDD4 Analog Power Power Pin for Internal Analog Circuitry (5V) 18 AVSS4 Analog Ground Ground Pin for Internal Analog Circuitry 23 AVDD5 Analog Power Power Pin for Internal Analog Circuitry (5V) 25 AVSS5 Analog Ground Ground Pin for Internal Analog Circuitry 79 AVDD6 Analog Power Power Pin for Internal Analog Circuitry (5V) 73 AVSS6 Analog Ground Ground Pin for Internal Analog Circuitry 10 AVDD7 Analog Power Power Pin for Internal Analog Circuitry (5V)

6 , 7 AVSS7 Analog Ground Ground Pin for Internal Analog Circuitry 14 AVDD8 Analog Power Power Pin for Internal Analog Circuitry (5V) 12 AVSS8 Analog Ground Ground Pin for Internal Analog Circuitry 15 AVDD9 Analog Power Power Pin for Internal Analog Circuitry (5V) 17 AVSS9 Analog Ground Ground Pin for Internal Analog Circuitry

121 DVDD1 Digital Power Power Pin for Internal Digital Circuitry (5V) 117 DVSS1 Digital Ground Ground Pin for Internal Digital Circuitry 113 DVDD2 Digital Power Power Pin for Digital I/O Pads Buffer Circuitry (5V) 115 DVSS2 Digital Ground Ground Pin for Digital I/O Pads Buffer Circuitry

IC101(MT1518) : CD-R/RW Encoder/Decoder/Write Strategy / DSP /Interface /Micro Processor

Block Diagram

41

r

AD

GO

LOD

AC

VR

EF

RO

FOOTROFMO

PWMOUT

DM

AR

QIO

RDY

INTR

QIO

CS

16#

UP

3_7/

UR

D#

UA

LE

UP

3_6/

UW

R#

RA[11:0]RAS#CAS#CASH#/RWEH#RWE#ROE#CLKCKEDQMBA(1:0)

PRST#

PDMVDDPWM2VREF

PWMVREFPDMVSS

DA

CV

DD

DA

CV

SS

SRVADCVDDFEITEI

TEZILPTEI

HRFZC

RD[15:0]

UP

0[7:

0]/U

AD

[7:0

]

HR

ST

#D

IOW

#D

IOR

#D

MA

CK

#H

A[2

:0]

CS

1FX

#C

S3F

X#

HD

[15:

0]P

DIA

G#

DA

SP

#

TEST

8032Micro-controller

Key/LEDInterface

3KSRAM

EJECT#/STOP#PLAY#/PAUSE#

Host Interface

ATAPIPacketFIFO

HostDataFIFO

AudioDigital Out

CDROMHigh-speed

Audio Playback

ResetLogic

CDROMSync

DetectionDescrambler

CIRCError Corrector

RFZC/TEZCCircuit

PDM &PWM DAC

VaripitchCLV ClockGenerator

EFMDemodulator

SubcodeDemodulator

Servo DSP

UA

16/U

P1_

0

UP

SE

N#

UP

2_7~

UP

2_0

UA

[7:0

]

UP

3_5~

UP

3_4

UR

ST

UP

3_1~

UP

3_0

CLV/CAVController

Audio/EffectInterface

Audio DAC

PWM DAC

BufferMemory

Controller

ServoADC

C3Encoder

Sync.ProtectionData

PLL

DataSlicer

DPLLVDDIREF

LPFIN

DPLLVSSLPFIP

LPFON

LPIONLPFOP

LPIOP

DMO

FG

VPVDDVCOCINVPVSS

ENDM

C3Decoder

CIRC EncoderEFM modulatoin

Subcode generator

SystemClock

Generator

ASPControl

Interface

Write StrategyInterface

Logic

Servostatus

detectioncircuit

SC

OP

RFI

NR

FIP

RF

DT

SLV

NR

FD

TS

LVP

SC

ON

EFMPLL(efmclk

synthesizer)

SD

ATA

SD

EN

SLC

KX

RS

T#

WS

R_O

DO

N

WS

R_W

XR

WS

R_C

FR

EQ

FLA

G_O

UT

1F

LAG

_OU

T2

RLD

ON

SE

RV

SH

WB

LSH

WF

PD

SH

RF

PD

SH

WLD

ON

H11

T

Laser PowerControlLogic

OPC/ROPCComputation

Unit

Time toDigital

Converter

FLA

G_O

UT

1

FM Demodulator& Bi-Phase data

Demodulator

ATIP Sync Protection &CRC check &

Target MSF Search

WobbleSpindleControl

Wobble SignalInterface Logic

ATF

G

WB

LCLK

EF

MV

CO

IN

EF

MP

LLV

SS

EF

MP

LLV

DD

EF

MLP

FG

ND

XTALIIPLLVDDIPLLVSS

XTALO

systemclock

DMU

UP

3_2/

UN

IT0#

UP

3_3/

UIN

T1#

UA

17/U

P1_

1U

A18

/UP

1_2

FMO2

SRVADCVSS

CSISBAD

42

Pin Numbers Symbol Type Description

Data PLL Interface (9)

29 DPLLVDD Analog Power(3.3V) Power supply for data PLL and related analog circuitry. 30 LPIOP Analog Output Data PLL VCO DAC positive output. 31 LPION Analog Output Data PLL VCO DAC negative output. 32 LPFOP Analog Output The positive output of loop filter amplifier. 33 LPFIN Analog Input The negative input terminal of loop filter amplifier. 34 LPFIP Analog Input The positive input terminal of loop filter amplifier. 35 LPFON Analog Output The negative output of loop filter amplifier. 36 IREF Analog Input Current reference input. It generates reference current for data

PLL. Connect an external 15K resistor between this pin and PLLVSS.

37 DPLLVSS Ground Ground pin for data PLL and related analog circuitry.

Signal Amplifier Interface (13)

38 SBAD Analog Input Sub-beam add input (E+F+G+H). 39 TEZILP Analog Input Tracking error zero crossing low pass input. 40 TEI Analog Input Tracki ng error input. 41 CSI Analog Input Central servo input. 42 FEI Analog Input Focus error input. 43 SRVADCVSS Ground Ground pin for servo ADC circuitry. 44 RFIN Analog Input RF negative signal input. 45 RFIP Analog Input RF positive signal input. 46 SRVADCVDD Analog Power(3.3V) Power supply for servo ADC circuitry. 47 RFDTSLVN Analog Input Negative input for analog slicer. 48 SCOP Analog Output Positive low pass filter output for analog slicer. 49 SCON Analog Output Negative low pass filter output for analog slicer. 50 RFDTSLVP Analog Input Positive input for analog slicer.

Turbo 8032 Interface (37)

171 UP3_7 / URD#

3.3V LVTTL I/O, Slew rate, SMT,

4mA driving, 75K pull-up

Programmable bi-directional I/O. Alternate function : RD#. Data write signal.

172 UP3_6 / UWR#

3.3V LVTTL I/O, Slew rate, SMT,

4mA driving, 75K pull-up

Programmable bi-directional I/O. Alternate function : WR#. Data write signal.

173 UP3_3 / UINT1#

3.3V LVTTL I/O, Slew rate,

4mA driving, 75K pull-up

Programmable bi-directional I/O. Alternate function : INT1#. External interrupt 1.

