Introduction – Power exhaust in tokamaks€¦ · ON THE INFLUENCE OF TURBULENT FLUCTUATIONS ON...

3
ON THE INFLUENCE OF TURBULENT FLUCTUATIONS ON AM/PMI DATA FOR EDGE PLASMA MODELING Y. Marandet 1 , F. Guzmán 1 , R. Guirlet 2 , P. Tamain 2 , H. Bufferand 2 , G. Ciraolo 2 , Ph. Ghendrih 2 and J. Rosato 2 1 PIIM, CNRS, Aix-Marseille Université, Marseille 2 IRFM-CEA, Cadarache Introduction – Power exhaust in tokamaks 18/12/14 In steady state, the fusion energy has to be extracted ITER : P fus = 500MW 400 MW neutrons > 500 m 2 100 MW α particles ~ 1 m 2 + 50 MW heating (Q=10) Divertor Spreading the energy is mandatory Transport codes used to address these issues Turbulence averaged out : Turbulent transport coefficients = free parameters Effect of averaging on AM and PWI physics ? Outline 18/12/14 AIEA meeting, Daejeon 2014 3 1)Derivation of transport equations 2) Transport of neutral particles in a turbulent plasma 3) Ionization balance in turbulent plasmas 4) Conclusions and Perspectives Can we capture the effects discussed in 2) and 3) using “fluctuation dressed” AM/PWI data ? 1- Derivation of transport equations 18/12/14 AIEA meeting, Daejeon 2014 4 TOKAM3X P. Tamain et al. SolEdge2D H. Bufferand et al. TOKAM2D Y. Sarazin and Ph. Ghendrih, PoP 1998 Coarse graining level averaging no AM&PWI data yet D a ,χ a, … 18/12/14 HDR Y. Marandet 5 Averaging issues in transport codes 18/12/14 AIEA meeting, Daejeon 2014 5 Mean turbulent fluxes and their origin n = n+ δn v = v+ δv n t + · (nv)= S Averaging issues in transport codes 18/12/14 AIEA meeting, Daejeon 2014 6 Mean turbulent fluxes and their origin nt + · [n〉〈v+ δn δv]= SIssues associated to averaging of source terms S(T e ) =S(T e ) n z n e σv= n z 〉〈n e 〉〈 σvParametric nonlinearities Statistical nonlinearities i) Size of the effects ? ii) How to take this in account ? Γ turb = D a nHow to express in terms of <n> ? « Gradient diffusion hypothesis » Γ turb = δnδvMain features of SOL fluctuations 18/12/14 AIEA meeting, Daejeon 2014 7 1 The density PDF can be fitted to a gamma distribution 10 -5 10 -4 10 -3 10 -2 10 -1 Density PDF 15 10 5 0 n/n 0 TOKAM2D Gamma Lognormal W (n)= 1 Γ(β)α β n β-1 exp - n α R = σ 1/2 n= 1 β n(r,t)= α(r)β(r) Correlation time Correlation length τ c 10μs λ 1cm Similar distribution for T e Use this information to build stochastic models for fluctuations 2) Transport of neutral particles in turbulent plasmas 18/12/14 AIEA meeting, Daejeon 2014 8 250 200 150 100 50 0 Y/ρ s 240 220 200 180 160 140 X/ρ s 0.04 0.03 0.02 0.01 Neutral and Plasma density 250 200 150 100 50 0 Y/ρ s 240 220 200 180 160 140 X/ρ s 15 10 5 Plasma density [a.u.] Plasma density [a.u.] Atom density [a.u.]

Transcript of Introduction – Power exhaust in tokamaks€¦ · ON THE INFLUENCE OF TURBULENT FLUCTUATIONS ON...

Page 1: Introduction – Power exhaust in tokamaks€¦ · ON THE INFLUENCE OF TURBULENT FLUCTUATIONS ON AM/PMI DATA FOR EDGE PLASMA MODELING Y. Marandet 1, F. Guzmán 1, R. Guirlet 2, P.

