Hydrogeological and Numerical Groundwater Flow Model in ... · Hydrogeological and Numerical...

6
Dr. rer. nat. Thomas T. Putranto, S.T., M.Eng. ([email protected]aachen.de) Institute of Hydrogeology RWTH Aachen University Hydrogeological and Numerical Groundwater Flow Model in Semarang/Indonesia Dissertation summary Introduction Declining groundwater levels, land subsidence, and flooding are the most common problems related to groundwater usage in Indonesia’s urban areas. In Semarang, which is located on the northern coastal Java (Central Java Province), the number of registered deep wells increased tremendously in the 1980s. It went up to 1,127 wells with a total groundwater abstraction of around 35 MCM/yr in 2010. Therefore, there is an urgent need to give a quantitative assessment to the actual situation. This study focused on major improvements to the existing hydrogeological model using integrated geological, hydrogeological, and hydrological data. The hydrogeological model was then implemented as a numerical model to simulate groundwater flow under steady state and transient conditions. The calibrated transient model was applied for several prognoses in order to predict groundwater levels and storages based on the future city development and climate change. Study area Geographically, the study area is located on 419500 to 480250 m in East Longitude and 9212850 to 9258190 m in South Latitude using the Universal Transverse Mercator (UTM) zone 49 south. It covers around 1,070 km 2 and comprises urban (Semarang city) and suburban areas (Demak, Grobogan, and Semarang Regencies) with a population of about 3 million inhabitants. Topographically, Semarang consists of two major morphologies: lowland and coastal areas in the north with a maximum elevation of 10 m above sea level (masl) and the foothill of Mount Ungaran in the south rising up to 210 masl at the border of the study area. The study area is located dominantly in the alluvial plains of the northern part of Java. According to the regional stratigraphy, these belong to the Alluvium and Damar formations. Groundwater in plain and coastal areas flows primarily in an intergranular system, whereas a fissures and interstices system occurs in the south of Semarang. A multiple layer aquifer system is found in the study area consisting of an unconfined aquifer at the top and a confined aquifer below which is subclassified into different units. Generally, groundwater flows from the mountainous area in the south towards the coast in the north. Methodology The research was divided into three main sections: understanding the natural system, developing the hydrogeological model (conceptual model), and finally applying the numerical groundwater flow model. In order to develop the hydrogeological model, the following steps were done: constructing hydrogeological cross sections and deriving hydrostratigraphical units (HSU), defining the water type using hydrogeochemistry analysis, calculating groundwater recharge, defining boundary conditions and initial parameters. The development of the numerical model was focused on groundwater flow under steady state and transient conditions. The finite element method was chosen as the numerical solution, using DHIWasy FEFLOW 5.2. A steady state model was set up using data for the year 2010 due to a relatively good data base, and complementary measurements of piezometric head from twelve monitoring wells in the model domain. Boundary conditions are constant head along the coastline of Java Sea for the first aquifer and a zeroflux for the second aquifer in the north, a flux boundary in the south, water leakage from or into rivers in the east and inside the model domain, and a zeroflux boundary in the west. Based on the experience and results of the steady state model, a transient model was created for the period 1998 to 2010. Groundwater abstraction and recharge were implemented as time series with an annual resolution. As model application, several prognoses were developed related to the city development plan and future climate change. Prognoses were run until 2031 with respect to the spatial planning for Semarang city.

Transcript of Hydrogeological and Numerical Groundwater Flow Model in ... · Hydrogeological and Numerical...

Dr. rer. nat. Thomas T. Putranto, S.T., M.Eng. ([email protected]‐aachen.de) Institute of Hydrogeology RWTH Aachen University 

Hydrogeological and Numerical Groundwater Flow Model in Semarang/Indonesia 

Dissertation summary 

Introduction Declining groundwater  levels,  land subsidence, and  flooding are the most common problems related to groundwater usage in Indonesia’s urban areas. In Semarang, which is located on the northern coastal Java  (Central Java Province), the number of registered deep wells  increased tremendously  in the 1980s. It went up to 1,127 wells with a total groundwater abstraction of around  35  MCM/yr  in  2010.  Therefore,  there  is  an  urgent  need  to  give  a  quantitative assessment to the actual situation. This study focused on major improvements to the existing hydrogeological model using integrated geological, hydrogeological, and hydrological data. The hydrogeological model was then implemented as a numerical model to simulate groundwater flow under steady state and transient conditions. The calibrated transient model was applied for several prognoses in order to predict groundwater levels and storages based on the future city development and climate change. 