174 UP3_2 / UINT0#

3.3V LVTTL I/O, Slew rate,

4mA driving, 75K pull-up

Programmable bi-directional I/O. Alternate function : INT0#. External interrupt 0.

• Pin Description

43

175 UP3_1 / UTXD

3.3V LVTTL I/O, Slew rate,

4mA driving, 75K pull-up

Programmable bi-directional I/O. Alternate function : TXD. Serial transmit data.

176 UP3_0 / URXD

3.3V LVTTL I/O, Slew rate,

4mA driving, 75K pull-up

Programmable bi-directional I/O. Alternate function : RXD. Serial receive data.

177 UALE 3.3V LVTTL I/O, Slew rate, SMT,

4mA driving, 75K pull-up

Address latch enable output during internal µP mode, active high. And as address latch enable input during ICE mode.

178 UPSEN# 3.3V LVTTL I/O, Slew rate, SMT,

4mA driving, 75K pull-up

Programmable store enable output during internal µP mode, active low. UPSEN# enables the external ROM output port. And as input during ICE mode.

189,188,186, 185,184,182,

181,179

UA[7:0] 3.3V LVTTL output, Slew rate,

2mA, 4mA, 6mA 8mA PDR, 75K pull-up

Lower address bus output for external device. Alternate function : Internal monitored signal output.

190,192,193, 194,195,197,

198,199

UP2_[7:0] / UA[15:8]

3.3V LVTTL I/O, Slew rate,

2mA, 4mA, 6mA 8mA PDR, 75K pull-up

Programmable bi-directional I/O. Alternate function : A[15:8]. Upper address bus input/output.

191 FLASH_WE# 3.3V LVTTL output, 4mA driving

Flash memory write enable signal output, low active.

200 UP1_1 /UA17

3.3V LVTTL I/O, Slew rate,

2mA, 4mA, 6mA 8mA PDR, 75K pull-up

Programmable bi-directional I/O. Alternate function : A17. Address bit 17 output.

201 UP1_0 / UA16

3.3V LVTTL I/O, Slew rate,

2mA, 4mA, 6mA 8mA PDR, 75K pull-up

Programmable bi-directional I/O. Alternate function : A16. Address bit 16 output.

202 FLASH_CS# 3.3V LVTTL I/O, 4mA driving, 75K pull-up

Flash memory chip select signal output, low active.

203,204,3, 4,5,6,8,9

UP0_[7:0] / UAD[7:0]

3.3V LVTTL I/O, Slew rate,

2mA, 4mA, 6mA 8mA PDR

Programmable bi-directional I/O. Alternate function : AD[7:0]. Lower address/data bus output for external device.

205 UP1_2 /UA18

3.3V LVTTL I/O, Slew rate,

4mA driving, 75K pull-up

Programmable bi-directional I/O. Alternate function : UA18. Address bit 18 output.

Motor and Actuator Driver Interface (11)

20 FG 3.3V LVTTL Input, SMT, 75K pull-up

Motor Hall sensor input.

44

22 FOO Analog Output Focus servo output. PDM output of focus servo compensator. 23 TRO Analog Output Tracking servo output. PDM output of tracking servo

compensator. 24 PWMOUT Analog Output General purpose PWM output. 25 DMO Analog Output Disk motor control output. PWM output. 26 FMO Analog Output Feed motor control. PWM output. 27 FMO2 Analog Output Feed motor 2 control. PWM output. 51 PDMVDD Analog Power(3.3V) Power supply for PDM circuitry. 52 2VREF Analog input 2.90 V reference voltage input. 53 VREF Analog input 1.45 V reference voltage input. 54 PDMVSS Ground Ground for PDM circuitry.

Mega Interface (2)

11 EJECT# 3.3V LVTTL I/O, 75K pull-up, 4mA driving

Eject/stop key input, active low.

12 PLAY# 3.3V LVTTL I/O, 75K pull-up, 4mA driving

Play/pause key input, active low.

NC (3)

155 NC 156 NC 157 NC

IPLL VCO Interface (2)

104 IPLLVDD Analog power(3.3V) Power supply for IPLL circuitry. 105 IPLLVSS Ground Ground pin for IPLL circuitry.

EFMPLL VCO Interface (4)

207 EFMPLLVDD Analog power(3.3V) Power supply for EFMPLL circuitry. 208 EFMVCOCIN Analog input EFMPLL VCO input. For external loop filter connection. 1 EFMLPFGND Analog input EFMPLL LPF ground input. 2 EFMPLLVSS Ground Ground pin for EFMPLL circuitry.

Audio Output Interface (1)

163 ADGO 3.3V LVTTL I/O, Slew rate,

75K pull-up, 4mA, 8mA driving

Digital Audio Output. The signal is the Digital Audio Output which supplies the IEC-958 digital audio data. Alternate function : HRST_ extension selection input during power-on stage (PRST falling edge). A logical low input indicates raw HRST_ is used. A logical high input indicates extended HRST_ is used.

Internal Audio DAC Interface (5)

164 AUDACVSS Ground Ground pin for internal audio DAC circuitry. 165 LO Analog Output Left channel of audio. 166 DACVREF Analog Output Reference voltage for external audio filter circuit. 167 RO Analog Output Right channel of audio. 168 AUDACVDD Analog Power(3.3V) Power supply for internal audio DAC circuitry.

45

Write Strategy Interface (5)

13 WXR 3.3V LVTTL output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

Laser diode write power control output. (Write/Read mode SW signal)

15 ODON 3.3V LVTTL output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

Laser diode over drive control output. (Over drive control SW signal)

16 OUT1/OSCEN 3.3V LVTTL output, Slew rate,

8mA driving

Internal flag output. Include : “WSR_OSCEN” signal

18 OUT2/CMOD 3.3V LVTTL output, Slew rate,

8mA driving

Internal flag output. Include : “WSR_CMOD” signal

19 CFREQ 3.3V LVTTL output, Slew rate,

8mA driving

Frequency selection signal output.

Write strategy & ASP transmission Interface (16)

55 XRST# 3.3V LVTTL output, 4mA driving

RF reset output. Active low.

56 ASPREQ 3.3V LVTTL Input, SMT, 75K pull-down

ASP request signal input from MT1516 to get RECD1, XTOR, DEFECT automatically.

57 RLDON 3.3V LVTTL I/O, 75K pull-down,

4mA driving

Read laser diode on control signal. Alternate function : ICE mode selection input during power-on stage (PRST falling edge). A logical low input indicates internal µP is used. A logical high input indicates external µP is connected.

58 WLDON 3.3V LVTTL output, 4mA driving

Write laser diode on control signal.

60 HRFZC 3.3V LVTTL Input, SMT, 75K pull-up

High frequency RF ripple zero crossing input.

61 H11T 3.3V LVTTL output, Slew rate,

8mA driving

EFM 11T indicator for ROPC sampling.

62 XLAT 3.3V LVTTL output, 4mA driving

Latch signal output for RF register setting.

63 XDATA 3.3V LVTTL I/O, Slew rate,

75K pull-down, 4mA driving

Data signal output for RF register setting.

65 XCLK 3.3V LVTTL output, Slew rate,

8mA driving

Carrier clock signal output for RF register setting.