ON THE INFLUENCE OF TURBULENT FLUCTUATIONS ON AM/PMI DATA FOR

EDGE PLASMA MODELING

Y. Marandet1, F. Guzmán1, R. Guirlet2, P. Tamain2, H. Bufferand2,

G. Ciraolo2, Ph. Ghendrih2 and J. Rosato2

1 PIIM, CNRS, Aix-Marseille Université, Marseille

2 IRFM-CEA, Cadarache

Introduction – Power exhaust in tokamaks

18/12/14

!  In steady state, the fusion energy has to be extracted

ITER : Pfus = 500MW

400 MW neutrons > 500 m2

100 MW α particles ~ 1 m2

+ 50 MW heating (Q=10)

Divertor

Spreading the energy is mandatory

!  Transport codes used to address these issues

Turbulence averaged out :

Turbulent transport coefficients = free parameters

Effect of averaging on AM and PWI physics ?

Outline

18/12/14 AIEA meeting, Daejeon 2014

3

1)   Derivation of transport equations

2) Transport of neutral particles in a turbulent plasma

3) Ionization balance in turbulent plasmas

4) Conclusions and Perspectives

Can we capture the effects discussed in 2) and 3)

using “fluctuation dressed” AM/PWI data ?

1- Derivation of transport equations

18/12/14 AIEA meeting, Daejeon 2014

4

TOKAM3X

P. Tamain et al. SolEdge2D

H. Bufferand et al. TOKAM2D

Y. Sarazin and Ph. Ghendrih, PoP 1998

Coarse graining level

averaging

no AM&PWI data yet

Da,χa, …

18/12/14 HDR Y. Marandet

5

Averaging issues in transport codes

18/12/14 AIEA meeting, Daejeon 2014

5

!  Mean turbulent fluxes and their origin

n = 〈n〉+ δn

v = 〈v〉+ δv

∂n

∂t+∇ · (nv) = S

Averaging issues in transport codes

18/12/14 AIEA meeting, Daejeon 2014

6

!  Mean turbulent fluxes and their origin

∂〈n〉

∂t+∇ · [〈n〉〈v〉+ 〈δn δv〉] = 〈S〉

!  Issues associated to averaging of source terms

〈S(Te)〉#=S(〈Te〉)

〈nzneσv〉 #= 〈nz〉〈ne〉〈σv〉

Parametric nonlinearities

Statistical nonlinearities

i) Size of the effects ? ii) How to take this in account ?

Γturb = −Da∇〈n〉

!  How to express in terms of <n> ?

« Gradient diffusion hypothesis »

Γturb = 〈δnδv〉

Main features of SOL fluctuations

18/12/14 AIEA meeting, Daejeon 2014

7

∼ 1

!  The density PDF can be fitted to a gamma distribution

10-5

10-4

10-3

10-2

10-1

De

nsity P

DF

151050n/n0

TOKAM2D Gamma Lognormal

W (n) =1

Γ(β)αβnβ−1 exp

(

n

α

)

R =σ1/2

〈n〉 =1√β

〈n(r, t)〉 = α(r)β(r)

!  Correlation time Correlation length τc ≃ 10µs λ ≃ 1cm

!  Similar distribution for Te

Use this information to build stochastic models for fluctuations

2) Transport of neutral particles in turbulent plasmas

18/12/14 AIEA meeting, Daejeon 2014

8

250

200

150

100

50

0

Y/ρ

s

240220200180160140

X/ρs

0.04

0.03

0.02

0.01

Ne

utra

l an

d P

lasm

a d

en

sity

250

200

150

100

50

0

Y/ρ

s

240220200180160140

X/ρs

15

10

5

Pla

sm

a d

en

sity

[a.u

.]

Plasma density [a.u.] Atom density [a.u.]

Page 2: Introduction – Power exhaust in tokamaks€¦ · ON THE INFLUENCE OF TURBULENT FLUCTUATIONS ON AM/PMI DATA FOR EDGE PLASMA MODELING Y. Marandet 1, F. Guzmán 1, R. Guirlet 2, P.

Considerations on time and spatial scales

18/12/14 AIEA meeting, Daejeon 2014

9

250

200

150

100

50

0

Y/ρ

s

240220200180160140

X/ρs

15

10

5

Pla

sm

a d

en

sity

[a.u

.]