Study area Geographically,  the  study  area  is  located  on  419500  to  480250 m  in  East  Longitude  and 9212850 to 9258190 m in South Latitude using the Universal Transverse Mercator (UTM) zone 49 south. It covers around 1,070 km2 and comprises urban (Semarang city) and suburban areas (Demak, Grobogan, and Semarang Regencies) with a population of about 3 million inhabitants. Topographically, Semarang consists of two major morphologies:  lowland and coastal areas  in the north with a maximum elevation of 10 m above sea level (masl) and the foothill of Mount Ungaran in the south rising up to 210 masl at the border of the study area. 

The  study  area  is  located  dominantly  in  the  alluvial  plains  of  the  northern  part  of  Java. According  to  the  regional  stratigraphy,  these belong  to  the Alluvium and Damar  formations. Groundwater  in plain and coastal areas flows primarily  in an  intergranular system, whereas a fissures  and  interstices  system  occurs  in  the  south  of  Semarang.  A multiple  layer  aquifer system is found in the study area consisting of an unconfined aquifer at the top and a confined aquifer below which  is sub‐classified  into different units. Generally, groundwater  flows  from the mountainous area in the south towards the coast in the north. 

Methodology The  research  was  divided  into  three  main  sections:  understanding  the  natural  system, developing the hydrogeological model (conceptual model), and finally applying the numerical groundwater flow model.  In order to develop the hydrogeological model, the following steps were done: constructing hydrogeological cross sections and deriving hydrostratigraphical units (HSU),  defining  the  water  type  using  hydrogeochemistry  analysis,  calculating  groundwater recharge, defining boundary conditions and initial parameters. 

The  development  of  the  numerical model was  focused  on  groundwater  flow  under  steady state  and  transient  conditions.  The  finite  element  method  was  chosen  as  the  numerical solution, using DHI‐Wasy FEFLOW 5.2. A steady state model was set up using data for the year 2010 due  to a  relatively good data base, and  complementary measurements of piezometric head  from  twelve monitoring wells  in  the model domain. Boundary  conditions are  constant head along the coastline of Java Sea for the first aquifer and a zero‐flux for the second aquifer in  the north, a  flux boundary  in  the south, water  leakage  from or  into rivers  in  the east and inside the model domain, and a zero‐flux boundary  in the west. Based on the experience and results of the steady state model, a transient model was created for the period 1998 to 2010. Groundwater  abstraction  and  recharge  were  implemented  as  time  series  with  an  annual resolution.  As  model  application,  several  prognoses  were  developed  related  to  the  city development plan and future climate change. Prognoses were run until 2031 with respect to the spatial planning for Semarang city.  

Dr. rer. nat. Thomas T. Putranto, S.T., M.Eng. ([email protected]‐aachen.de) Institute of Hydrogeology RWTH Aachen University 

Results of the hydrogeological model Two  aquifers  (Aquifer  1  and  Aquifer  2),  three  aquitards  (Aquitards  1,  2,  and  3)  and  one aquiclude  are  distinguished  as  HSU  in  the  study  area.  Aquifer  1  represents  an  unconfined aquifer whereas aquifer 2  is a confined one. Aquifer 2  is subdivided  into 3 groups. Aquifer 2a represents  the  Garang  aquifer  (Gr)  as  the  main  aquifer  in  the  study  area  showing  a predominantly  (hydrogen‐)carbonate alkaline water.  It extends  from  the centre of Semarang to  the  north  east.  Aquifer  2b  consists  of  Quaternary  marine  sediments  (Qm)  and  has  a predominantly chloride alkaline water, locally alkaline earth water type. It is dominant in plain and coastal areas. The Damar formation (Dm) is classified as Aquifer 2c. It contains fresh water in  volcanic  rocks  of  predominantly  hydrogencarbonate  alkaline  earth water  type.  A  higher higher alkaline content  is common. The Dm aquifer  spreads out  from  lower  to  intermediate slopes. 

Recharge  to  the  aquifer  system  is  derived  from  precipitation,  urban  recharge,  inflow  from adjacent  aquifers,  and  bank  filtration. Negative  balance  terms  of  the water  balance  in  the study  area  are  surface  runoff,  evapotranspiration,  outflow  to  other  basins,  baseflow,  and abstraction  from  deep wells.  The  potential  groundwater  recharge  in  the  study  area  ranges from 70 to 410 mm/yr.  