66 SERVSH 3.3V LVTTL output, 2mA, 4mA, 6mA,

8mA, 10mA, 12mA, 14mA, 16mA PDR

Sample pulse for servo signal (main beam/ side beam)

46

68 WBLSH 3.3V LVTTL output, 2mA, 4mA, 6mA,

8mA, 10mA, 12mA, 14mA, 16mA PDR

Sample pulse for wobble signal.

69 ATFG 3.3V LVTTL Input, SMT

Digital wobble signal (22.05 ± 1 K Hz) input

70 WBLCLK 3.3V LVTTL output, Slew rate,

4mA driving

Wobble processing clock (432.18K Hz) output for MT1516.

71 RFPDSH 3.3V LVTTL output, 2mA, 4mA, 6mA,

8mA, 10mA, 12mA, 14mA, 16mA PDR

Sample pulse control signal for RF read APC.

72 WFPDSH 3.3V LVTTL output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

Sample pulse control signal for RF write APC.

206 WRSTOP 3.3V LVTTL Input, SMT, 75K pull-down

Write procedure stop control input.

Miscellaneous Interface (4)

169 TEST_MODE 3.3V LVTTL input, 75K pull-down

Test mode, active high

170 PRST 3.3V LVTTL Input, SMT

Power on reset input, high active.

74 XTALO Output X`tal output. 75 XTALI Input X`tal input. The working frequency is 33.8688 MHz.

Host Interface (31)

122 HRST# 3.3V LVTTL Input, SMT, 75K pull-up

Host reset input. The active-low input is referred to as hardware reset and is used to reset this chip.

142,140,138, 135,132,130, 127,124,123, 125,128,131, 133,136,139,

141

HD15 ~ HD0 3.3V LVTTL I/O, Slew rate, SMT,

4mA, 6mA, 8mA, 12mA PDR,

40K(15K) PPU, 40K (15K)PPD

Host Data bus. This is the 8-bit or 16-bit bi-directional data bus to the host. The lower 8 bits, HD0–HD7, are used for 8-bit data transfers. Normally, data transfers are 16-bit wide. Note : All pins except HD7 (no any pull) may be selectively pull-up or pull-down with 40K resistant.(HD6~HD0 is 15K)

144 DMARQ 3.3V LVTTL output, 12mA driving

DMA request. This signal is used for DMA data transfers between host and device and it shall be asserted by the MT1518 when it is ready to transfer data to or from the host. The direction of data transfer is controlled by DIOR# and DIOW#.

145 DIOW# 3.3V LVTTL Input, SMT, 40K pull-up

Device I/O write. Stop ultra DMA burst. For Device I/O Write, this signal is the strobe signal asserted by the host to write device register or the data port. For Stop Ultra DMA, this signal shall be negated by the host before data is transferred in an Ultra DMA burst and is asserted by host during an Ultra DMA burst to signal the termination of Ultra DMA burst.

47

68 WBLSH 3.3V LVTTL output, 2mA, 4mA, 6mA,

8mA, 10mA, 12mA, 14mA, 16mA PDR

Sample pulse for wobble signal.

69 ATFG 3.3V LVTTL Input, SMT

Digital wobble signal (22.05 ± 1 K Hz) input

70 WBLCLK 3.3V LVTTL output, Slew rate,

4mA driving

Wobble processing clock (432.18K Hz) output for MT1516.

71 RFPDSH 3.3V LVTTL output, 2mA, 4mA, 6mA,

8mA, 10mA, 12mA, 14mA, 16mA PDR

Sample pulse control signal for RF read APC.

72 WFPDSH 3.3V LVTTL output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

Sample pulse control signal for RF write APC.

206 WRSTOP 3.3V LVTTL Input, SMT, 75K pull-down

Write procedure stop control input.

Miscellaneous Interface (4)

169 TEST_MODE 3.3V LVTTL input, 75K pull-down

Test mode, active high

170 PRST 3.3V LVTTL Input, SMT

Power on reset input, high active.

74 XTALO Output X`tal output. 75 XTALI Input X`tal input. The working frequency is 33.8688 MHz.

Host Interface (31)

122 HRST# 3.3V LVTTL Input, SMT, 75K pull-up

Host reset input. The active-low input is referred to as hardware reset and is used to reset this chip.

142,140,138, 135,132,130, 127,124,123, 125,128,131, 133,136,139,

141

HD15 ~ HD0 3.3V LVTTL I/O, Slew rate, SMT,

4mA, 6mA, 8mA, 12mA PDR,

40K(15K) PPU, 40K (15K)PPD

Host Data bus. This is the 8-bit or 16-bit bi-directional data bus to the host. The lower 8 bits, HD0–HD7, are used for 8-bit data transfers. Normally, data transfers are 16-bit wide. Note : All pins except HD7 (no any pull) may be selectively pull-up or pull-down with 40K resistant.(HD6~HD0 is 15K)

144 DMARQ 3.3V LVTTL output, 12mA driving

DMA request. This signal is used for DMA data transfers between host and device and it shall be asserted by the MT1518 when it is ready to transfer data to or from the host. The direction of data transfer is controlled by DIOR# and DIOW#.

145 DIOW# 3.3V LVTTL Input, SMT, 40K pull-up

Device I/O write. Stop ultra DMA burst. For Device I/O Write, this signal is the strobe signal asserted by the host to write device register or the data port. For Stop Ultra DMA, this signal shall be negated by the host before data is transferred in an Ultra DMA burst and is asserted by host during an Ultra DMA burst to signal the termination of Ultra DMA burst.

48

84 BA0 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR,

75K PPD

SDRAM bank address 0 signal. For SDRAM application only.

85 ROE# 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

RAM Output Enable, low active. For SDRAM application, this pin is “Chip Select” signal output connected to “CS#” pin of SDRAM. When two 2-bank SDRAM are used, this pin musts connect to “CS#” pin of first SDRAM.

87 RAS# 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

RAM Row Address Strobe. This active-low output is the Row Address Strobe signal to the RAM. For SDRAM application, this pin is “row address strobe” signal output connected to SDRAM.

88 CAS# 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

Column Address Strobe Low / Column Address Strobe. When two column address strobe pins are used, this pin is the Column Address Strobe Low signal for accessing the lower bytes of a two-CAS# 16-bit RAM. When an 8-bit DRAM is used, this pin shall be connected to CAS# of the DRAM. For SDRAM application, this pin is “column address strobe” signal output connected to SDRAM.

89 RWE# 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

RAM Write Enable/RAM Write Enable Low. RAM write enable signal, low active. When two write enable pins are used, it is the Write Enable Low signal for writing the lower bytes of a two-WE_ 16-bit RAM. For SDRAM application, this pin is dedicated for “Write Enable” usage.

90 DQML 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR,

75K PPD

SDRAM low-byte data output mask control signal, high active. For SDRAM application only.

116 CASH#/

RWEH#

3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

Column Address Strobe High / RAM Write Enable High. When a 16-bit DRAM is used, this active-low pin functions as Column address Strobe High for accessing the upper bytes of a two-CAS# RAM, or as Write Enable High for writing the upper bytes of a two-WE# RAM. For SDRAM application, this pin is changed to DQMH and is used to as SDRAM high-byte data mask control signal, high active.

117 CLK 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR,

75K PPD

SDRAM clock output. For SDRAM application only.

49

118 CKE 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR,

75K PPD

SDRAM clock enable signal output. For SDRAM application only.

