InAlN/GaN HEMTs Technologies for Microwave, Fast …€¦ · Page 3 III-. December 2012 III-8 What...

29
Copyright © 2011 III-V Lab. All rights reserved. InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed Signal Applications S.DELAGE / S.PIOTROWICZ

Transcript of InAlN/GaN HEMTs Technologies for Microwave, Fast …€¦ · Page 3 III-. December 2012 III-8 What...

Copyright © 2011 III-V Lab. All rights reserved.

InAlN/GaN HEMTs Technologies for Microwave, Fast switching and Mixed

Signal Applications

S.DELAGE / S.PIOTROWICZ

Page 2

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

► III-V Lab presentation

►Motivations

►Technology for L & S band applications

►Technology for X to Ka band applications

►Fast Switching applications

►E/D mode devices for mixed signal applications

Summary

Page 3

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

December

2012

III-

V L

ab p

resenta

tion V

18

What is III-V Lab?

► A jointly owned Alcatel-Lucent / Thales /CEA R&D Lab

■ French GIE (Groupement d’Intérêt Economique) organization

► with about 150 R&D experts (incl. 25 from CEA-Leti + ~18 PhD students)

■ Dedicated to epitaxial growth, device and circuit design and manufacturing

► performing R&T on III-V semiconductor technology and integration with Si circuits and micro-systems

■ Optoelectronic and microelectronic materials, devices and circuits

■ From basic research to technology transfer for industrialisation …

■ … or to small scale and pilot line production

► for complementary Alcatel-Lucent / Thales applications …

■ High bit rate Optical Fibre and Wireless Telecommunications

■ Microwave and Photonic systems for Defence, Security and Space

► … and looking for valorisation through external cooperation

Page 3

Page 4

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Leti technology

platforms

CEA-Leti : third partner in III-V Lab

► ‘Alcatel-Thales III-V Lab’ becomes ‘III-V Lab’

► Access to Leti Si microelectronic and microsystem technology platforms

December

2012

III-

V L

ab p

resenta

tion V

18

Thales (TRT Fr)

~ 50p. 40%

Alcatel Lucent

Bell Labs Fr.

~ 50p. 40%

CEA Leti

20%

R&D contracts

22~35 p/y

Page 4

Page 5

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

December

2012

III-

V L

ab p

resenta

tion V

18

Main research activities and applications

►Opto-electronics ■ Tx/Rx photonic integrated circuits for the next generations of optical-

fibre communication networks : 10x10Gb/s, 40Gb/s and above, 100Gb/s Ethernet

■ IR laser diodes and photonic micro-systems for optronic systems : DIRCM, detection of toxic gases and explosives, microwave links over optical fibres, laser pumping for atomic clocks and cold atoms sensors

■ Advanced IR photo-detectors

►Micro-electronics ■ GaN power HEMT MMIC technology for radars, electronic warfare, and

wireless communication systems

■ InP HBT technology for fast digital and mixed signal circuits : 40Gb/s and above front-end circuits, broadband ADCs, …

Page 5

Page 6

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

December

2012

III-

V L

ab p

resenta

tion V

18

III-V Lab implantation

Alcatel-Lucent /Bell Labs Fr.

Marcoussis

Thales Research and Technology

Palaiseau

Page 6

Page 7

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Motivations : Why AlInN/GaN HEMTs ?

7

Spontaneous polarization of GaN, InN and AlN

compounds functions of lattice constant

ΔP0 (Cm-2) Piezo (Cm-2) Ns (cm-2)

Al30Ga70N/GaN -1.56∙10-2 -0.98∙10-2 1.58∙1013

In17Al83N/GaN -4.37∙10-2 0 2.73∙1013

In17Al83N/GaN :

- Spontaneous polarization

without lattice mismatch

Spontaneous polarization

higher :

More electrons density

More power density

Lattice match :

Less lag effects ?

Better reliability ?

