Implosion Data

30
hwst 9, 1943 Thisdocment oontiins 30 _ Pagex I IL so J. Bradner ddfca?h changed h Neddemgwr by tthority of the U. ,S. —.=. I I I —— _ APPROVED FOR PUBLIC RELEASE APPROVED FOR PUBLIC RELEASE

description

Implosion tests

Transcript of Implosion Data

hwst 9, 1943Thisdocment oontiins30_ Pagex

I

IL

so

J.

Bradnerddfca?h changed h

Neddemgwr by ●tthority of the U. ,S.

—.=. I

I

—I

—— _

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

● ☛ ✎☛✎ .*m :● 0..000::● *9 0.00

$;? UIVCLASSP..:**-J”**.. .*● 9

‘:-.....● 0= ●:0 :.* :.O● ::*00 co-

““:M’RA ‘“”““

Part S givesa very simpleapproximateone-dimensionaltreatment

of the term!inalvelooityimpartedto a rigidmass by a mass of high explos-

ive. The one-dimensionaltreatmentis presumedto be approxiqmtelyvalid

for the cylindricaloe.seprovidedthe chargethidcnessis smalloomparedto

—.—.

mss ratiosfor ?NT are howeverfoundto be Mgh byas much as 5@. The

disoropanoyoan be attributedto sevsralthings: (a) The theoreticalmass

~atiosare onlyapproximateand are probablytoo low. (b) The assured

valua for the yieldingstressfor steel(10-20oarbon,oold drawn)may be

too high andnrzyhavea lowereffeotivevaluewhen the collapseis rapid

thanwhen it is slow. The originof the dlsorepancyean be settledby meas-

urements of therate of oollapse,or by direotmeasuremo’ntsof heatgenera-

tion. Thf3808ZpOriIM?ItSare now in progress.

●✚✠✎● 0* .00 ● .

●.*

● :*.*.ge .0

● : :. ● :. .0

*,@

●.:. ● b@ **

● * ● *9 ● *.

● ☛☛ ✌✚ ✚ ✎☛☛

✌✎ ✎ ● ☛ ●*9.OO●.**. ●

..< uflCMSSIFIE!I.00

.00. .

●s-:.:. .● ● :..0 ●90

the radius. The

of the simplified

of explosive/mass

unit ItFL8S of the

and temperature.

resultmaybo expressedto a good approximationby means

of projec$i.le]and U. is the initialinternalenergyper

explodedgas, assumedtobe initiallyat uniformpressure

In l%rt 11 the modanios of the oylinderitselfis treated

from simpleenergyargumentsusingthe assumptionofa constantyielding

stress,and the resultof Part I is appliedto estimatethe attainableoo1-

lapseratioas a functionof the nms6 ratioof explosivearidcylinder. In

l%rt III a few uow experimental dataare considered.The observedcollapse

ratiosare foundto be in roughagreementwith the ones calculatedfor RRX

if one assumesan effeotivoyieldingstressof 300,0003b/in2. The observed

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

● 9

.0 9** .90● w@”/’● O* .** : ● .** ..900. :

●● **

● be

● ** ● ** %L”~”● e*90 ..0 ●

● . 9*, ● 8O ● ** ● 00 ● *● .*● ::.:. ● 00● am,. .0

.m

●:0. ●

●:O ● m. .. L*● .**●

THE COLLAPSEOF IiOLIOASTEELCYLINDERSBY KIGH EXPLOSIVES

I. MAXIWM VELOCITYGIVEN TO A PROJECTILE

A oorrewttreatmentof the mo+ion

a ohargeof highexplosiveinvolvesa number

the dynamioalproblemof takingintoaooowrt

thewho~e systemof projectileplus exploded

i.mparixdto a projectileby

of’faotorswhioh oomplioate

sisndtaneouslythe motionsofI

gaa: (a)The equationof

atatoia ratheroomplieatedbeoauaeof the extremeinitialpreaaureand

dcmity. (b) The quil$brium of combustionproduot8s eaumablyshiftsas

tho hot gaa expands,and (o)The detonationwave leavesthe explodedgas

with a residualmomentumand a non-uniformpreaauredistribution.A very

roughpreliminarytreatmentW&oh is of someuse in oorrokting expriment-

Q1 dakamay be givenon the followingbaeirs.(a) The motionis assumedto .