!  The fluctuations are often frozen during the neutral lifespan

3.5 cm

10-1

100

101

102

103

Io

nis

atio

n m

ea

n fre

e p

ath

(cm

)

101

102

103

Te (eV)

n=1018

m-3

n=1020

m-3

E0=1 eV

E0=10 eV

!  Atoms’ mean free paths can be large compared to λ

Exemples of sampled density fields

18/12/14 AIEA meeting, Daejeon 2014

10

0

L

0 L

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

x1

01

3

0

L

0 L

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

x10

13

0

L

0 L

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

x10

13

0

L

0 L

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

x1

013

λ/L=10-3 λ/L=0.025

λ/L=0.15 λ/L=2

Multivariate generalization of the gamma distribution

Y. Marandet et al. PPCF 2011

Density fluctuations reduce the stopping power

18/12/14 AIEA meeting, Daejeon 2014

11

10-3

10-2

10-1

100

⟨n

0⟩

(a.u

.)

86420

|r-rw|/l

Turbulence free a= 0.45 a = 2.7 a = 9 a = ∞

R=0.8, adiabatic

a =

λ

Why is it so ?

Jensen’s inequality on

convex functions:

〈e−x〉 ≥ e−〈x〉

!  The effect of density fluctuations strongly increases with

!  Substantial for high relative fluctuations levels only (>30%)

a

“Fluctuations dressed” ionization rate coefficient

!  How to implement these effects in transport codes ?

18/12/14 AIEA meeting, Daejeon 2014

12

A possibility: fluctuations dressed rate coefficients

〈Sn〉 = −̟(s)〈n0〉 = −〈n0〉〈n〉[σv]eff (s)

18/12/14 HDR Y. Marandet

13

1.5

1.0

0.5

0.0

ϖS

,F /⟨ν⟩

43210

|r-rw|/l

⟨ν⟩

ϖF, ϖ

S, aL=1

ϖF

, ϖS

, aL=10

R=0.8

(A. Mekkaoui et al., PoP 2012)

Szegö Limits

(Y. Marandet et al., PPCF 2011)

“Fluctuations dressed” ionization rate coefficient

!  How to implement these effects in transport codes ?

A possibility: fluctuations dressed rate coefficients

Examples in realistic conditions

18/12/14 AIEA meeting, Daejeon 2014

14

1015

1016

1017

1018

⟨N

D2⟩

(a

.u.)

43210

|r-rw| (cm)

no fluctuations

τ = 1 µs

τ = 10 µs

τ = 50 µs

adiabatic

⟨Ne(rw)⟩ = 5×1018

m-3

!  D2 more affected than D because mean free path shorter

!  Time dependent effects taken into account

(Y. Marandet et al., IAEA FEC Conference 2012)

2.5x105

2.0

1.5

1.0

ϖS

,F

6420

|r-rw| (cm)

no fluctuations

ϖF, ϖ

S, τ = 1 µs

ϖF, ϖ

S, τ = 10 µs

ϖF, ϖ

S, τ = 50 µs

Role of the boundary conditions

!  So far: Γ0 constant; what happens for recycling ?

18/12/14 AIEA meeting, Daejeon 2014

15

τR!= 10-12 s

D+ D

Backscattering

Γ0(t) = ΓD+(t)

!  Effect on mean neutral particle penetration

τR = ?

D+ D2

Molecule desorption

if τR ≫ τcΓ0 = 〈ΓD+(t)〉

3- Effects of fluctuations on ionization equilibrium

18/12/14 AIEA meeting, Daejeon 2014

16

Page 3: Introduction – Power exhaust in tokamaks€¦ · ON THE INFLUENCE OF TURBULENT FLUCTUATIONS ON AM/PMI DATA FOR EDGE PLASMA MODELING Y. Marandet 1, F. Guzmán 1, R. Guirlet 2, P.

Time scales in the system

18/12/14 AIEA meeting, Daejeon 2014

17

100

101

102

103

104

105

106

eig

en

va

lue

s -λ

i a

nd

-M

ii e

ntr

ies [s

-1]

1 10 100

Te (eV)

diag. entries eigenvalues

1 2 3 4 5 6 7

dN

dt= MN N = {nC0 , . . . nC6+}

No separation of scales valid over the whole temperature range

〈N〉 ?