Page 8

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Structure of InAlN HEMTs

AlN layer enhances sheet carrier mobility

Sheet resistance # 320 W/sq. – Sheet carrier density ns # 1.5E13cm-2

Structure of studied HEMT

Source : EPFL-UltraGaN Project

@ 5nm -> 50% of the charges @ 11nm -> 85% of the charges

Page 9

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

►Technology for S-Band Applications

Technology for S-Band Applications

Page 10

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Power Device Manufacturing

2 inch

Device cross section

Page 11

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Static results

► Idss = 600mA/mm – Idsmax= 800mA/mm @ Vds=+1V

►Gmmax = 330mS/mm @ Vgs=-0.6V

► Ig < 20 µA/mm @ Vds=10V

0.0001

0.001

0.01

0.1

1

10

100

1000

-4 -3 -2 -1 0 1

Ig,I

d(m

A/m

m)

Vgs (V)

Id

Ig 0

50

100

150

200

250

300

350

400

450

500

0

100

200

300

400

500

600

700

800

900

1000

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

Gm

(m

S/m

m)

Id (

mA

/m

m)

Vgs (V)

Gm

Id

Page 12

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Small Signal Characterization

FT= 15 GHz – FMAG=38 GHz 19 dB of MAG @ 2 GHz

Gm # 300 mS/mm

Gd # 3.2 mS/mm

Cgs # 3.4 pF/mm

Cgd # 0.110 pF/mm

Cds # 0.450 pF/mm

Page 13

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Large Signal Characterization

5 10 15 20 25 300 35

10

20

30

40

50

60

0

70

Pin (dBm)

Po

ut

(dB

m),

PA

E (

%)

& G

p (

dB

)

Gp

Pout

PAE

1 2 3 4 5 6 7 80 9

10

20

30

40

50

60

0

70

Pout (W/mm)

PA

E (%

)

20V 25V

30V

35V

►On wafer large signal characterization : 2mm device @3.5 GHz

Pout = 39dBm (8W - 4W/mm)

with PAE = 62% and Gp=10.7dB (Vds0=20V – Ids0=60mA - Zl=17+j18 W)

Pout from 4 to 8W/mm with associated PAE from 62% to 53%

(no re-tune at each vds)

Page 14

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Amplifier realization

RF in

RF out

High K

matching networks

GaN die

diamond

Heat spreader

power package

InAlN/GaN based Power amplifier

Can be measured in single ended or balanced configuration

Page 15

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

L-Band (2GHz) High Power Packaged Amplifiers Measurements

105W - CW reached (Pdiss = 4.5W/mm -> Tchannel = 260°C )

140W - pulsed conditions ( Tchannel = 125°C)

0

2

4

6

8

10

12

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18

Ga

in (d

B)

Ou

tpu

t p

ow

er (W

) a

nd

PA

E (%

)

Input power (W)

PAE

Pout

Gp

0

2

4

6

8

10

12

14

16

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14G

ain

(d

B)

Ou

tpu

t p

ow

er (W

) a

nd

PA

E (%

)

Input power (W)

PAE

Pout

Gp

Vds=30V and Ids0=0.1A Vds=30V and Ids0=0.1A.

pulsed 10µs/10%. CW mode.

Page 16

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

First time a transistor operates up to 1000 C !

High Temperature DC Measurements (ULM university – Germany)

Page 17

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Ultra thin barrier (few nm) InAlN/GaN

heterostructure still working after 1000 C

for 30min step.

Very promising for high robustness

demanding applications.

