International Rectifier IRFP2907

download International Rectifier IRFP2907

of 9

Transcript of International Rectifier IRFP2907

  • 8/6/2019 International Rectifier IRFP2907

    1/9

    Parameter Max. UnitsID @ T C = 25C Continuous Drain Current, V GS @ 10V 209ID @ T C = 100C Continuous Drain Current, V GS @ 10V 148 AIDM Pulsed Drain Current 840P D @T C = 25C Power Dissipation 470 W

    Linear Derating Factor 3.1 W/CVGS Gate-to-Source Voltage 20 VEAS Single Pulse Avalanche Energy 1970 mJIAR Avalanche Current See Fig.12a, 12b, 15, 16 AEAR Repetitive Avalanche Energy mJdv/dt Peak Diode Recovery dv/dt 5.0 V/nsTJ Operating Junction and -55 to + 175TSTG Storage Temperature Range

    Soldering Temperature, for 10 seconds 300 (1.6mm from case )C

    Mounting Torque, 6-32 or M3 screw 10 lbfin (1.1Nm)

    IRFP2907HEXFET Power MOSFET

    Specifically designed for Automotive applications, thisStripe Planar design of HEXFET Power MOSFETsutilizes the lastest processing techniques to achieveextremely low on-resistance per silicon area.Additional features of this HEXFET power MOSFETare a 175C junction operating temperature, fastswitching speed and improved repetitive avalancherating. These benefits combine to make this design anextremely efficient and reliable device for use inAutomotive applications and a wide variety of otherapplications.

    S

    D

    G

    Absolute Maximum Ratings

    Parameter Typ. Max. UnitsR JC Junction-to-Case 0.32R CS Case-to-Sink, Flat, Greased Surface 0.24 C/WR JA Junction-to-Ambient 40

    Thermal Resistance

    VDSS = 75V

    RDS(on) = 4.5m

    ID = 209A

    Description

    08/08/11

    www.irf.com 1

    TO-247AC

    l Advanced Process Technologyl Ultra Low On-Resistancel Dynamic dv/dt Ratingl 175C Operating Temperaturel Fast Switchingl Repetitive Avalanche Allowed up to Tjmax

    Benefits

    Typical Applicationsl Integrated Starter Alternatorl 42 Volts Automotive Electrical Systems

    AUTOMOTIVE MOSFET

    SD

    G

    D

    G D SGate Drain Source

    PD -93906D

  • 8/6/2019 International Rectifier IRFP2907

    2/9

    IRFP2907

    2 www.irf.com

    Parameter Min. Typ. Max. Units ConditionsV(BR)DSS Drain-to-Source Breakdown Voltage 75 V V GS = 0V, I D = 250 A V(BR)DSS / TJ Breakdown Voltage Temp. Coefficient 0.085 V/C Reference to 25C, I D = 1mARDS(on) Static Drain-to-Source On-Resistance 3.6 4.5 m VGS = 10V, I D = 125AVGS(th) Gate Threshold Voltage 2.0 4.0 V V DS = 10V, I D = 250 Ag fs Forward Transconductance 130 S V DS = 25V, I D = 125A

    20 A

    VDS = 75V, V GS = 0V 250 V DS = 60V, V GS = 0V, T J = 150C

    Gate-to-Source Forward Leakage 200 V GS = 20VGate-to-Source Reverse Leakage -200

    nAVGS = -20V

    Qg Total Gate Charge 410 620 I D = 125AQgs Gate-to-Source Charge 92 140 nC V DS = 60V

    Qgd Gate-to-Drain ("Miller") Charge 140 210 V GS = 10Vtd(on) Turn-On Delay Time 23 V DD = 38Vtr Rise Time 190 I D = 125Atd(off) Turn-Off Delay Time 130 R G = 1.2

    tf Fall Time 130 V GS = 10VBetween lead,

    6mm (0.25in.)from packageand center of die contact

    C iss Input Capacitance 13000 V GS = 0VCoss Output Capacitance 2100 pF V DS = 25VC rss Reverse Transfer Capacitance 500 = 1.0MHz, See Fig. 5Coss Output Capacitance 9780 V GS = 0V, V DS = 1.0V, = 1.0MHzC

    ossOutput Capacitance 1360 V

    GS= 0V, V

    DS= 60V, = 1.0MHz

    Coss eff. Effective Output Capacitance 2320 V GS = 0V, V DS = 0V to 60V

    nH

    Electrical Characteristics @ T J = 25C (unless otherwise specified)