106,107,108, 109,110,112, 113,115,92, 93,94,95,96,

97,98,99

RD15 ~ RD0 3.3V LVTTL I/O, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR, 75K PPU, 75K PPD

RAM Data bus. These pins are the bi-directional upper Buffer RAM data bus to the external buffer memory.

119,81,120, 121,103,102.

101,100,77,78, 79,80

RA11~ RA0 3.3V LVTTL Output, Slew rate,

2mA, 4mA, 6mA, 8mA, 10mA, 12mA, 14mA, 16mA PDR

RAM address bus.

Power Supply (27)

91,143,196 (3) DVDD33 Power (3.3V) Power supply for input pad buffer circuitry. 17,76,134,180

(4) DVDD25 Power (2.5V) Power supply for internal digital circuitry and general pad buffer

circuitry. 14,73,137,183

(4) DVSS Ground Ground pin for internal digital circuitry and input pad buffer

circuitry. 7,67,86,111, 129,150 (6)

DVDD33 Power (3.3V) Power supply for output pad buffer circuitry.

10,64,83,114, 126,147,187 (7)

DVSS Ground Ground pin for output pad buffer circuitry.

28 AVDD25 Power (2.5V) Power supply for dedicated digital circuitry in fully block. 21 AVSS Ground Ground pin for dedicated digital circuitry in fully block. 59 AVDD33 Power (3.3V) Power supply for dedicated digital circuitry in fully block.

50

IC501 (BD7907FS): Spindle Motor and 5ch Actuator Driver

Block Diagram

LEV

EL

SH

IFT

LEV

EL

SH

IFT

HA

LLB

IAS

FG

RE

VE

RC

ED

ET

EC

T

TS

D

PR

ELO

GIC

Current

LIMIT

PR

ELO

GIC

LEV

EL

SH

IFT

47K

47K

94K94K

47K

47K

47K

47K

47K

94K

FF

FF

FF

OS

C

OS

C

3-phaseM

AT

RIX

Current

CO

MPPolarity

CO

MP

PW

MO

UT

FG

LIMIT

LIMIT

15K15K

ST

BY

/B

RA

KE

CO

NT

RO

L

541 DVCCHU+

2HU-

3HV+

4HV-

5HW+

6HW-

7HB

8PGND1

9U

10SPVM1

11V

12GND

13GND

14GND

15GND

16GND

17PGND2

18W

19SPVM2

20SPRNF

21FG

22CTL1

23CTL2

24SPIN

25DGND

26LDIN

27VC

53 FCIN

52 TKIN

51 VCC

50 LDO+

49 LDO-

48 TKO+

47 TKO-

46 FCO+

45 FCO-

44 AVM

43 GND

42 GND

41 GND

40 GND

39 GND

38 AGND

37 SLO1+

36 SLO1-

35 SLO2+

34 SLO2-

33 SLGND

32 SLRNF2

31 SLRNF1

30 SLVDD

29 SLIN2

28 SLIN1

51

• Pin Description

Terminal Symbol Description1 HU+ Hall amp.U positive input

2 HU- Hall amp.U negative input

3 HV+ Hall amp.V positive input

4 HV- Hall amp.V negative input

5 HW+ Hall amp.W positive input

6 HW- Hall amp.W negative input

7 HB Hall bias

8 PGND1 Spindle driver power ground 1

9 U Spindle driver output U

10 SPVM1 Spindle driver power supply 1

11 V Spindle drive output V

12 GND GND

13 GND GND

14 GND GND

15 GND GND

16 GND GND

17 PGND2 Spindle driver power ground 2

18 W Spindle driver output W

19 SPVM2 Spindle driver power supply 2

20 SPRNF Spindle driver current sense

21 FG Frequency generator output

22 CTL1 Driver logic control input 1

23 CTL2 Driver logic control input 2

24 SPIN Spindle driver input

25 DGND PWM block pre-ground

26 LDIN Loading driver input

27 VC Reference voltage input

Terminal Symbol Description54 DVCC PWM block control power supply

53 FCIN Focus driver input

52 TKIN Tracking driver input

51 VCC BTL pre and Loading power supply

50 LDO+ Loading driver positive output

49 LDO- Loading driver negative output

48 TKO+ Tracking driver positive output

47 TKO- Tracking driver negative output

46 FCO+ Focus driver positive output

45 FCO- Focus driver negative output

44 AVM Actuator driver block power supply

43 GND GND

42 GND GND

41 GND GND

40 GND GND

39 GND GND

38 AGND Ground

37 SLO1+ Sled driver 1 positive output

36 SLO1- Sled driver 1 negative output

35 SLO2+ Sled driver 2 positive output

34 SLO2- Sled driver 2 negative output

33 SLGND Sled driver power ground

32 SLRNF2 Sled driver 2 current sense

31 SLRNF1 Sled driver 1 current sense

30 SLVDD Sled driver Power MOS pre-supply

29 SLIN2 Sled driver 2 input

28 SLIN1 Sled driver 1 input

* Positive/negative of the output terminals are determined in reference to those of the input terminals.

• Functional description

CTL1(22pin) CTL2(23pin) Spindle Sled Focus Tracking Loading

L L X X X X X

H L X X X X O

_ H O O O O X

CTL1(22pin) CTL2(23pin) SPIN > VC SPIN < VC

L H Forward-rotation mode Reverse-rotation braking mode

H H Forward-rotation mode Short-circuit braking mode

O : ON, X : OFF

¥L

¥M

¥N

¥O

¥LStanby mode ¥M Drivers muting ¥N Reverse-rotation mode (spindle) ¥O Short-circuit braking mode (spindle)

1. CABINET and CIRCUIT BOARDDISASSEMBLY

1-1. Bottom ChassisA. Release 4 screws (A) and remove the Bottom Chassis

in the direction of arrow (1). (See Fig.1-1)

1-2. Front Bezel Assy A. Insert and press a rod in the Emergency Eject

Hole and then the CD Tray will open in the directionof arrow (2).

B. Remove the Tray Door in the direction of arrow (3) by pushing the stoppers forward.

C. Release 3 stoppers and remove the Front Bezel Assy.

1-3. Cabinet and Main Circuit BoardA. Remove the Cabinet in the direction of arrow (4).

(See Fig. 1-3)B. Release 2 hooks (a) and remove the CD Tray

drawing forward.C. Remove the Main Circuit Board in the direction of

arrow (5).D. At this time, be careful not to damage the 4

connectors, are positioned at right side, of the MainCircuit Board.

2. MECHANISM ASSY DISASSEMBLY2-1. Pick-up UnitA. Release screws (B).B. Separate the Pick-up Unit in the direction of arrow (6).

(4)

(5)

MainCircuit Board

Cabinet

Hooks (a)

(A)

(A) (A)

(A)

(1)

Bottom Chassis

(2)

(3)

Tray Door

CD Tray

Front Bezel Assy

Emergency Eject Hole

Stoppers

Fig. 1-1

Fig. 1-2

DISASSEMBLY

8

Fig. 1-3

Mechanism Assy

Pick-up Unit(6)

(B)(B)

Fig. 2-1

2-2. Pick-upA. Release 2 screws (C) and remove the Pick-up.