0 2 4 6 8 100,0

0,1

0,2

0,3

0,4

0,5

0,6

-1 V

0 V

+1 V

+2 V

3.5 nm InAlN device at RT

I D (

A/m

m)

VDS (V)0 2 4 6 8 10

0,0

0,1

0,2

0,3

0,4

0,5

0,63.5 nm InAlN device after 1000°C stress

VDS (V)

I D (

A/m

m)

-1 V

0 V

+1 V

+2 V

-20 -15 -10 -5 0 510

-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

at RT

Gate voltage (V)

I GS

(m

A/m

m)

after 1000°C

1000°C

Thermal stability of 3 nm barrier InAlN/GaN HEMTs

Page 18

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

►Technology for X to Ka-Band Applications

Technology for X to K-Band Applications

Page 19

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

0.25µm technology - pulsed I-V and Sij results

Pulsed I-V measurements

Idss ~ 1.2A/mm and ~1.4A/mm @ Vgs = 0.5V

Gmmax ~ 450mS/mm

Vp~ 3.8V

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

Id (A

/mm

)

Vds (V)

Vgs = 0.5 V

Vgs = -0.5 V

Vgs = -1.5 V

Vgs = -2.5 V

Vgs = -3.5 V

Vgs = -4.5 V

Polarisation

(Vgs0,Vds0)

Vgs = -4.5 V (0;0)

Vgs = -4.5 V (-4.5;0)

Vgs = -4.5 V (-4.5;25)

8dB/30 GHz

11.5dB/20 GHz

14dB/10 GHz

Fk # 27 GHz

|H21|²

MSG/MAG dB

Frequency (GHz)

0.25µm

FT # 30 GHz

FMAX # 80 GHz

Page 20

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

8x75µm - A-Class (500mA/mm) Vgs0=-2.1V

Vds from 20V to 30V

Output power from 6.6W/mm to 10.8W/mm

PAE from 45% to 40%

Load-Pull measurements @ 10 GHz 250µs pulsed

0

1

2

3

4

5

6

7

8

9

5 10 15 20 25 30

Po

ut

(W)

Pin (dBm)

0

10

20

30

40

50

5 10 15 20 25 30

PAE

(%),

& G

p (

dB

)

Pin (dBm)

6.5W (10.8W/mm)

5.7W (8.7W/mm)

4W (6.6W/mm)

45%

43%

40%

Page 21

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

World first demonstration of 20 GHz CW InAlN/GaN Power amplifier

0

5

10

15

20

25

30

35

40

0 4 8 12 16 20 24 28 32

Pin (dBm)

Gain

(d

B)

, P

ou

t (d

Bm

)0

5

10

15

20

25

PA

E (

%)

Pout meas (dBm)

Pout mod (dBm)

Gain meas (dB)

Gain mod (dB)

PAE meas (%)

PAE mod (%)

20 GHz AlInN/GaN amplifier

In test JIG

20GHz : Pout = 4.5W with 20% PAE and

12B of linear gain

Good comparison with the simulation

Vds1st_stage=18V, Vds2nd_stage=20V, Ids= 250mA/mm,

Page 22

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

►Technology for Fast Switching Applications

Technology for Fast Switching Applications

Page 23

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Technology for Fast Switching Applications

Enveloppe Tracking

Amplificateur

Modulateur de

polarisation

Puissance de

Polarisation: 50V – 5A

Signal RF modulé

Enveloppe (BP:5MHz):

- Signaux I & Q

- Signal enveloppe

Traitement

Puissance

Alimentation DC

Page 24

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

► Mesures:

■ Rch=500 Ohms, Vdd= 50V, DC = 50%

Fcommut= 50 MHz Fcommut=100MHz

Cellule de commutation Mesures à Vdd=50V, fcommut=50 & 100MHz

10ns 5ns

Page 25

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Modulateur à 4 niveaux

Fenv=8MHz (Fc=48MHz)

► Mesures d’un signal sinusoïdal fcommutation=6*Fenveloppe

Fenv=3MHz (Fc=18MHz)

Page 26

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

►Technology for Mixed-Signal Applications

Technology for Mixed-Signal Applications

Page 27

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Technology for Mixed-Signal Applications

TRIQUINT & University of Notre-Dame

Page 28

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Technology for Mixed-Signal Applications

TRIQUINT & University of Notre-Dame

Page 29

Co

pyr

igh

t ©

20

11

III-

V L

ab. A

ll ri

ghts

res

erve

d.

Remerciements

Merci de votre attention !

Contacts:

[email protected]

[email protected]