    LD Internal Drain Inductance

    LS Internal Source Inductance S

    D

    G

    IGSS

    ns

    5.0

    13

    IDSS Drain-to-Source Leakage Current

    Repetitive rating; pulse width limited bymax. junction temperature. (See fig. 11).Starting T J = 25C, L = 0.25mHRG = 25 , IAS = 125A. (See Figure 12).ISD 125A, di/dt 260A/ s, V DD V(BR)DSS ,TJ 175CPulse width 400 s; duty cycle 2%.

    Notes:

    S

    D

    G

    Parameter Min. Typ. Max. Units ConditionsIS Continuous Source Current MOSFET symbol

    (Body Diode)

    showing theISM Pulsed Source Current integral reverse

    (Body Diode)

    p-n junction diode.VSD Diode Forward Voltage 1.3 V T J = 25C, I S = 125A, V GS = 0Vtrr Reverse Recovery Time 140 210 ns T J = 25C, I F = 125AQ rr Reverse RecoveryCharge 880 1320 nC di/dt = 100A/ s ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L S+LD)

    Source-Drain Ratings and Characteristics

    209

    840

    A

    Coss eff. is a fixed capacitance that gives the same charging timeas C oss while V DS is rising from 0 to 80% V DSS .

    Calculated continuous current based on maximum allowablejunction temperature. Package limitation current is 90A.Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitiveavalanche performance.

  • 8/6/2019 International Rectifier IRFP2907

    3/9

    IRFP2907

    www.irf.com 3

    Fig 4. Normalized On-ResistanceVs. Temperature

    Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics

    Fig 3. Typical Transfer Characteristics

    1

    10

    100

    1000

    0.1 1 10 100

    20 s PULSE WIDTHT = 25 CJ

    TOP

    BOTTOM

    VGS15V10V8.0V7.0V6.0V5.5V5.0V4.5V

    V , Drain-to-Source Voltage (V)

    I

    , D r a

    i n - t o - S o u r c e

    C u r r e n

    t ( A )

    DS

    D

    4.5V

    10

    100

    1000

    0.1 1 10 100

    20 s PULSE WIDTHT = 175 CJ

    TOP

    BOTTOM

    VGS15V10V8.0V7.0V6.0V5.5V5.0V4.5V

    V , Drain-to-Source Voltage (V)

    I

    , D r a

    i n - t o - S o u r c e

    C u r r e n

    t ( A )

    DS

    D

    4.5V

    1

    10

    100

    1000

    4.0 5.0 6.0 7.0 8.0 9.0 10.0

    V = 25V20 s PULSE WIDTH

    DS

    V , Gate-to-Source Voltage (V)

    I ,

    D r a

    i n - t o - S o u r c e

    C u r r e n

    t ( A )

    GS

    D

    T = 25 CJ

    T = 175 CJ

    -60 -40 -20 0 20 40 60 80 100 120 140 160 1800.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    T , Junction Temperature ( C)

    R

    , D r a

    i n - t o - S o u r c e

    O n

    R e s i s t a n c e

    ( N o r m a

    l i z e

    d )

    J

    D S ( o n

    )

    V =

    I =

    GS

    D

    10V

    209A

  • 8/6/2019 International Rectifier IRFP2907

    4/9

    IRFP2907

    4 www.irf.com

    Fig 8. Maximum Safe Operating Area

    Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage

    Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage

    Fig 7. Typical Source-Drain DiodeForward Voltage

    0 100 200 300 400 500 600 7000

    4

    8

    12

    16

    20

    Q , Total Gate Charge (nC)

    V

    , G a

    t e - t o - S o u r c e

    V o

    l t a g e

    ( V )