be one-dimensional.This shouldbe a fairapproximationfor “implosions”

of’oylindrioalor sphericalshellsin whiohthe ohargethioknessis small

uomparedto the radius. (b) The detonatedexplosiveis assumedto be

initiallyan idealgas at uniformpressureand density.’(o) The project-

ile is assumedto remainat restwhile reoeivingthe impulsefrom the

explosive. Assumption(b) is presumablya fairapproximationif tha

explosiveis detonatedin severaldirectionsa% onoe,and (o)oan be valid

onlyfor smallratios,#AS d exploi3ivemass to projectilemass.

On this basiswe assumethatonly ths boundaryl~ers of tho

detonatedexplosivemove, forminga discontinuousshockwave ti the outside

air and 5 discontinuousrarefaationwave movingintothe explodedgas whioh.*..*O●.

is assumedto maintatnthd:i”@”t&ii&@6~po untilthe rarefaotionwave● ●

.0● *

b.,.:.t..6..●*S“ .2

\:; ;: ti~~klFIED ~—..—..9* .- —----

● *●m.00●

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

● ✘ ● ee

● **.** ●

.* *.:

● **

● b :**● 9 ““”i(’’$!i’’c[d●*...● O* ●:0 :- :

pa8aes. The lastamumpti~ i~n@ a:va$?id~~eau the rarefactionwave.:0. ●:0 :** ● *

cwmot remaindi600ntinuous$”&~ is used onlya8 a wudo approximationto

repre8entseinekind of an averagemotionof the wave front. A rigorous

solutionfor the uaseof an idealgas i8 givenby Streibin anotherreport.)

Referringto Fig.lb,we thenassumethat thereare threeregions

of oonatantpremure po, p’ and the outsideatmosphericpressurepl$ that

rareftmtion

travelwith

v, v’~,

between

and

and shockwavea

aon8tmt velooitieu

thatthe boundary

expandedgas and oom-VI I

pressedair travelswith oons%antmt—.

I*

V* Ftg. lb velooityv . Tho oonmmvation-) b lawsfor maes~momentumand4’ ‘1 ‘~’fi’r energymay be writtendown in

\ +xDetonated Ikpanded Ai; shook the fOr’lll:-

gl?m gas wave

(1)

(2)

(3)

(4)

(5)

(s]

(%3”+(’1’?1 ‘Ptva -,,., [ “on’.)

au is the internalenor● . . ● EH=VWWS8°● : .*.’* : ● : ● * ● ●● ***

●.-

.j=o $iiiiAi&FIEO~

a●.* .** ● ** “-—.0.**.* .** ..** ●

.*. ● ●mm.9 **:.9*● ● :.. ● ●● e I

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

ti4m?e

and.

-“yplrg#90 ● ** ●

●e* ●●*9 se

8** ● 9.000:: 9**.*O

690 ‘“”:‘mbo:eo o*.8* ..0 ●

-5=.. . . . ● 00 ●:0 :- :*0● ::. .OO ::

● ● :● ::. ● -●. ● 00 ● .

Theseare readi3.*.*8W& f?orthe twoequationsh v’:-

approximation

and the velooity

tJ-i! tq

of the mreikmtion wave is

%v’

Thus fromthe equation for ~ we IWe that the Mnetio energyof the ex-

pandhg gas oomesout to boapprcxximQtelyequalto

energyof the detonatedexplosive.,Tables1 and 2

the initialinternal

give aomoapplicable

data for eevemaldifferentexplosives.

1internalenergyu. ‘— ~ is not

x-l PO

explosivegaswe make direotuse of’the

As the ideal-gasrelationfor the

applicableto the highlycompressed

calorimetricmeasurementsof the

energy of explo~%on and put th$s ewd to UOO

—---~..0 :*O :*.