Pick-up Unit

Pick-up

(C)(C)

Fig. 2-2

9

ATIP Absolute Time In Pre-groove.With an additional modulation of the “Wobble”,the “Groove” contains atime code information

Wobble The pre-groove in the Disc is not a perfect spiral but is wobbled with ; - a typical amplitude of 30ns- a spatial period of 54 -64µm

(Pre-) groove The guidance track in which clocking and time code information is stored by means of an FMmodulated wobble

CW Continuous Wave. The laser light output is at a constant level

DOW Direct Over-Write. The action in which new information is recorded over previously recordedinformation in CD-RW disc.

Overwrite The action in which new information is recorded over previously recorded information

Land Land is characterized in the following way: When radial signals are concerned,land is defined as the area between the grooveWhen HF signal are concerned,land is defined as the area between the marks(pits) in tangentialdirection

Hybrid Disc A Multisession disc of which the first Session is mastered. On a hybrid disc, recorded and masteredinformation may co-exist

Mastered Information Information,stored as pits on the disc during the manufacturing process of the disc (when making the“master”)

OPC Optimum Power Control. Procedure is determined optimum recording power according to CD-R/RWMedia in recording start step.

ROPC Running OPC. The purpose is to continuously adjust the writing power to the optimum power that isrequired When the optimum power may change because of changed conditions of disc and change inoperating temperature,

Jitter The 1ø value of the time variation between leading and trailing edges of a specific (Mark) pit or landas measured by Time Interval Analysis

Deviation The difference between a fixed value of Pit length and Land length

TOC Table Of Contents : in the Lead-in Area the subcode Q-channel contains information about the Trackon the disc

Packet Writing A method of writing data on a CD in small increments. Two kinds of packets can be written : Fixed-length and Variable-length

Write Strategy The shape of the HF write signal used to modulate the power of the laser. The Write Strategy mustbe used for recordings necessary for disc measurements

Information Area Wobble, ATIP, Disc Identification, Write Power, Speed Range OPC Parameters, etc are recorded inthe Information area of CD-RW Disc

Finalization The action in which (partially) unrecorded or logically erased tracks are finished and the Lead-inand/or Lead-out areas are recorded or overwritten with the appropriate TOC subcode

Logical Erase A method to remove information from a disc area by overwriting it with an EFM signal containingmode 0 subco A logically erased area is equivalent to an unrecorded

Physical Erase The action in which previously recorded information is erased by overwriting with a CW laser output.After a Physical Erase action ,the erased area on the CD-RW disc is in the unrecorded state again.

Session An area on the disc consisting of a Lead-in area ,a Program area,a Lead-out area.

Multi session A session that contains or can contain more than one session composed Lead-in and Lead-out

GLOSSARY

16

The differences of CD-R/CD-RW discs and General CD-ROM1. Recording Layer

Recordable CD has a wobbled pre-groove on the surface of disc for laser beam to follow track.

2. Disc Specification

Read-only Disc

CD-R and CD-RW Disc

3~11T

1.6um

0.4~0.5 um

(Pit)Groove

Land

Track pitch(p)

Radial Direction

Iw

A

O

a

a

GrooveLand

Radial Error Signal

The Groove wobble

Average center

Actual center

17

CD-ROM (READ-ONLY DISC) a=30nm

ITEM CD-ROM CD-R CD-RW

Standard Yellow Book Orange Book II Orange Book III

Record Not available Write once Re-Writable

Tracking Signal I11/Itop > 0.6 > 0.6 0.55 > M11> 0.70(HF Modulation)

Read Laser Power(mW) < 0.5 mW < 0.7 mW < 1.0 mW

Jitter < 35 nsec < 35 nsec < 35 nsec

Reflectivity (Rtop) 70 % 65 % 15 % ~ 25 %Remark)

Write Laser Power(mW) 14-65 mW 6-45 mW

18

3. Disc Materials

1) CD-ROM disc

Laser Beam Groove

Substrate(Polycarbonate)

Organic Dye LayerReflective LayerProtective Layer

Label Printing

2) CD-R disc

Pigment Reflective Layer Color

Phtalocyanine Gold/Silver Yellow/White

Cyanine Gold/Silver Dark Green/Bright Green

Azo Gold/Silver Dark Blue

• It is composed of Silver _ colored aluminum plate and Reflective layer.• Groove (Pit) of aluminum plate make a track.• Laser wavelength : 780 nm, Laser Power (Read): 0.5mW• Signal is detected by the

difference of reflective beam intensity between “pit” and “Land” on the disc.

• It is so-called WORM (Write Once Read Many) CD.• It is composed of polycarbonate layer, Organic dye layer, Reflective layer, and Protective

layer.Gold/Silver Reflective layer is used to enhance the reflectivity• According to the kinds of Organic dye layer, it is divided by Green CD, Gold CD, Blue CD.• Laser Wavelength : 780 nm, Laser Power (read) : 0.7 mW• Recording Power : 8x(14~20mW), 12x(15~30mW), 16x(25~35mW), 48x(50~65mW)• When some part of dye layer is exposed to laser heat, it’s color changs black.Therefore, writing and

reading is enabled by the difference of reflectivity between changed part and unchanged part.• Polycarbonate layer has Pre_Groove which make a Track.

Laser BeamPit

Substrate(Polycarbonate)

Reflective Layer

Protective Layer

Label Printing

19

3) CD-RW Disc

4. Reading process of Optical Disc

Laser Beam Groove

Substrate(Polycarbonate)

Recording LayerDielectric Layer(TL)

Dielectric Layer(UL)

Protective Layer

Label Printing

• It is composed of polycarbonate layer, alloy(silver, arsenic) layer, aluminum reflectivity layer, protective layer.• An crystalized alloy layer is transformed into noncrystalized by the laser heat. Therefore, writing and reading

is enabled by the difference of reflectivity.• It is possible to overwrite about 1000 times.• Laser Wavelength : 780 nm, Laser Power (Read) : 1.0mW• Recording Power : Erase (4~18mW), Write (6~45mW)• When disc rewriting, new data is overwritten previously recorded data.• Polycarbonate layer has a Pre-Groove which make a track.

LensH

D

BeamSpot

FocusingLens

Laser Spotat ConstantRead Intensity

ReflectedLightSignal

Laser SpotPosition(Time)

Previously Recorded Marks

Groove Land Mirror

I3 Itop

I11 IG IL I0

Numerical aperture: NA=nsinθ, n: Refractive index

Focus depth : H = λ/NAlaser spot diameter : D = λ/NA2

θ

20

5. Writing Process of CD-R Disc

a b c d e f g

a

b

c

d

e

f

g

IncidentLaserPower

(Read) (Read)

(Write)

Laser SpotPosition(Time)

a b c d e f gLaser SpotPosition(Time)

LaserSpot

RecordedMark

ReflectedLightSignal

ReflectedLightSignal

Below "ORP"– Mark Too Short

At Optimum Record Power ("ORP")

Above "ORP" – Mark Too Long

Time

6. Writing process of CD-RW Disc

Write Power

Erase Power

Read Power

Groove

Crystal Amorphous

Amorphous

Recorded state(lower reflectivity)

Melting/quenching

Heating/gradual cooling

Crystal phase

Erased state(higher reflectivity)

7. Organization of the PCA, PMA and Lead-in Area

1) Layout of CD-ROM disc

21

Center hole Clamping and Label Area Information Area

Lead-in Area

Lead-in Area

Diameter 15 mm

Diameter 46 mm

Diameter 120 mm

Program Area

Read Only Disc

Lead-out Area

Program Area Lead-out Area

Center hole Clamping and Label Area Information Area

PCA PMA

Test Area Count Area

Diameter 15 mm

Diameter 45 mm

Diameter 120 mm

Unrecorded Disc

Tsl-00:35:65 Tsl-00:15:05 Tsl-00:13:25 Tsl 99:59:7400:00:00

in out

Test Area : for performing OPC procedures.

