INF3410 — Fall 2016

24
INF3410 — Fall 2016 Excerpt of Sedra/Smith Chapter 5: CMOS Field Effect Transistors(FETs)

Transcript of INF3410 — Fall 2016

Page 1: INF3410 — Fall 2016

INF3410 — Fall 2016

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs)

Page 2: INF3410 — Fall 2016

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussedlater)

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 2

Page 3: INF3410 — Fall 2016

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussedlater)

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 3

Page 4: INF3410 — Fall 2016

Device Concept

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 4

Page 5: INF3410 — Fall 2016

Device Cross Section

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 5

Page 6: INF3410 — Fall 2016

Short Sidetrack: PN-junction

(from book: Carusone, Johns, Martin)

Cj =Cj0

r

1 + VRΦ0

(1.17)

Cj0 =

√qKSϵ0

2Φ0

NAND

NA +ND(1.18)

Φ0 = UT ln

NAND

n2i

(1.6)

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 6

Page 7: INF3410 — Fall 2016

nFET/NMOS and pFET/PMOS cross section

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 7

Page 8: INF3410 — Fall 2016

Above Threshold Regions of Operation NFET

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 8

Page 9: INF3410 — Fall 2016

Above Threshold Regions of Operation PFET

’Above Threshold’ is also called ’Strong Inversion’

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 9

Page 10: INF3410 — Fall 2016

nMOSFET Device Symbols

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 10

Page 11: INF3410 — Fall 2016

pMOSFET Device Symbols

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 11

Page 12: INF3410 — Fall 2016

The EKV model

iD = iF − iR

iF(R) = IS ln�

1 + evG−Vtn−nvS(D)

nVT

�2

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 12

Page 13: INF3410 — Fall 2016

Regions of operation dependent on vGS:strong- vs weak inversion

weak inversion = subthreshold vs. strong inversion =above thresholdThese are dependent on vGS ≥ Vtn for strong inversionand VGS < Vtn for weak inversion. The transitionbetween the two is refered to as moderate inversion.

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 13

Page 14: INF3410 — Fall 2016

Regions of operation dependent on vDS:triode- vs active region

INDEPENDENT of weak- and strong inversion thetransistor can operate in either:Triode region = ’linear’ region vs. saturation = activeregionThese are dependent on vDS ≥ Vsat for active region andvDS < Vsat for triode region, where the definition of Vsatis different dependent on if the transistor is in weak(Vsat ≈ 4VT)or strong inversion (Vsat = VOV).

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 14

Page 15: INF3410 — Fall 2016

Regions of operation summary

So there are 4 differnt combinations possible:weak inversion, triode region OR weak inversion, activeregion OR strong inversion, triode region OR stronginversion, active region!

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 15

Page 16: INF3410 — Fall 2016

strong inversion, active region

iD =1

2nkn (vOV − nvS)2 (1 + λvDS)

Different name in the EKV model: β := kn and 1 ≤ n ≤ 2and often n ≈ 1 and is neglected

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 16

Page 17: INF3410 — Fall 2016

weak inversion, active region

iD = ISevG−Vtn−nvS

nVT (1 + λvDS) (16.13)

Where IS = 2nknV2T

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 17

Page 18: INF3410 — Fall 2016

strong inversion, triode region

EKV:iD = knvDS

vOV −n

2(vD + vS)

Sedra & Smith:

iD = knvDS

vOV −1

2vDS

Which is the same for vS = 0 and n = 1For vDS << VOV (1st order Taylor expansion aroundvDS = 0):

iD = knvOVvDS⇒ gDS = knvOVExcerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 18

Page 19: INF3410 — Fall 2016

weak inversion, triode region

EKV:iD = e

vOVnVT

e−vSVT − e

−vDVT

For vS = 0:

iD = evOVnVT

1− e−vDVT

For vDS << VOV (1st order Taylor expansion aroundvDS = 0):

iD = evOVnVT

VD

VT⇒ gDS = e

vOVnVT

1

VT

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 19

Page 20: INF3410 — Fall 2016

Illustration ID vs VGS

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 20

Page 21: INF3410 — Fall 2016

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussedlater)

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 21

Page 22: INF3410 — Fall 2016

Diode Connected Transistor

In strong inversion:

i =1

2kn(v − Vtn)2

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 22

Page 23: INF3410 — Fall 2016

Simple Current Mirror

When will Iout = Iin, Iout 6= Iin, Iout ≈ Iin, Iout ≈ xIin?Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 23

Page 24: INF3410 — Fall 2016

Content

CMOS FET Large Signal Models (book 5.1-5.2)

MOSFET circuits at DC (book 5.3)

Further Model Refinements (book 5.4, will be discussedlater)

Excerpt of Sedra/Smith Chapter 5: CMOS Field EffectTransistors (FETs) 24