.88 ● ●● ●

.9.9* : ● : ●* ● ●● . ..● ● *

●,.0 :@”

.0 .:. :00 ●@’8**: : .** UNGIMSIFIEO

●8 ●@e.**:.98.

..* ●@

..* ●.*

. ● ●*m::: Q:**.

●m. .** ●

&-.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

.—~~. ‘“ ● * ● *9

-.

● O* ●*9 : ●“0 ●

.* **. ● ● *S

● oe. ● O*

:.O ● ●0: ● c c.:● 9* .+=. . ● ● ‘@uss#j#..● 00 900 ●:* :.. :.O

● ●

: :0 ● ● O**

TABLE1. MEASUREDHEATSOFEX&&&Jh~ (&&a&!&g density1.5)(Kistiakowsky,OSRll#293)

EXPLOSIVE HEAT OF EXPLOSION DETONATIONVELOCITY(mess.)

TNT 660 oal./g/ 6700meters/seo

Tetryl 890 7200

PJ3TN 1410 7600

Cyolonite(RDx) 1240 7800

“ TABLE2. PROPERTIESOF PRODUCTSOF ADIABATIC,CONSTANT-VOLUNEEXPANSION{Calculated)(Brinkleyand Wilson,OSRD /k 1231)

EXPLOSIVE LOADINGDENSITY TEMPERATURE PRESSURE

RDX, Comp B 1062 314’)0K 98.8x 109 dynes/cm2

TNT 1.46 2910° 65.4

60/50@natol 1;58 2480° 79.8

For RDX,density1.5, one thengets

V@: 3.2 x 105 orI1/8ec.

v= 0.65 x 105 o~.eo.

The totalmomentumgiventothe projectileper unit aeotionalarea will then.

be, for mall oharge8oflength!o

P. Po~o/v.=foJov’ o.*mv’.

Alternatively,

(7) Vp=

is themayimum

area.

● ✎ ✎ ● OO ● *

velooityirnparte&$&;lO@pr$j~gt~l~of mass m per wait 6ectional•~:.oo

●m9*..:O● @*@b@● @*

..*● ●

●* ‘**.OO●.:0:

.Obm. .**

.9* ● a@. ..*..: ● .**

.* :00 ● . ● ——.● *

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

.00 ●-* ●--—.—- —

9 **.* uJmlssl[/~‘~”” :.i %.:: ~● *o● **● m ● O* ● ● ** ● ●

. . 90. ● a. ● bm 9** ● *

This suggests“t~a~a~%om~wl~t~e@er resultmay be obtainedby a..-0-m-●OO ● ● be ● OO ● *

directoverallapplicationof the conservationlaws,if one assumes

interniilenergyto W dividedbetweenprojectileand e$octedgaeea.

equationsare

lq)vt= m.

The 8ozutioni8

This is plottedin

“=*’=Fig.2 for RDX and TIiTu8ingthe mea8uredvalues

the

Tho

of U. from

Table1. In the figuresand in all that followsthe notation ~,fle, re, e4

has beenused for themass,densityand dimensionsof the explosiveoharge.

11. MOTIONOF THE CYLINDER

The pressure existingin a detonatedhighexplosiveis of the order

of 106 lb/in20whiohi8 muoh higherthanthe yieldingstrength of any ordinary

metals. In treatingthe motionof a collapsingshellwe

thereis plaakioflowagainsta oonstantyielding8tre88

For thesimplepreliminarytreatmentweignore

thereforeassumethat

throughoutthe shell.

volum ohangesand

thereforeany effeotsof elasticwaves. ‘l’heshellis a86umedto receive anPo

@, ~

initialinwardimpulsefromtho pressurep. and there-

(afterto move freelyagainstthe’yieldingstress. Thie

i ‘m ‘1 assumptionis not quitevalidbeoausethe velooityof the\‘-./ rarefactionwave into the explodedgas is ~ .6 x 105 cm/see.,

mub..ia oG1thyqa? orderas the velooityattainedby● **.