Count Area : to find the usable area immediately in T.A

Tsl : start time of the Lead-in Area, as encoded in ATIP

PMA : Program Memory Area

Disc Center

Disc Center

2) Layout of CD-R/RW disc

22

8. Function of PCA and PMA area

1) PCA (Power Calibration Area)

• PCA area is used to determine the correct Laser Power for a disc.– Method 1 : PCA area is divided by a track.– Method 2 : The previous Calibration value is referred to.– Method 3 : ROPC is used to determine Laser Power value automatically in data writing.

• CD-R Disc can write maximum 99 Tracks but CD-RW Disc can write unlimited tracks because it has a rewritable function.

2) PMA (Program Memory Area)

• It has a track information (track No, track Start/End time) of every track before writing completed.– PMA area has the last written point and the next writable point of a disc.– In case of CD to CD copy, some writer may not write PMA area.

* When Disc is Finalized,PMA information is transferred to the Lead_In area so that general Driver can read it.

* Because PCA and PMA area exist before Lead-In area, General CD Player or CD-ROM Drive can’t read these areas.

9. OPC and ROPC

1) OPC (Optimum Power Control)• This is the first step of writing process, because CD writer has its own laser power value and media have different writing characteristics,– This is determined by the Writing characteristic, speed, temperature, and humidity.– Laser wavelength is determined by the environmental temperature (775~795nm) and Optical Laser Power is

determined by the test and retry.

• Asymmetry and optimum writing Power– EFM signal Asymmetry is determined by the writing power.

Therefore, Optical Power which has the same value to the preset power value can be estimated by measuring HF signal Asymmetry on the PCA area.

• Measurement of Asymmetry* Parameter setting (Beta) : Using AC coupled HF signal before equalization

Beta = (A1+A2)/(A1-A2)

Time P << Po TimeP = Po

HF

Sig

nal A1

0

A2

TimeP >> Po

2) ROPC (Running Optimum Power Control)

• Variable primary factor of Optimum Power– Change of Power sensitivity on the Disc. (limited to 0.05 *Po)– Wavelength shift of the laser diode due to the operating temperature change.– Change of the Spot aberration due to the Disc skew,

Substrate thickness, Defocus.– Change of Disc or Optics conditions due to the long term OPC

==> It is necessary to adjust continuously to obtain the Optimum Power.

• Principle of Running OPC– To meet the factors mentioned above,

a horizontal direction movement of a curve is uesd.– Beta = f(B-level) = constant on the Recorded Disc– Procedure of ROPC

a. Reference B-level is determined during OPC Procedure.b. During Recording, B-level value is controlled to have a close

Reference B-level value.c. Normalization of B-level is used to eliminate the effect of reflectivity fluctuation.

==> The reflected B-level value is normalized by the disc reflectivity itself.

23

CD-R/RW Media

Write StrategyDetermination

PCA Test Area

Program Area

PMA Area

Lead-In Area

Lead-out Area

OP

C

PCA Count Area

RO

PC

Incident recording pulse

Reflected recording pulse

Sampled timing B

11T

Sample B-level (Write Power)

Leve

l B

Sampled at timing B

Pwo decided by OPC

Recording Power

Level B with Pwo

normalized to recording power

Sample Disc Reflectivity (Read power)

10. Writing Process of DISC

24

11. Recording capacity of CD-R/RW (74min Recording media) • (2048 Byte / Sector ) x ( 75 Sector / Second ) x ( 60 Second / Minute) x 74 Minute

= 681,984,000 Bytes = 682 Mbytes

• But the actual recording capacity is about 650 Mbytes. (according to the ISO 9660 standard,approximately 30 Mbytes are used to make directory structure and volume names.)

12. Super Link

Super(SUPpressed Error Recording) link method is a new technology to link the interrupted recording bybuffer under run. When drive’s buffer will be under, the drive will stop recording and store the stop position.When drive’s buffer receive data from HOST again, the drive will seek to the stop position of last recordingand continue writing. In the read procedure, the drive can not find any error in the linking area, the data oraudio will be regenerated perfectly.

13. Optimum record speed

To prevent record fail or readability problem of recorded disc, the drive should decide optimum recordingspeed during the recording for the media.

1) All media do not support 48x recording by media quality. Even though a CD-R can be recorded by 48x,there is a possibility to occur fail during recording, especially in high speed writing.

2) So during the recording, Drive checks the Atip and Servo errors, and Drive thinks the current recordingstatus is unstable, then decreases the recording speed for getting stable record.

3) Drive changes the write pulse and power for low speed CLV recording and continuously checks Atip andServo errors during recording.

WritingSpeed

32X

24X

16X

48 74 Time[min]

Normal Case

Speed Down Case

40X

48X22 to 48X CAV(9540 RPM)

14. Full/Partial CAV & Zone CLV Recording Comparison

25

Full/Partial CAV Zone CLV

Advantage

Disadvantage

1. Reduce Recording time. ( no loss time for speed change )2. Easy to Spindle RPM control

1. Increase a stability of Recording.( 4 CLV zone : 16, 24, 32, 40x )

2. High Recording quality compare to P-CAV.

1. It is difficult to control servo stability of CAV recording.2. It has a difficulty in getting the high Recording quality relative to Zone CLV.

1. Recording time is longer than partial CAV.2. It needs to control the spindle in speed change area.

Data transfer rate

RPM

* Full/Partial CAV

16X

40X CLV

Time

CLV Speed change

Time

0

24X 32X

* Zone CLV

40X PCLV

Time

Spindle Mode Change

Time

0

9020

22x

954048x CAV

40x PCAV

20x

48X CAV

INTERNAL STRUCTURE OF THE PICK-UP1. KRS-340B Circuit Diagram

26

1

2

3

4

5

6

7

123

45

123456789

101112 13

1415161718192021222324

14

13

12

11

10

9

8

109876

R3

VR1

VR2

R2

C6

C4

C7

LD

C5

R4

R1

L1

R5R6

C8

R7

C11 C10 C9

Vcc

2 Axis Actuator OP output terminal

IC1CXA2660N

IC2

C1

C2C3

GNDG

D

C

E

RRF

WRF

GND

H

A

B

F

Vc

VLIM

GNDGNDGNDVccVc

BinOUT

PDINVOUT

VCCVREF

VCCGNDIOUTIINRIOUTIIN2GNDIIN3

GNDRFREQ

RAMPGND

ENABLEGND

OSCENWEN3VCCWEN2GNDGND

7

8

910

1112131415161718

1920212223242526272829303132

654321 FCS +

FCS -TRK +TRK -LIMGDCE

RRFWRF

PDGNDPDVC

FBAH

PDVCCFPDO

FPDVCCFPDGNDFPDVC

LDVCCLDVCCVRDC

VWDC1VWDC2LDGNDLDGND

WE1WE2

OSCEN

3334

ENBL MODAMP

IC3EL6215CU

2. Signal detection of the P/U

1) Focus Error Signal ==> (A+C)-(B+D)This signal is generated in RF IC (IC401 : MT1516) and controls the pick-up’s up and down to focus onDisc.