40

30

20

10 T

e [e

V]

200150100500t [µs]

⟨Te⟩ = 15 eV

R = 0.9

ν=105s

-1

Kubo Andersen process

Discussion of the results

18/12/14 AIEA meeting, Daejeon 2014

18

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ab

un

da

nce

s

10 100 Te (eV)

CIII CIV CV CVI

ν =105 s

-1

ne=5x1012

cm-3

CVII

!  Ionization stages shift towards lower temperatures

1.0

0.8

0.6

0.4

0.2

0.0

Ab

un

da

nce

s

10-2 10

0 102 10

4 106 10

8

ν (s-1

)

fCV R=0 %

fCV R=50%

fCVI R=0 %

fCVI R=50 %

Te=50 eV

ν=105s

-1Adiabatic

Diabatic

!  The system is in the diabatic regime

F. Catoire et al., Phys. Rev. A (2010)

〈M〉〈N〉 = 0

Effective ionization/recombination coefficients

18/12/14 AIEA meeting, Daejeon 2014

19

10-20

10-19

10-18

10-17

10-16

10-15

⟨σ

rcv⟩

(m

3s

-1)

1 10 100⟨Te⟩ (eV)

ne=5x1012

m-3

no fluctuations with fluctuation, R=50%

10-18

10-17

10-16

10-15

10-14

10-13

10-12

⟨σ

iov⟩

(m

3s

-1)

1 10 100⟨Te⟩ (eV)

no fluctuations with fluctuation, R=50%

ne=5x10

12 m

-3

〈σv〉 =

∫ +∞

0

dTeW (Te)σv(Te)

!  Increased ionization at low temperature

[ as an non-maxw. rate coeff.]

Going beyond simple analytical models

18/12/14 AIEA meeting, Daejeon 2014

20

!  Impurities introduced as passive scalars in TOKAM2D

!  Compare sputtering yields to those obtained in mean

fields calculations (first wall erosion) [on-going]

!  Address statistical correlations between ne,Te,nz

!  Take transport into account: Γturb = −Da∇〈n〉

F. Guzman et al., J. Nucl. Mater. in press

Discussion of first results

18/12/14 AIEA meeting, Daejeon 2014

21

!  Transport plays an essential role and weakens source averaging

effects: transport to regions where rate coeff. are flat …

Nesep = 1019 m-3 Ne

sep = 1020 m-3

18/12/14 HDR Y. Marandet

22

Discussion of first results

18/12/14 AIEA meeting, Daejeon 2014

22

!  Transport plays an essential role and weakens source averaging

effects: transport to regions where rate coeff. are flat …

Nesep = 1019 m-3 Ne

sep = 1020 m-3

!  Calculation of effective data may be more difficult

σveff = 〈σv〉+〈δneσv〉

〈ne〉+

〈δnzσv〉

〈nz〉+

〈δneδnzσv〉

〈ne〉〈nz〉

Good news, but W in divertor conditions might be more problematic

0 1 2 3 4 5 6 7 8 9 10 1110

−2

10−1

100

distance to the wall (cm)

fractional abundances

W

W+

W2+

W3+

W4+

W5+

W6+

0 2 4 6 8 10−2

−1

0

1

2

3x 10

15

distance to the wall (cm)

So

urc

e t

erm

s (

cm

−3s

−1)

W+

W2+

W3+

W4+

Conclusions

18/12/14 AIEA meeting, Daejeon 2014

23

!  Evaluation of the strength of averaging effects on AM (and PMI)

data needed to assess related modelling uncertainties

!  In all cases, substantial effects only if fluctuation level > 30%

!  Density fluctuations tend to reduce the screening efficiency of

the plasma in particular for molecules and impurities atoms !  Temperature fluctuations shift the local ionization balance

towards lower temperatures

!  In both these simplified cases, the effects can be accounted for

by dressing AM data with fluctuations (when necessary !)

!  More complex cases are likely to require either more information

on fluctuations and/or further approximations

!  To do so, we used stochastic models for fluctuations