    G

    G

    S

    FOR TEST CIRCUITSEE FIGURE

    I =D

    13

    125A

    V = 37VDSV = 60VDS

    0.1

    1

    10

    100

    1000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0V ,Source-to-Drain Voltage (V)

    I

    , R e v e r s e

    D r a

    i n C u r r e n

    t ( A )

    SD

    S D

    V = 0 VGS

    T = 25 CJ

    T = 175 CJ

    1 10 100

    VDS , Drain-to-Source Voltage (V)

    0

    4000

    8000

    12000

    16000

    20000

    C ,

    C a p a c

    i t a n c e

    ( p F )

    Coss

    Crss

    Ciss

    VGS = 0V, f = 1 MHZCiss = Cgs + Cgd , Cds SHORTED

    Crss = CgdCoss = Cds + Cgd

    0.1 1 10 100 1000

    VDS , Drain-to-Source Voltage (V)

    0.1

    1

    10

    100

    1000

    10000

    I D ,

    D r a

    i n - t o - S o u r c e

    C u r r e n

    t ( A )

    OPERATION IN THIS AREA LIMITEDBY RDS(on)

    Tc = 25CTj = 175CSingle Pulse

    100 sec

    1msec

    10msec

    DC

  • 8/6/2019 International Rectifier IRFP2907

    5/9

    IRFP2907

    www.irf.com 5

    Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

    Fig 9. Maximum Drain Current Vs.Case Temperature

    25 50 75 100 125 150 1750

    40

    80

    120

    160

    200

    240

    T , Case Temperature ( C)

    I ,

    D r a

    i n C u r r e n

    t ( A )

    C

    D

    LIMITED BY PACKAGE

    VDS90%

    10%VGS

    td(on) tr td(off) tf

    VDS

    Pulse Width 1 sDuty Factor 0.1 %

    RD

    VGS

    R GD.U.T.

    10V

    +

    -VDD

    Fig 10a. Switching Time Test Circuit

    Fig 10b. Switching Time Waveforms

    1E-006 1E-005 0.0001 0.001 0.01 0.1

    t1 , Rectangular Pulse Duration (sec)

    0.0001

    0.001

    0.01

    0.1

    1

    T h e r m a l

    R e s p o n s e

    ( Z t h J C

    ) C / W

    0.200.10

    D = 0.50

    0.020.01

    0.05

    SINGLE PULSE( THERMAL RESPONSE ) Notes:

    1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

  • 8/6/2019 International Rectifier IRFP2907

    6/9

    IRFP2907

    6 www.irf.com

    25 50 75 100 125 150 1750

    1000

    2000

    3000

    4000

    5000

    Starting T , Junction Temperature ( C)

    E

    , S i n g

    l e P u

    l s e

    A v a

    l a n c h e

    E n e r g y

    ( m J )

    J

    A S

    IDTOP

    BOTTOM

    51A88A

    125A

    QG

    QGS QGD

    VG

    Charge

    D.U.T.VDS

    IDIG

    3mA

    VGS

    .3 F

    50K

    .2 F12V

    Current RegulatorSame Type as D.U.T.

    Current Sampling Resistors

    +

    -

    10 V

    Fig 13b. Gate Charge Test Circuit

    Fig 13a. Basic Gate Charge Waveform

    Fig 12c. Maximum Avalanche EnergyVs. Drain CurrentFig 12b. Unclamped Inductive Waveforms

    Fig 12a. Unclamped Inductive Test Circuit

    tp

    V(BR)DSS

    IAS

    R G

    IAS

    0.01 t p

    D.U.T

    LVDS

    +- VDD

    DRIVER

    A

    15V

    20V

    Fig 14. Threshold Voltage Vs. Temperature

    -75 -50 -25 0 25 50 75 100 125 150 175

    TJ , Temperature ( C )

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    V G S ( t h ) ,

    V a r i a c e

    ( V )

    ID = 250 A

  • 8/6/2019 International Rectifier IRFP2907

    7/9

    IRFP2907

    www.irf.com 7

    Fig 15. Typical Avalanche Current Vs.Pulsewidth

    Fig 16. Maximum Avalanche EnergyVs. Temperature

    Notes on Repetitive Avalanche Curves , Figures 15, 16:

    (For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption:

    Purely a thermal phenomenon and failure occurs at atemperature far in excess of T jmax . This is validated forevery part type.