2) Tracking Error Signal (DPP Method) ==> {(A+D)-(B+C)}- k x {(F+H)-(E+G)}This signal is generated in RF IC (IC401 : MT1516) and controls the pick-up’s left and right shift to find totrack on Disc.

3) RF Signal ==> (A+B+C+D)This signal is converted to DATA signal in DSP IC (IC101 : MT1518).

27

Pick-Up module

Photo Diode Tracking

Focusing

Infrared Iaser

k[(F+H) - (E+G)]

(A+D) - (B+C)

(A+D) - (B+C) - k[(F+H) - (E+G)]

Offset

TE

Tp

Sub2

Main

Tp/2 Sub1

Track Center

F,E

D,CA,B

H,G

DESCRIPTION OF CIRCUIT1. ALPC (Automatic Laser Power Control) Circuit1-1. Block Diagram

28

MT1518

Write Strategy

Write S/H Signal

Micro Processor

IC 101

CN 201

IC 401 ( MT1516 )

OpticalPick-upKRS-340B

LDDrive

19 54

65

FPDO

FPDOLP

6226

VWDC1OVWDC1

6127

VWDC2OVWDC2 127 58

WLDON

128 57

RLDON

6325

VRDCOVRDC 112 71

RFPDSHS/H &VRDCG &Level Shift

111S/H &

VWDC1G &Level Shift

VWDC1DAC

& Gain

WFPDSH

72

WDAC2&

Amplifier

WDAC1& x1/x2

RDAC

VRDCDAC

& Gain

22 52

FVREF

+

-

-

+

1-2. ALPC(Automatic Laser Power Control) Circuit Operation

ALPC function in CD-R/RW analog front-end is for constant power level control purpose.Based on the accurate power sensor(FMD) in PU, APC feedback loop maintains constant power level againstlaser diode¡fls temperature variation.

There are two power control loops in MT1516, which are used with different combination for differentapplications. Generally, the first APC loop is used for read-power control. The 2nd APC loop is used forwrite(erase) power control for CD-R(CD-RW) disc.

Owing to the small signal level in read-power control mode, the first APC loop amplifies (x5/x10/x15/20x) theFMD signal(FPDO) to enhance the accuracy of read power control. The built-in 8-bit DAC(RDAC) is used to setthe read power level. Moreover, the 2nd APC loop is used for high power control. The built-in 10-bitDAC(WDAC1) is used to set the wanted power level. And the register VWDC1G is employed to adjust the gainof FMD signal.

The following potentiometers(VRDCDAC, VWDC1DAC, and WDAC2) and amplifiers(VRDCDAG, VWDC1DAGand WDAC2G) are used to set the wanted levels of the output pins VRDCO, VWDC1O, and VWDC2O.Moreover, the input signal FPDO after low-pass filtering & amplification(x1 or x2) will send the MPXOUT2 formonitoring.

29

2. Focus Circuit

2-1. Block Diagram

DiscMotor unit

OpticalPick-up

KRS-340B

A,B,C,DE,F,G,H

-{(A+C)-(B+D)}

HAVC LS to V14

FEO

FEI

ADC Focusing Compensator

DAC

FRO

FRO

1.4V

R149

IC501

BD7907

C562R560

IC505 R566

FCS+

FCS-

FCS+FCS-

IC401MT1516

IC101MT1518

MUTE2

MUTE1

CTL1

CTL2

MUTE2

MUTE1

C188VC1.4V

FCIN

-((E+F+G+H))

LPF G

HAVCLS to

0.8V

SBAD

SBAD

49

LPF G

101

102

42

42

38

22

53

27

22

23

46

45

2-2. Focus Servo

The aim of Focus Servo is to maintain the distance between object lens of P/U and disc surface, so that thedetected RF signal(A, B, C, D, E, F, G, H) can be maximized.

Focus Error Signal(FE) generates from focus error detection block in RF IC(MT1516) using AstigmatismMethod. Focus Gain and path can be changed at the RF IC(MT1516) according to the disc, and the resulting outputFE(MT1516 42pin) is input to DSP IC(MT1518 42pin).The SBAD Signal(MT1516 49pin) is from the sum of Side Beam(E, F, G, H), represents Beam Strength andinput to DSP IC(MT1518 38pin). The Focus Search operation is using FE, SBAD Signal, therefore check FE, SBAD signals when Focusing isfailed.

The role of DSP IC(MT1518) is Focus Digital Controller. The operation path is as follows; FE Signal is input to DSP IC(MT1518 42pin), and after A/D Conversion, Digital Equalizer Block and D/AConversion in MT1518, the output signal FRO(MT1518 22pin) is input to Drive IC(BD7907 53pin).The drive output signal FCS+/FCS- generated according FCIN(BD7907 53pin), and drives focus actuator in theP/U unit.

3. Tracking & Sled Circuit3-1-1. Block Diagram (Tracking Following)

DiscMotor unit

OpticalPick-up

KRS-340B

A,B,C,DE,F,G,H

TEO

TEI

ADC TrackingCompensatorDAC

TRO

TRK+TRK-

IC401MT1516

IC101MT1518

MUTE2

MUTE1MPPO

(A+D)-(B+C)

G

HAVCLS to V14

101

102

45

4023

LPF

LPF

SPPO

K*{(F+H)-(E+G)}

SledCompensatorPWM

FMO

26

FMO2

27A+

A-

B+

B-

SLED MOTORUnit

TRO

1.4V

R148

IC501

BD7907

C561R561

IC505 R567

TRK+

TRK-

CTL1

CTL2

MUTE2

MUTE1

C187

VC1.4V

TRKIN52

27

22

23

46

45

FMO28

FMO229

R148

R148

C154 C156

SLIN1

SLIN2

A+

A-

46

45

B+

B-

46

45

SLO1+

SL01-

SLO2+

SLO2-

30

3-1-2. Block Diagram (Seek)

31

DiscMotor unit

OpticalPick-up

KRS-340B

A,B,C,DE,F,G,H

TEO

TRK+TRK-

IC401MT1516

MUTE2

MUTE1MPPO

(A+D)-(B+C)

G

HAVCLS to V14

101

102

45LPF

LPF

SPPO

K*{(F+H)-(E+G)}

A+

A-

B+

B-

SLED MOTORUnit

(A+D)-(B+C)

K*{(F+H)-(E+G)}

40

41 G

HAVCLS to V14

LPF 126

46

47

48

RFRPSLV

C48

0

G

HAVCLS to V14

43LPF

MPPO

Vref

-

+

-

+

+

-

TEO

RFZC

RFZC

DRCO

DRCO2

R456

C489

CSI

FMO

DAC

TrackingCompensator

IC101MT1518

23

SledCompensator

ADC

26

27

27

MUX

ShortSeek

Algorithm

LoogSeek

Algorithm

PWM 27

102

26

TRO

FMO2

Track Counterand Timer

R141

C142

RFZC

TEO

CSI

TEI

TEZILP

HRFZCI

CSI

32

3-2-1. Tracking Servo

The aim of tracking servo is to make laser beam trace the data track on disc.

Tracking Error(TE) Signal is generated from tracking error detected block in MT1516 using DPP(DifferentialPush-Pull) Method.DPP Method uses not only main beam(A, B, C, D) but also side beam(E, F, G, H) for correcting DC offset generated in Push-Pull Method.