Results of the numerical model The  discretization  of  the model  domain  is  using  a  6‐noded  triangular  prisms  into  294,020 nodes and 524,979 elements as a three dimensional representation. 

A steady state model was set up to simulate hydraulic heads in 2010. Calibration resulted in a high absolute error  calculated as  root mean  square  (RMS) of around 2.9 m, but normalized RMS indicates an acceptable value (6.2%). The normalized RMS value is a more representative measure of  the  fit  than  the RMS  itself, as  it accounts  for  the scale of  the potential  range of data  values  (observed heads have  a  range  from  ‐39  to 8 masl). The  calibrated  steady  state model  gives  a  reasonable  value of  abstraction  around  60 MCM/yr with  a  real  groundwater recharge of about 43% of the potential groundwater recharge (30‐176 mm/yr). This is around 1‐8% of  the average precipitation  in  the model domain. The value coming  from modelling  is much higher than the officially documented groundwater extractions. 

The transient model simulates groundwater flow from 1998 until 2010. The quantitative result of calibration shows that around 40% of the residual heads  lie outside of the 95% confidence interval.  RMS  shows  a  high  value  of  around  7.55  m,  but  normalized  RMS  indicates  an acceptable value (around 12%). This is due to the high range of observed heads between ‐47.5 and  13.6 masl.  The model  results  show  a  decrease  of  piezometric  heads  in  the  north  of Semarang year by year due  to an  intensive abstraction. Hydraulic conductivity, groundwater abstraction, groundwater recharge, and flux boundary are parameters to be evaluated  in the sensitivity analysis. Hydraulic conductivity and groundwater abstraction are the most sensitive parameters. A variation of  these parameters  leads  to  significant  changes  in both  conclusion and residual statistics.  

Finally,  prognoses  show  a  lowering  of  piezometric  heads  in  Semarang  and  the  cone  of depression  becomes  wider  to  the  south.  An  increase  in  groundwater  abstraction  and  the impact of future climate change will cause groundwater storage to decrease. Prognoses using the  transient model  indicate  that a  reduction of  the annual abstraction by 20 MCM/yr until 2031 is necessary to restore groundwater resources in Semarang urban area and to prevent a further drawdown of groundwater levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table Typical model data requirements, formats and sources. 

Data type  Data format Data source

Topographic map  Raster  DEM 90mx90m derived from SRTM (Jarvis et 

al. 2008) 

Wells  (location, bore log, total depth, 

screen position, pumping rate, 

piezometric heads) 

Reports The Directorate of Environmental Geology 

(DGTL) and P.T. Gea Sakti  

Hydrogeochemical data  Reports DGTL and P.T. Gea Sakti 

Regional geological map of Semarang, 

Salatiga and Kudus; scale 1:100.000 

Maps 

(analog) 

The Geological Research and Development 

Centre (P3G) 

Regional hydrogeological maps of 

Semarang; scale 1:250.000 

Map (analog) DGTL

Climatology (1998–2007) Reports Meteorology, Climatology and Geophysics 

Agency (BMKG), and Water Resources 

Development Bureau in Central Java (PSDA 

Prov. Jateng)  

Population  (2005–2010) Report Statistics Centre Bureau in Central Java 

Province (BPS Prov. Jateng) 

River packages (1999)  Report Snow Mountain Engineering Cooperation 

(SMEC) 

Regional climate change projection for 

Indonesia 

Report The Centre for Australian Weather and 

Climate Research (CAWCR) 

Spatial planning of Semarang city in 

2011–2031 

Report The government of Semarang municipality

Aquifer properties (K, So, Sy)  Reports DGTL, P.T. Gea Sakti, Books and Journals 

Land use  Shapefiles National coordination of mapping and survey 

agency (Bakosurtanal) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Co

U

Collecrevise

ollect & prepa

Understandinnatural syst

ct more data aconceptual m

are data

ng of tem

and/or model

NO

Developin

Preparin

Dat

Data sy

Mode

SteFlow

Revis

ng conceptua

ng numerical

ta optimizatio

input of natuystem model

el calibrationvalidation

eady state GWw model erro

se calibration

al model

model

on

ural

n &

W or

n

YEOK?

Model a

Tramod

O

Study sen

Pre

Transient GES

application

ansient del error OK?

parameter nsitivity

ediction

GW flow mod

YES

del

NO