● * ●::

the shell; this shoulG*~ofiJ&@vg&&Wlsly invalidatethe results. The

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

9* ● O* ● ** ●:* :*. :**●

kineticenergyof the shel~”~tiu$ s~$cil?f~~~emotion,K. is the initial● ●OO ●

kineticenergy,and W is thowork done at that stageagainstthe internal

stress. IfW and K. are knownthen the velocitiesof the innerand outer

surfioescan be calculatedas a functionof the collapseratios. K. is Gal=

oulatedfromEquation(8). In applyingEquations(7)and (8)as approxima-

tionstoa oylindriualor spherioalcase it maybe notedthat in (7) the

mass ratioshouldbe takenasflete/@ where te and t are tho thioknossesof

explosiveand shell,whereasin (8) one shouldpresumablylakethe actual

massratio. However,since(8)approaches(7) for smallmass ratiosand must

in any case representan upper limit,we haveused~/m .jjet@t in all

thatfollows. In the worstease this is about0.6 the aotualmass ratio.

Work of collapse

The pressurerequiredto deforms thin

r and thicknessAr, againsta constantyielding

P=

If the volume

AV= 2TTi&r

radiusr’ is

sAr—.r

ohangeis

= const.,

rt(

oylindrioalshellof rm.lius

stresss, is

neglectedthenthe volumeof the thin shellis

and the workrequiradto collapsethe shellto a

r

JrQ

Let RI, rl be the initialand finaloutsideradiusand R2, r2 the initialand

finalinsideradius. The totalwork to collapsea thickshellfromRl, R2 to

● ee ● .9* ● -9 ● O

●°0 : : : : ● 0

●● 0:0 ● 9 ::

● : ● *

● * ●:0 ● ee ● @o :** ● 0

● ☛ 9** ● ** ● ●

● ** :*0 ● ● ● ●°0 .—● *9 ● ● 00 ●

● **9* ● **

● ** ● 0: ● **● 0 ● O.*** ● *

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

● ☛ ● ☛☛ ● ● 9

● *- .“a● ●** ●

.8 **** ● **● 00 : .:9-:.:.::.* ●909 ● .* ****

~2 - R22 a r$2 - r22; R12 - R22= r12 - r22

/rl

with the notation I

A=--&

the total work per

(9) ww:—=2(

rl=’-i$~ y = ~, (calledthe “innercollapse

UZI~* nxt8s w, 13Y!%ybe Written

Here x, yand ~ are relatedby the oonstant-volumeoondition

X2“Yz=l”f.

h Fig. 3, w/(s/2~)is plottedask funoti.onof y for twovaluesof

put w Fv2/2 where v is the equivalentinitialvalooityto produoe

oollapseratioy and in F&s.

of the yieldingstressand for

whereasit shouM be about7.8

4 and 5.weplot v againsty forthree values

two values of h. For theseaurvesP=7.5,

for the steel oylindersofl%rt 111. The

curvee of Figs.6,

equivalentinitial

Rate of colla~

7 were derivedfrom Figs.4, 6 by using Fig.2 to oonvert

Velooityto maas ratio.

The kinetiuenergymaybe shownto be

K= Mv222 l%8@i*+:~+{ UIICIASSIFIEO ~

●● * ● ** :00 ● *B ● ** ● 0

● 0 ● ** ● *e ● ● ●9** ●*. ● ● ***● ee*e ● O* ● .● oo-b 9*9 -.-—.@m ● 0: ● e* -,.. ..—— ..● * ● ** ● ● ● 9* .—

.—

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

● ☛ 9** .—-. U!C 4$● ** 9’*: ●

● .mmm ● 9=

● coo J()”:”: ..::*9 ● 9** ●

● 9* ● a- ● 9

● ☛ ● ☛☛ ● *O ●:0 :- :*.

i~hereV2 is the velocityoflt~e~.n~~de:s~fa~~,and x, y and > aro oonneoted● ●** ● ●:0 ●**●*

by the 8am8oon8tantvolumeoonditionas befores X2 -# = 1- X2. Xf we

./’,-write w = (8/2/~)g(Y)”men the energyequationis

(vz% )f (y) = VO% :’(a/2)@g (y).

Thismaybe used to find V2 as a fhnotionof y forany a86Um0dvalueof V02.