The remaining procedure of TE signal processing in MT1518 is similar to Focus Servo.The role of DSP IC(MT1518) is Tracking Digital Controller.TE Signal is input to DSP IC(MT1518 40pin), and after A/D Conversion, Digital Equalizer Block and D/AConversion in MT1518, the output signal TRO(MT1518 22pin) is input to Drive IC(BD7907 23pin).

The drive output signal TRK+/TRK- generated according TKIN(BD7907 52pin), and drives tracking actuatorin the P/U unit.

3-2-2. Sled Servo

The working distance of tracking actuator is too short to cover whole disc radius.Sled Servo make P/U move by little and little so that the laser beam keep tracing the data track on disccontinuously when tracking actuator reaches the working limit.

TE Signal is input to DSP IC(MT1518 40pin), and after A/D Conversion, Digital Tracking Equalizer Block,Digital Sled Compensator Block and PWM Conversion in MT1518, the output signal FMO, FMO2(MT151826,27pin) is input to Drive IC(BD7907 28,29pin) after Low-Pass filtering.The PWM output signal A+, A-, B+, B- generated according to SLIN1, SLIN2(BD7907 28,29pin), anddrives the sled motor.

4. Spindle Circuit4-1-1. Block Diagram (EFMCLV Servo)

4-1-2. EFM CLV Servo : 4x, 8x

When drive read PRESS CD at the speed of 4x, 8x, the spindle motor is controlled using EFM CLV SpindleServo.

The equalized RFOUT Signal(MT1516 21pin) is generated using RFSUM signal from P/U, and input to DSP IC(MT1518 45pin) as RFIP.The spindle controller in MT1518 uses RFOUT signal as linear velocity feedback, therefore the EFM CLV servodoesn¡flt work well if RFOUT signal is abnormal. The spindle controller PWM output signal DMO (MT1518 25pin) input to SPIN in Drive IC(BD7907 24pin) afterLow-Pass Filtering. The PWM output signal U, V, W signal(BD7907 9, 11, 18) drives Spindle Motor using Hall Sensor Output signal(HU+, HU-, HV+, HV-, HW+, HW-) and SPIN.

33

DiscMotor unit

OpticalPick-up

KRS-340B

RFSUM

-{(A+C)-(B+D)}

Offset Adj.

RFOUT

IC401MT1516

MUTE2

MUTE1

EQRF G

101

102

2119 G

OSTCC13

C430

RFIPDataSlicer

DataPLL

IC101MT1518

44

MUX

PWM

DMO

25

Motor KickREG

CLV FD+

CLV PD

PCK4M

VCK4M

PCK4M 45

RFIN

C141

C410

C153

1.4V

R146

SPIN

IC501

BD7907

U

V

MUTE2

MUTE1

VC1.4V

24

22

23

9

11

HU+

2 HU-

21

C506

HV+

HV-

3

4

HW+

HW-

5

6

1

27

SPIN

FG

CTL2

CTL1

C507

C508

SPIN

FG

W 18

4-2-1. Block Diagram (FGCAV Servo)

34

DiscMotor unit

OpticalPick-up

KRS-340B

XTALOControl Clock

Generator

IC101MT1518

75

MUX

PWM

DMO

25

Motor KickREG

CAV FD+

CAV PD

PCK4M

VCK4M

VCK4M 74

C153

1.4V

R146

SPIN

IC501

BD7907

U

V

MUTE2

MUTE1

VC1.4V

24

22

23

9

11

HU+

2 HU-

21

C506

HV+

HV-

3

4

HW+

HW-

5

6

1

27

SPIN

FG

CTL2

CTL1

C507

C508

SPIN

FG

W 18

XTALI

20

R543

3.3V

X10133.8688MHz

4-2-2. FG CAV Servo

1) CD 15x CAV : Eccentric CD-R/RW, Video CD, CD-DA2) CD 32x CAV : (CD-RW)3) CD 40x CAV : CD-R, CD-RW4) CD 48x CAV : CD-ROM

When drive read PRESS CD, Closed Session CD-R/RW, the spindle motor is controlled using FG CAV SpindleServo. FG signal(BD7907 21pin) input to FGIN in DSP IC(MT1518 20pin).The spindle controller in DSP IC uses FGIN as spindle rotation frequency feedback, therefore the FG CAVSpindle Servo doesn't work well if FG generation is abnormal.

The spindle controller PWM output signal DMO(MT1518 25pin) input to SPIN in Drive IC(BD7907 24pin) after Low-Pass Filtering. The PWM output signal U, V, W signal(BD7907 9,11,18) drives Spindle Motor using Hall Sensor Output signal(HU+, HU-, HV+, HV-, HW+, HW-) and SPIN, and FG pulse output is generated as 18 pulses/rotation.

4-3-1. Block Diagram (Wobble CLV Servo)

35

DiscMotor unit Optical

Pick-upKRS-340B

IC401MT1516

85

HPFS/H

-

+

WBLSH

C485

36

39

37

38

HPF AGC2

LPFBPF AGC3

LPF

HPF116

118

34 75

WBLSH

VHAVCHAVC

81 82

AGC1

5V

83

VREF

AGC1C AGC2C AGC3C

ATFM

INA

INB

INC

IND

D

A

C

B

+

-

C486 C487

ADO

BCO

IC101MT1518

MUX

PWM

DMO

25

Motor KickREG

FD+

PD

69C153

1.4V

R146

SPIN

MUX

ReferenceClock Gen.

FD+

PD

CLK33M

ATFG

EFMCLK4

ATFG_SYNC

EFM_BLOCK_CLK

ATIP_BLOCK_CLK

TrackingClock Gen.

ATFG

4-3-2. Wobble CLV Servo : 4x, 10x, 12x, 16x, 24x, 32x, 40x, 48x. (Blank Area in CD-R/CD-RW)

When drive read/write blank CD-R/RW or read open-session CD-R/CD-RW, the spindle motor is controlledusing Wobble CLV Spindle Servo.

The ATFG signal(MT1516 116pin) input to DSP IC(MT1516 69pin). The DSP Controller in MT1518 uses ATFGas linear velocity feed back, therefore the Wobble CLV Spindle Servo doesn¡flt work well when ATFG signal isabnormal.The two types are in the Wobble CLV Spindle Servo. The one is pre-sync mode, the other is sync mode. When Wobble CLV Spindle Servo drives the spindle motor, the pre-sync mode type of Wobble CLV spindlecontroller controls the spindle motor.After being stabilized, the pre-sync mode is switched to the sync-mode type of Wobble CLV spindle controller.

The spindle controller PWM output signal DMO(MT1518 25pin) input to SPIN in Drive IC(BD7907 24pin) afterLow-Pass Filtering. The PWM output signal U,V, W signal(BD7907 9,11,18) drives Spindle Motor using Hall Sensor Output signal(HU+, HU-, HV+, HV-, HW+, HW-) and SPIN.

033

PBM00 (MAIN C.B.A)

007

A02

A01

020

028029

030

400

032

400

021

020050

413413

413

001

413430

012

009

008013

014

005035

016

015

004

006

A B C D E F G H

1

2

3

4

5

017

003

002

010

011

030

400400

031

027026034

025

430419

021

400

11 12

EXPLODED VIEW