    2. Safe operation in Avalanche is allowed as long asT jmax isnot exceeded.

    3. Equation below based on circuit and waveforms shown inFigures 12a, 12b.

    4. P D (ave) = Average power dissipation per singleavalanche pulse.

    5. BV = Rated breakdown voltage (1.3 factor accounts forvoltage increase during avalanche).

    6. I av = Allowable avalanche current.7. T = Allowable rise in junction temperature, not to exceed

    T jmax (assumed as 25C in Figure 15, 16).tav = Average time in avalanche.D = Duty cycle in avalanche = t av fZthJC (D, t av ) = Transient thermal resistance, see figure 11)

    P D (ave) = 1/2 ( 1.3BVI av ) = D T/ Z thJCIav = 2D T/ [1.3BVZ th]EAS (AR) = P D (ave) t av

    25 50 75 100 125 150 175

    Starting T J , Junction Temperature (C)

    0

    400

    800

    1200

    1600

    2000

    E A R ,

    A v a

    l a n c

    h e

    E n e r g y

    ( m J )

    TOP Single PulseBOTTOM 10% Duty CycleID = 125A

    1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

    tav (sec)

    1

    10

    100

    1000

    A v a

    l a n c

    h e

    C u r r e n

    t ( A )

    0.05

    Duty Cycle = Single Pulse

    0.10

    Allowed avalanche Current vsavalanche pulsewidth, tavassuming Tj = 25C due toavalanche losses

    0.01

  • 8/6/2019 International Rectifier IRFP2907

    8/9

    IRFP2907

    8 www.irf.com

    Peak Diode Recovery dv/dt Test Circuit

    P.W.Period

    di/dt

    Diode Recoverydv/dt

    Ripple 5%

    Body Diode Forward DropRe-AppliedVoltage

    ReverseRecoveryCurrent

    Body Diode ForwardCurrent

    VGS =10V

    VDD

    ISD

    Driver Gate Drive

    D.U.T. I SD Waveform

    D.U.T. V DS Waveform

    Inductor Curent

    D = P.W.Period

    +

    -

    +

    +

    +-

    -

    -

    RGVDD

    dv/dt controlled by R G ISD controlled by Duty Factor "D" D.U.T. - Device Under Test

    D.U.T *Circuit Layout Considerations

    Low Stray Inductance Ground Plane Low Leakage Inductance

    Current Transformer

    * Reverse Polarity of D.U.T for P-Channel

    VGS

    [ ]

    [ ]

    ***VGS = 5.0V for Logic Level and 3V Drive Devices

    [ ] ***

    Fig 17. For N-channel HEXFET power MOSFETs

  • 8/6/2019 International Rectifier IRFP2907

    9/9

    IRFP2907

    www.irf.com 9

    IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

    Visit us at www.irf.com for sales contact information . 08/2011

    Data and specifications subject to change without notice.This product has been designed and qualified for the Automotive[Q101] market.

    Qualification Standards can be found on IRs Web site.

    TO-247AC Part Marking Information

    TO-247AC Package OutlineDimensions are shown in millimeters (inches)

    LINE H

    INTERNATIONAL

    LOGORECTIFIER

    ASSEMBLY

    56 57

    IRFPE30135H

    YEAR 1 = 2001DATE CODE

    PART NUMBER

    indicates "L ead-Free" WEEK 35LOT CODE

    IN THE ASSE MBL Y LINE "H"ASSEMBL ED ON WW 35, 2001

    Note: "P" in assembly line posi tion

    EXAMPLE:WITH ASS EMBLYTHIS IS AN IRFPE30

    LOT CODE 5657

    TO-247AC package is not recommended for Surface Mount Application.

    Note: For the most current drawing please refer to IR website at http://www.irf.com/package/