For the case of “oriticalcollapse”f(0)a O, so V02 : -(sfi)g(0). I!he

kineticenergyfunotionf(y)is plottedin Fig.8 for variou8valuesof~ , and

in Fig. 9 the inner velooity for the criticalaase has been plottedas a

functionof oollapseratiowith ~ s .667, s = 300,000lb/in2. The i~er

velocity is also shownfor the same initialvelocity,but no resistingStr08SOS0

In thiseasev2 = v&mT’.

111. EXPERIMENTALR?LSULTS

For the preliminaryexperiments,whiohwero of necessitydonewith

meagreequipment,the aim has been fir8tto observethe main featuresof theI

phenomenawhenmetal shellsundergoextremeand rapidplasticflowunder ex- ~

ternalpressure,and to makean empiricaldeterminationof the relationbetween ~

aollapseratioand mass ratio.

observationsof the velocities

methodshavebeen devised.

About30 experiments

rangingin diameterfrom3“ to

Theseexperimentsare being folluwedby

and timesof aollapse,for

havebeen oarriedoutwith

whioh severaldireot

mild steeloylinder8

6

The explosiveused firstwas TNT

0.87g/om3,and in all the later

5/f3nand in wall thioknessfrom~ to l&’.

orystalspadcedto a densityof about

experiments,a plasticexplosiveoalled

“CompositionC“. whiohis a mixtureof.finelypowderedRDX (8@), also oalled

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

whiohthe---–

figurenumberscorrespondto the”~~o%og~a>fi~~““Theexperimentnumbersare

markedon tho samplesin the photographs.All the analyzabledataare in-

)eludedin Table3, as well as a numberof typioalexamplesof the sort of

@%gnentationooourringwhen largeoharges are used.

&alysis of the data; stabilityof oollapse

The greatestdifficultyin obtaininginterpretableexperimental

resultsarises fromthe instabilitywhiohnecessarilyexistswhen the wall

thioknessismall comparedto the radius. This is furtherenhanoedby the

non-uniformpressureleftby the detonationwave. The detonationwave effeot

can be reduoedby usingmultipledetonationss startedsimultaneouslyby tying

severalprimacordsof the samelengthto one blastingoap; four detonation

points,spaoedevenlyaroundthe otrcxxnferenoeat themiddleof the oylinder,

were used in most oases (seeFig. 10). The effectof the non-uniformpressure)

leftby the detonationwavo is shownvery stronglyin Fig. 14 (Exps.9 and 11)

where therewere fourevenlyspaoeddetonationpointsat the endsof the

oylinders(at the bottomin the photograph).Evenwhen several detonation

pointsare used thereis usuallyevidenoeof greateractionin the region

betweendetonationpoints. !Nmreare almostalwayssharplydefinedlines,

alongwhiohthe detonation-wavesoome together,showingat leasta slight

etohingof the metaland in severaloasesa strongtendenoyto shear. This is

shownexpeoiallywell in Figs.12 and 13. When shearingrupturecmcursit is

usuallyalonga surfaoemakingan angleof about45°with a radialplane,whioh

is the directioninwhioh the strainis a simpleshear(alsoin which the

shearingstrain and stressare a mximum).

It seemslikelythat fairlyuniformcollapseoan be produoedby

““”“:”~$is conclusionfollowsfromtheusinga suffioiemtlylargeexp$d~%~ cha~gq,90*9

faotthatthe pressuroexerti;:%jiti~”e%~l~~~?~”i~ 3argecompwed IN the

- :::~ ~: ~“ ‘$ ~f

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

8tXWl@h

momontum

● ☛ 9,* ● ●

● m.● *** ““ -:‘ t &ooOOO:.’::m. ●

9 v ●*9..0 ● ● 9. ● ●

● 0 s:. :** ●:* :- :.O

of themate?idks~d :if ~ho:%h~~s are givena largeenoughinward● *** ●:0:.*●.

the streseess;ou~~~laya relativelymall part. Experimental

for thisia shownin W.gs. 11$ 15, 16, ”18 and 19. In Fig. 11, Exp. 1,evidenoe

for example,the steeltubewas 3~ diameter,& wall,with a 3/4Rohargeof

TNT

the

thickenedto about5/16”,

orystals; Exp. 7wao the sameexceptthat the chargewm 1* thick. In

firsteasethe tube collapsedmore or less uniformlyuntil thewall had

thenrupturedintoa numberof stripswhiahwent

In theseoond ease the collapsewas evidentlyquiteintoan irregukr bundle.

uniformbut so violentthatthe tubebouncedout againand fragmented.

thin-walledooppertube of fig.1S, Exp. 5 is anotherstrikingexample

The

of the

~.e thi~.

.

In attemptingto interpretthe data by means of the curvesof

Figs.6, ?, onlythe oasesof partialoollapse,or else completeoollapse

withoutfragmentationcouldbe used. In caseswhere the collapsewas non-

uniform,or ‘whereruptureooourred,an attemptwas 8tillmade to estimatethe

oollapseratioby gettinga roughaverageof the wall thiokness. Thiswas

doneeven in the ease of Fig. 1, Exp. 1, on the groundsthat the work done.in

the initialthickeningof thewall was probablylargeoomparedto the work of

collapsingthebundleof rupturedstrips. The =SS ratios)Pehe~h aotually

usedand the onescalculatedare listedin Table3. Five pointshaving

A= .667 or .833 are markedwith (*)and plottedin Fig.6 or 7.

The yieldingstress;time of collapse

Thereis no soundbasis for ohoosingto interpretthe data in

ternsof a yieldingstressof 300,000lb/in2. Thisvaluewas quotedto the

writerin privateconversationas an approximateexperimentalresultfor

6xtremeand very rapiddeformation,whioh appearedto be more or loss inde-●*9 ●*e●*

pendentof the heat tre~~e”$ “be &&l ~~ received. As thisvalueappeared●.*.:0:.0.:*:00●*

to fit the dati for Cm~qsi#&onOCo~~@QsOe~senas a reasonablevalue,although● 9* ● **● 9*

likelyto be high. Ind~.dn~On~Oc$ok~~fI}heeffeotivevaluesof s are to .

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

90 ● ** ● ● 9

● *O .** ● se:●

.* 9*9

● ** ● -35- 900 “*8** ●ee :** : : e=*88 ●**

1 ● 0 ● OO so. ●:. :.0 .-.be made bothby oalorimetrida@&$u@ne~ ~ ~h~

S:OC● 9W ● ●:s :00 ● J

urementsof the rate of‘colla”pse.

heat of workingand by meas-

Two preliminarymeasurementsof the time of oollapse,mde by a

bullet-catchingmethoddevisedby Streib,fora 3“ OD,& wall steeloylinder.

with 8 ~ chargeof CompositionC gave timesofabout 10-4sec. The expected

valuewouldbe abouthalf this on the basisof 300,000lb/in2. Thesefirst

experimentalvaluesshouldbe howeveressentiallyupper limits,and further

measurementsby thisand othermethodswill be the subjeotof a laterreport

by Streib.

Velocitiesof projectilesfiredwith smallohargesof high explosive

To get someindependentinformationon the relationbetweenterminal

velocitiesand mass ratios~someexperimentshave beenbegunby Bradnerand,

Bloch,in which 2$~diametersteelprojectileswere firadupwardwith varying

oharges(confinedonlyby pasteboardand thinwood) of pentoliteof the same

) diameter,

measuring

sifiesare

pressedtoa densityO.45g/cm3. Velocitieswere determinedby

the timeof flightwith a stopwatoh. The data for two

plottedin Fig.20.

A very roughinterpretationof theseexperimentscan be

projectile

given in

termsof thesimpleone-dimensionaltheoryof Sec.I, ifwe aesumethat im-

mediatelyafterdetonationthe rarefactionmvo travelsinwardfrom the two

freesurfaoesof the detonatedexplosivewith the same oonstant

thenassumethat the initialpressurep. adx on the surfaoeof

a% any pointonlyuntil the raref’actionreachesthatpoint,and

is thereafternegligible.With these simpleassumptionswe can

velocity. We

the projectile

that the pressure

oonputethe

ratioof the momentumimpartedto the projectileto the momentumit should

havegot if the explosivewere freeto expandonly fromthe freeend surface.

I

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

I,

We get for thisratio

= I-

wherere = radiusof

factoris

aurves of

cannotbe

applied+0

1 =lengthofeharge.projectileand oharge,and ~

the resultof the ono-dimensionalcalculationto get the

fig.20 appropriateto the projectilemsses used. Good agreement

expeoted,but the curvesdo seemto representthe trendof the ex-

perimentaldata. More oompleteresultswill be givenina laterreportby

Bloohand Bradner.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

Notations RI, R2 =

.—

?ig

.-

11

12

13

14

15

16

17

18

19

20

*)

1)

2)

Exp●

no.

@

72)

2*)

10*)

3

4

@

111)

6

52)

132)

142)

182)

26*)

21*)

22

R@l“luner”oollapseratior2/Rl

thicknessesand densitiesof explosiveand cylinder.

CYLINDER

Lkiteria’

Steel

Steel

Steel

Steel

Steel

Steel

Steel

Steel

Bronze

Copper

Steel

Steel

Steel

Steel

Steel

Steel

RI

-K-1050

1.50

1.50

1.a50

2*OO

2.00

1.50

1.50

1.64C

1.75C

1.50

1*5O

2.00

3.00

3.00

3.00

R2

-m.1.25

1.25

1.00

1.00

1.00

1.50

.75

1.00

1.047

1.531

1.00

.75

1.00

2.00

2000

2.00

.h

0.833

0.833

.667

.667

.500

●750

●500

.667

.638

.875

.667

●500

.500

.667

.667

.667

Y

0.633

02

6553

.23

.406

.601

.171

-,~ol

‘.27

02

02

02

02

-*37

o

0

EXPLOSIVE

Material

TNT

TNT

ThT

TNT

TNT

TNT

TNT

TNT

TNT

TNT

Comp.C

Comp.C

Comp.c

Comp.C

Comp.C

Cozlp.c

he

T0075

1.50

.76

1.50

1.00

1.00

1.50

1.50

1.36

1.25

1.50

1.60

1.00

.75

1.00

1.00

ye.-

0.87

.87

.87

.87

.87

.87

*87

.07

087

.87

1.49

1.4

104

-1.6

105

h 1.5

iGa

0.28

.67

.16’i

.32

.11

.22

.22

033

.23

.56

e57

.38

.19

eM

.20

.19

Detonatedfrom l-merend.Collapsedand fragmented.

Plottedas an experimentalpointin Wg. 6 or 7.Measuredat seotionof maximumcollapse.

● O* ● ● ** ● 9* ● *●e* ● ● ● ● ● *● ***o ● 6

90.s c S*O*. . . . . . .

-:ala.erom~

017

>.40

012

.26

.u

●14

-.

--

-~

-.

>.2

> .15

.15

.14

.20

.20

I

*** 0 0 *O* - i● **9* ●● ** ● 0: ::0● * ● ** ● 9 ● so I

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

-f./-

i

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

=!.......

i

i

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

..< .’.’ ---- . . .

4

I

I

.,

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

I-23.

!;,!I.,

j

1

,

!

.

.,..

:. ....-

-..“-

....

,.

.., ..

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

.

.—— — -— — .—.—-— ....-— . .. . . . .. . .—

——r. —.

..

I

9TEEL SWL~ 1’OtiSTIt-4G CAP ~

.al

PLATE

PASTEBOARD

4 or= SAME(WALLY

LENGTH)

FIG, IO

3132_rto N OF TYPICAL A55EM0LY

DRAWN TO SCALa OF= EX~%R.lM=NT # 26

— —— .—. .— .-—.—— — —. —.-

- --- - ——— .3.. -.7 ---—_.

,—. . . . . ..- -—. — —$. - . ..

..-. — ——. . - .,, >~,”-.x, :,-.. — .—-. —.-— .—. . .:.i:.~

— . —..—

--— —. .——_—_ —-—

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

Tho detziled

markedon th- samples

sizeof the sam~lsis

● 9 ● **● ** ●°0: .*9●

m“ ; .! !“:.:;● a**.***- ● *.

. . . . . . . . .0. :.* ● e● ● ●

● :0. a:. ::● ● *

mmO’XMJ“ ~ “ “ “ “:=.—_~7--●** 8,- ● *.—~~

data me ~iven in Table3. ExAperimentWihers arc

in the photoLwQphs.In eachphotographthe oriCinal

3hovm by a ri~g or a completecyllnd.ez’.All cylinders

are seamless”3040 carbonsteeltubi~ with a staticyieldpoint

55000lb./in2. Four-pgint dctona tionat centerunlessotherntse

Loadingdensityfor TNT,0.87;for Comp.C8 ahou$1.5.

of nbout

stated.

— .— —

.

I ‘- ta

———.— .-—— .——

I _.

$~itil._ L--— —-. .-..

● m ● *O ● .**Oe D

● *b ● *b ● ***

● **** ● 00 .

be **e* ● **● O*. . ...*..

● m ● QS ● *

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

.

● m ● *. ● m* .8. 9.* . .● ● ea

s : 00 ● *● *

::

● :: ● 9

●:●:0 : so●:0 8.* . .

—.

I

lll!aln—.“-. ““s’

.

I~L._____

FiG. 130, .Ixps3:

I

h

:

. .

4W OD, lm wall,8“TI?X!~ lR thick,*

longlong

● ☛ ● ☛☛ beooeo● ea ●**O.*.*● *O** ● 00 ●

● emmm ● **● .*.*: ● *a● e*m*emm ● e

,;

,

—-

dotonationwavesmet.

.._ I

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

~. 14●

Fic. 25.

gp● 0 ● *

●°0 : ●m. ●

● *.*..* ●

● Oa ● o ● 00 o:-0 ● ●e* ● ● ● ●a*

● ** boo ● ●

—-—. .——— ———.

.— -

i ——F- -, .—. .

————– - . ...

I-— --- .-

V LA .,.

.

m.....A

J- - .2A”

—.. - —.— . ..– —— —.. . .—— ... —

J!X).9: w OD. g~fwell.w 1o11:

I

TNT, & thick;7-Y 10&

EXP. I.1:3W OD~ & wall,8N lonG,sameoharge

Bothdetonateditrom4 potitsat lowerend in photo~raph

I

I

——— a

-v --–

Bronze,3.281~OD, 0.593”roll, 6W lb~TNT. 1.36”thick,5& low

-1

*

.

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

~F.-’F’’F’O90●:0 :00 ● 0

● ✎ ..0 ● .*

● **● *:*

-1-” — .● : ●

18●:0 ●.

..“.. +-. “-

.. —-+. —

.. ..-

.= .-.,

II

..,

I!.. ”..

--— - +.= :.——= —-— . .

. ..J. .I

L—===---–- ‘-– - - ---- .

J2!k.Q’

exomtjivechargeis used

.

cylinder

----,**

.—

i

—4---

_.— .

Exp * m: 4* OD* in i-id+,MY M’qgthe ends10ZW

fragmmts showcoIBplcto(X@IlapmMfore frqymntation. ‘Me s&owhatpwow appccuxinceof the frqpnwts io probablyirxlicativoof thereleasocd!a con~derable compressi~n●

● .** ● ● e*●:.00:: .0

● O● 0:. b***

●: 9*

● * .:0 ● ** ● ** :*9 ● * u~CiANIFla● ☛ ● ☛☛

.**e O@

● ** .’m● ● *D*

● ** ● ● 00 ●

b**O :0 ● **● 00 ● *O ● a@● * ●*9*** 9*

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

● ☛ ✎✚☛ :00● ● 0:0

●● :● ●:* :

● ● ● 0

● ● **● ● **

● ● ☛☛ 9

● * ●:-

b● *

● * ● *

● *e ● 00 ● m

UNCLASSIFIED

6“ OD,1“ wall, ~Comp.C, ~“ thick,

—— — —

f’ I 2 3? Y

6

lNC,HCS!F

-

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE