How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat...

27
1 Saraswat - EE311/Future Devices 1 araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna Saraswat Department of Electrical Engineering Stanford University Stanford, CA 94305 [email protected] Saraswat - EE311/Future Devices 2 araswat tanford University Physical Limits in Scaling Si MOSFET Substrat e Gate Source Drain Gate stack • Tunneling current I off • Gate depletion EOT Source/Drain • Parasitic resistance • Doping level, abruptness Channel/Drain Surface scattering - mobility High E-field - mobility • DIBL drain to source leakage I off Subthreshold slope kT/q I off •V G - V T decrease I ON Net result : Bulk-Si CMOS device performance increase commensurate with size scaling is unlikely beyond the 65 nm node Power • CV 2 f • S/D leakage current • Gate leakage current

Transcript of How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat...

Page 1: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

1

Saraswat - EE311/Future Devices1araswattanford University

How far can we push Si CMOS?What lies beyond?

Prof. Krishna Saraswat

Department of Electrical EngineeringStanford UniversityStanford, CA 94305

[email protected]

Saraswat - EE311/Future Devices2araswattanford University

Physical Limits in Scaling Si MOSFET

Substrate

Gate

Source Drain

Gate stack• Tunneling current ⇒ ⇑ Ioff• Gate depletion ⇒ ⇑ EOT

Source/Drain• Parasitic resistance • Doping level, abruptness

Channel/Drain• Surface scattering - mobility ⇓• High E-field - mobility ⇓ • DIBL ⇒ drain to source leakage ⇑ Ioff• Subthreshold slope ≥ kT/q ⇒ ⇑ Ioff• VG - VT decrease ⇒ ⇓ ION

Net result: Bulk-Si CMOS device performance increase commensurate withsize scaling is unlikely beyond the 65 nm node

Power ⇑• CV2f ⇑ • S/D leakage current ⇑ • Gate leakage current ⇑

Page 2: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

2

Saraswat - EE311/Future Devices3araswattanford University

Bulk-Si Performance TrendsBulk-Si Performance Trends

0.1

1

10

1985 1990 1995 2000 2005 2010 2015

1.0

0.1

10

Rel

ativ

e Pe

rform

ance

1985 1990 1995 2000 2005 2010 2015

Conventional Bulk CMOS

StructuresStructures

NovelNovelDeviceDevice

IEDM BenchmarkIEDM BenchmarkTechnologiesTechnologies

ITRSPredictions

(Bulk)

130nm130nm 80nm80nm 45nm45nm 22nm22nm

90nm90nm 32nm32nm 18nm18nm 9nm9nmPhysical Gate Length Physical Gate Length Technology NodeTechnology Node

Maintaining historical CMOS performance trend requires newsemiconductor material and structures by 2008-2010…

Earlier if current bulk-Si data do not improve significantly

MOSFET in Bulk Si

Saraswat - EE311/Future Devices4araswattanford University

0.001

0.01

0.1

2000 2010 2020

micron

1

10

100

nm

45 nm

65 nm

32 nm

22 nm

16 nm

11 nm

8 nm

Generation

LGATE

Evolutionary

CMOS Exotic Revolutionary

CMOS

Nanotechnology Eras

ReasonablyFamiliar

NanotubesNanowires

ReallyDifferent

Source: Mark Bohr, Intel

Page 3: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

3

Saraswat - EE311/Future Devices5araswattanford University

Extending CMOSExtending CMOS• Novel transistor structures and materials

integration can extend commensurate CMOSscaling beyond planar bulk-Si solutions:– Improved Electrostatics and Contacts

• Double-gate or surround-gate• Schottky source/drain

– Improved Materials Properties• High mobility materials (e.g. strained Si/SiGe/Ge, etc.)

• Extended CMOS functionality via newIntegration Technologies

• 3-D Integration (Billions of transistors on a chip)• Exploration of new frontier devices

– Alternatives compatible with silicon

Saraswat - EE311/Future Devices6araswattanford University

New Structures and Materials forNanoscale MOSFETs

Problem 1: Poor Electrostatics ⇒ increased Ioff

Problem 2: Poor Channel Transport ⇒ decreased Ion

Problem 3: S/D Parasitic resistance ⇒ decreased Ion

Problem 4. Gate leakage increased

Problem 5. Gate depletion ⇒ increased EOT

CURRENT BULK MOSFET4

1

23 4

5

High IONLow IOFF

Bottom Gate

Top Gate

SchottkySource

SchottkyDrain

High µchannel

High-Kdielectric

FUTURE MOSFET

Solution: Double Gate - Retain gate control over channel - Minimize OFF-state drain-source leakage

Solution - High Mobility Channel - High mobility/injection velocity - High drive current and low intrinsic delay

Solution - Metal Schottky S/D - Reduced extrinsic resistance

Solution - High-K dielectrics - Reduced gate leakage

Solution - Metal gate - High drive current

Page 4: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

4

Saraswat - EE311/Future Devices7araswattanford University

Partially Depleted SOI

Evolution of MOSFET StructuresBulk

• Device design translates well betweenbulk and PD SOI

• e.g. short channel effect control bydoping/halo (same as bulk)

• Reduced junction capacitances• Dynamic floating body effect - parasitic

bipolar

S DG

S DG

Ref: Philip Wong, IEDM Short Course, 1999

Saraswat - EE311/Future Devices8araswattanford University

Ultra-Thin Body Single Gate SOI

Ultra-Thin Body DoubleGate SOI

Partially Depleted SOI

Advantages of Ultra-Thin Body SOI• Depleted channel ⇒ no conduction

path is far from the gate• Short channel effects controlled by

geometry• Steeper subthreshold slope• Lower or no channel doping

- Higher mobility- Reduced dopant fluctuation

Evolution of MOSFET Structures

GateGate

Silicon Substrate

Source Drain

TBOX

Si

SiO2

SOI

Source Drain

Gate 1Gate 1 Vg

Tox

SOI

Gate 2Gate 2

Si

Ref: Philip Wong, IEDM Short Course, 1999

Page 5: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

5

Saraswat - EE311/Future Devices9araswattanford University

J. Chen et al., Symp. VLSI Tech., 1999.

Fully Depleted SOI FET

Saraswat - EE311/Future Devices10araswattanford University

Ultra-Thin Body Single vs. Double Gate SOI

• In DG MOS better electrostatic control of the channel⇒ Reduced short channel effects

Wong, et al. IEDM 1998

H.-S. P. Wong, et al., p. 407, IEDM 1998.

• Can be used as a second gate• Not the ideal structure for double gate

Page 6: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

6

Saraswat - EE311/Future Devices11araswattanford University

• ~2X current drive for the same device width• Very thin (5 nm) undoped channel ⇒ better electrostatic control

Steeper subthreshold slope - approaching 60 mV/decShort-channel effect control feasible down to 20 nmMay tolerate a thicker gate oxide for the same channel length

• Gate workfunction tuning needed for Vt control (for undoped channel)• Steep lateral source/drain doping profile is required• Parasitic source resistance

Source/drain fan-out and contact - an integral part of the devicestructure

Double-Gate FET

Channel length (nm)

Depletion regions

Channels at the surface

OFF

ON

S

S D

DG

G

G

G

Saraswat - EE311/Future Devices12araswattanford University

RRss

RRdd

IIdd = K = K⋅⋅((VVgg––VVthth––IIddRRss))αα

Shenoy and Saraswat, IEEE Trans. Nanotechnology, Dec. 2003

Effect of Extrinsic Resistance on Double Gate FETs

•• Need to reduce parasitic resistanceNeed to reduce parasitic resistance

•• Ultrathin bodyUltrathin body ⇒⇒ higher series resistance higher series resistance•• More severe effect in Double-Gate FETMore severe effect in Double-Gate FET

–– Twice ITwice Idd flows through same Rs flows through same Rs ⇒⇒ higher series drop higher series drop•• Degradation in IDegradation in IONON

Page 7: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

7

Saraswat - EE311/Future Devices13araswattanford University

• Extrinsic resistance reduces gate overdrive ⇒ performance limiter in ballistic FETs• Doping profile too gradual: ⇒ dopants spill into channel ⇒ worse SCE• Doping profile too abrupt: ⇒ large series resistance in extension tip• Extrinsic (S/D) resistance may limit performance in future ultrathin body DGFETs

Effect of Extrinsic Resistance on Double Gate MOSFETs

Shenoy and Saraswat, IEEE Trans. Nanotechnology, Dec. 2003

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E+18

1.E+19

1.E+20

1.E+21

40 45 50 55 60 65

x (nm)

Ne

t D

op

ing

(c

m-3

)

5nm/dec

4nm/dec

3nm/dec

2nm/dec

1nm/dec

0.5nm/dec

GATE

Dopinggradient

SCE Series Resistance

Saraswat - EE311/Future Devices14araswattanford University

Non PlanarNon Planar MOSFETs

UC Berkeley

Gate

Source Drain

Intel

Tri Gate FET

SourceSource DrainDrain

GateGate

SiO2

Channel

Double Gate FinFETVertical FET

Stanford, AT&T

Page 8: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

8

Saraswat - EE311/Future Devices15araswattanford University

Why Germanium MOS Transistors?Why Germanium MOS Transistors?

Electronic Properties:Electronic Properties:• More symmetric and higher

carrier mobilities (low-field)⇒ More efficient source

injection(due to lighter m*)

⇒ ↓ CMOS gate delay

• Smaller energy bandgap⇒ Survives VDD scaling⇒ ↓ R with ↓ barrier height

• Lower temperatureprocessing⇒ 3-D compatible

(Sze, Phys. of Semicond. Devs. 2nd Ed., p.46,1981)

Ge

Si

Saraswat - EE311/Future Devices16araswattanford University

T1-T

DS

kBT/q

l

1

CMOS Performance Boost with GeCMOS Performance Boost with Ge

( ) injTDD

DDgate

D

DDLOAD

vVV

VL

I

VC

!"

!=

MOSFET Channel Energy Band:MOSFET Channel Energy Band:

injinv

gate

ON vQL

WI !!=

0.56

0.76

Ge<111>

0.70

0.78

Ge<100>

0.48p-MOS

0.68n-MOS

Si<100>

Ballistic Ratio Comparisons:Ballistic Ratio Comparisons:(from Monte Carlo simulations)(from Monte Carlo simulations)

Drive Current & Gate Delay:Drive Current & Gate Delay:

(Lundstrom et al., 2001, Purdue)

Page 9: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

9

Saraswat - EE311/Future Devices17araswattanford University

Problems #1:Problems #1: Ge Surface PassivationGe Surface Passivation The native oxide passivation on Ge surface is not stable

enough either during fabrication or in the end-product

Solution:Solution: High-High-κκ dielectrics are deposited on Si, why not on Ge?

Problem #2: Ge Wafers as a Substrate?Problem #2: Ge Wafers as a Substrate? Ge substrate not easy to handle and not easily available Si will continue to be the main substrate due to its overall

excellent properties

Solution:Solution: Heterogeneous integration of Ge on Si.

Problems With GeProblems With Ge

Saraswat - EE311/Future Devices18araswattanford University

Heteroepitaxial Growth of Ge on Si

With H2 anneal dislocations are confined to the Si/Geinterface leaving defect free top Ge layers.

Crystalline Ge

Defects

Si

Rrms :2.5nm

400°C Growth + 825°C H2 Anneal

H2

Ge after H2 anneal

Ge

Si

As Grown at 400°C No H2 Anneal

Z = 50nm/div,X= 2µm/div

Rrms : 25 nm

Ge as deposited

Si

AFM

TEM

Page 10: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

10

Saraswat - EE311/Future Devices19araswattanford University

HR-XTEMHR-XTEM

0.2 0.3 0.4 0.5 0.60

100

200

300

400

Si hi-! pFET

25 µm Ge hi-! pFET 30 µm Ge hi-! pFET 100 µm Ge hi-! pFET

Si Universal Mobility

Effective Field (MV/cm)

Eff

ecti

ve M

ob

ilit

y (

cm

2/V

-s)

4 nm

HfO2

Ge

GeOxNy

High Mobility Ge FETs with High-k

Key Results• Passivation of Ge with GeOxNy, ZrO2 and HfO2• n and p dopant incorporation• 1st demo of Ge MOSFETs with metal gate and hi-κ• p-MOSFET with 3× mobility vs. Hi-k Si• n-MOSFET demonstrated but mobility low

Chui, Kim, McIntyre and Saraswat, IEDM 2003

Gate LeakageGate Leakage MobilityMobility

Gat

e C

urre

nt@

VFB

+1V

(A/c

m2 )

Equivalent SiO2 Thickness (nm)

Saraswat - EE311/Future Devices20araswattanford University

• Vapor-Liquid Solid (VLS) mechanismuses super saturated liquid eutecticto locally deposit Si.

• Growth mechanism: wires grow asthe catalytic end moves

• Size of the wire is decides by thesize of the nano particle

• 10-20 nm single crystal Ge wires

• CVD temperature: 275 - 400°C

Cold-Wall NW Growth Reactor

Substrate

Nanowire Au

Ge nanowires synthesized by low temperature CVD

GeH4 = Ge + 2H2

Nanowire Au

Au nanoparticle

nanowire

SiH4 = Si + 2H2

Page 11: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

11

Saraswat - EE311/Future Devices21araswattanford University

Ge Nanowire GrowthGe Nanowire Growth

TEM SEM

No control over the overall growth direction Individual wires are single crystal and grow along <110> direction

Courtesy: Hongjie Dai

Saraswat - EE311/Future Devices22araswattanford University

Ge Nanowire FET with High K gate dielectricGe Nanowire FET with High K gate dielectric

Ref: Wang, Wang, Javey, Tu, Dai, Kim, McIntyre, Krishnamohan, and Saraswat, Appl Phys. Lett, 22 Sept. 2003

• 10-20 nm single crystal Ge wires• CVD temperature: 275 °C• Initial fabricated transistor shows

great promise µp ~ 500• 3D integrable technology

Ge NW MOSFET

ALD HfO2 Coating of Ge NW

sourcegate

drain

dielectric

semiconductor

~20nmmetal

~10nm

Channel

Key Challenge: Controlled growth

Source

Drain

SiO2

Top view SEM

Page 12: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

12

Saraswat - EE311/Future Devices23araswattanford University

Transport:• Zero E-field by symmetry of DGstructure

• Reduced scattering due to perpendicularE-field

• Natural fan-out (lower Rparasitic )

Technology integration:• Easier integration with high-k materials• Fully utilizes excellent transportproperties of materials like Ge, SiGe,strained Si etc.

Electrostatics:• Excellent control of short channel effectsdue to DG structure

• Excellent sub-threshold slope• Very low DIBL and Vth roll-off

High performance devices:• High mobility channels leading to veryhigh drive currents

• Very high switching speeds• Very high cut-off frequencies• Lower power dissipation

Center Channel Double/Surround Gate FET

Zero E-fieldE-field

Chargedensity

Conventional DG Depletion-Mode DGDepletion regions

Channels at the surface Channel in the center

OFF

ON

S

S S

S D

DD

DG

G

G

G G

G

G

G

Schred: 1-D Poisson-Schrodinger simulations

Krishnamohan and Saraswat, IEDM 2003

Saraswat - EE311/Future Devices24araswattanford University

Epitaxial Growth of Vertical NanowiresEpitaxial Growth of Vertical Nanowires

Yiying Wu et al., Chem. Eur. J., 2002, 8, 1261

Si nanowires grow epitaxially on a (111) Si plane

<111> oriented Si NWs on (111) Si

Au

Nanoparticle

GeContaining

Vapor

Ge Nanowire

Si containingvapor

Sinanowire

(111) surface

[111]

Page 13: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

13

Saraswat - EE311/Future Devices25araswattanford University

For substrate Gefraction x < 30%• NMOS Idsat enhanced ~ 1.5X and• PMOS Idsat enhanced only ~ 1.15X

Strained Si channelwith high mobility

Strained Si gate oxide

Si Substrate

Relaxed Si1-xGex

n+ poly LTOspacer

n+ n+

Si1-xGex Graded layer

0.80

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.10 0.20 0.30 0.40

Mobility enhancement ratio

Substrate Ge fraction, x

VDS

= 10 mV

300 K

Measured, J. Welser, et al.,

IEDM 1994.

Calculated for strained Si

MOS inversion layer

S. Takagi, et al., J. Appl. Phys. 80, 1996.Mob

ility

Enh

ance

men

t Fac

tor

Substrate Ge Content (%)

0 10 20 30 40 50

Mo

bility

En

ha

nce

me

nt F

acto

r

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6 Calculation by Oberhuber et al.

Rim, et al.

Currie and Leitz, et al.

Mob

ility

Enh

ance

men

t Fac

tor

NMOS

PMOS

Mobility Enhancements in Strained-Si MOSFETs

Gibbons Group, Stanford

Saraswat - EE311/Future Devices26araswattanford University

S. Thompson, et al. IEEE EDL, April 2004

Simplified hole valance band structure for longitudinalin-plane direction. (a) Unstrained and (b) strained-Si.Hole mobility for uniaxial strained-Si

introduced by Si1-xGex in the source/drain.

(Si3N4)

Enhanced Hole mobility for Uniaxial Strained-Si

Si

Page 14: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

14

Saraswat - EE311/Future Devices27araswattanford University

Center Channel Double Gate Heterostructure FET

Depletion-Mode DG

Depletion regions

Channel in the center

OFF

ON S

S D

DG

G

G

G

• Carriers in the center of an un-doped strained-Si or SixGe1-x channel• high mobility also due to zero E field, strain, low surface scattering

PMOS

NMOS

Elwomis: Full-Band Monte-Carlo Simulations

Krishnamohan and Saraswat

Higher drive current Higher cut-off frequency

Electron ψ

Hole ψ

Saraswat - EE311/Future Devices28araswattanford University

Two kinds of transistorsJunction S/D MOSFET Schottky S/D MOSFET

Possible advantages of Schottky S/D MOSFET• Better utilization of the metal/semiconductor interface

Possible option to overcome the higher parasitic resistance• Modulation of the source barrier by the gate

High Vg ⇒ barrier thin ⇒ tunneling current ⇑ ⇒ ION ⇑Low Vg ⇒ barrier thick ⇒ tunneling current ⇓ ⇒ IOFF ⇓

• Better immunity from short channel effectsPossible Disadvantage

• ION reduction due to the Schottky barrier

Page 15: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

15

Saraswat - EE311/Future Devices29araswattanford University

PN Junction vs. Schottky S/D Si DGFET Simulations

Low barrier height metal/semiconductor contactsrequired to achieve high Ihigh ION ON and low Iand low IOFFOFF

ION vs. IOFF

R. Shenoy, PhD Thesis, 2004

Schottky S/D

PN Junction S/D

Saraswat - EE311/Future Devices30araswattanford University

Band diagrams (Schottky barrier FET)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.005 0.01 0.015 0.02 0.025 0.03

x (microns)

En

erg

y (

eV

)

Off-stateVds=1.5VVgs=0V

On-stateVds=1.5VVgs=1.5V

source

drain

Possible advantages• Better utilization of the metal/semiconductor interface

Possible option to overcome the higher parasitic resistance• Modulation of the source barrier by the gate

High Vg ⇒ barrier thin ⇒ tunneling current ⇑ ⇒ ION ⇑Low Vg ⇒ barrier thick ⇒ tunneling current ⇓ ⇒ IOFF ⇓

• Better immunity from short channel effects•Disadvantage

• Tradeoff between short channel effect vs. ION reduction due to the Schottky barrier

Schottky Barrier MOSFET

BOX

Silicide

Bias

Si

Page 16: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

16

Saraswat - EE311/Future Devices31araswattanford University

Optimal φB Schottky Barrier MOSFET

Lg + Spacers =27nm

Tilted

SourceErSi2

GateN+poly, ErSi2

W=25nm

PtSi PMOS20 nm4 nm1.2 V270 uA/um100 mV/dec5E5-0.7 V

ErSi NMOS15 nm4 nm1.2 V190 uA/um150 mV/dec1E4-0.1 V

LgToxVg-VtIonSwingIon/IoffVt

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.51E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

NMOSTox = 4nmLg = 15nm

PMOS T

ox = 4nm

Lg = 20nm

|Vsd| f rom 0.2V to 1.4Vin steps of 0.4V

|I d| (A/

µm)

Vg (V)J. Boker et al.- UCB

Lg~20 nm FETs with ComplementarySilicides PtSi PMOS, ErSi NMOS

• Metal S/D reduce extrinsic resistance• Need ultrathin channel, double gate• Need low barrier technology to ensure high Ion

BOX

Silicide Si

Schottky Barrier

Saraswat - EE311/Future Devices32araswattanford University

High K’s are less ‘Schottky-like’ than SiO2. Barrier heights change lessthan metal workfunction.

Strong pinning for semiconductors

Variation of the Schottky barrier S factor

Yeo, King, and Hu, J. Appl. Phys., 15 Dec. 2002 Ref: Robertson, MRS March 2005

S

!

S =1

1+ 0.1("# $1)2

ε∞

Page 17: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

17

Saraswat - EE311/Future Devices33araswattanford University

We will be here withthese innovations

We arehere today

Combining New Device StructuresCombining New Device Structureswith New Materialswith New Materials

•With better injection and transport we may be able to reach closer to the ballistic Ion•With better electrostatics we may be able to minimize Ioff

Saraswat - EE311/Future Devices34araswattanford University

B

+ =

Spintronics

Seemingly Useful Devices

Limited Current DriveCryogenic operation

Limited Fan-OutCritical dimension control

Need high spin injectionand long spin coherence time Limited thermal stability

New architectures needed

~ 2 nm

Challenging fabricationand process integration

CarbonNanotubes

Controlled growth

Page 18: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

18

Saraswat - EE311/Future Devices35araswattanford University

Penn State / Sarnoff

Motivation for Organic FETsLow-Cost, Flexible Electronics

25 µm

30 µm

Philips

Plastic Logic

Siemens

Saraswat - EE311/Future Devices36araswattanford University

Applications• identification tags• low-end data storage• smart cards• emissive displays• electronic paper• distributed computing• toys, clothes, ...

B. Crone, A. Dodabalapur et al.Nature 403, 521 (2000)

LSI(864 Transistors)

All-PrintedPolymer Circuit

Z. Bao / Bell Labs

No competition to Si,Going where Si can‘t follow !!

low-cost, lightweight, rugged, flexible electronics

Organic Semiconductors

Page 19: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

19

Saraswat - EE311/Future Devices37araswattanford University

Next Step : ‘Molecular Electronics

(Stanford, IBM, ...)Nanotube Devices / Circuits Molecular Switches

(HP, Cal Tech, Stanford ...)

Saraswat - EE311/Future Devices38araswattanford University

Molecular Materials

Nano-Patterning Self-Assembly

Molecular Electronics

Molecular-Scale Three-Terminal Devices ?

Page 20: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

20

Saraswat - EE311/Future Devices39araswattanford University

Organic Insulator / Semiconductor Monolayer(σ − π SAM)

J. Collet et al., APL 76, 1339 (2000).

Saraswat - EE311/Future Devices40araswattanford University

Self-Assembled Monolayer Molecular FET

•Molecular Length Defines Channel

Molecular RelaysMolecular FETs

Page 21: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

21

Saraswat - EE311/Future Devices41araswattanford University

Molecular Electronics Interfaced with SiliconMolecular Electronics Interfaced with SiliconTechnologyTechnology

• Molecular mechanical complexes as solid-state switch elements• Non-traditional patterning techniques to achieve a memory bit (cross-point) density of >1011/cm2.• Non-linear, voltage response of molecular switches to latch (amplify) and clock signals by

coupling a large molecular circuit with very few CMOS-type amplifiers.

DemultiplexersOrder (n) wires

(large pitch)

multiplexer

To gain elementor logic circuit

Crosspointmolecular electronic

memory: 2n bits(20 – 30 nm pitch)

MS

Molecular Switch

Source: Nicholas Melosh and J. Heath

Saraswat - EE311/Future Devices42araswattanford University

Graphene band structure

EF

E

conduction

valence

!k||kTwo cones in unit cellSymmetry K1 = -K2

K1 K2

“left-handed” “right-handed”

y

x

Page 22: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

22

Saraswat - EE311/Future Devices43araswattanford University

(10,10) Arm-chairMetal

(18,0) Zig-zagSmall gap

Quasi-metal

(7,12)Chiral

Semiconductor

Diversity of SWNTs

Chiral angle: M, S, or Quasi-M

Diameter: band gap ~ 1/d (0.6 eV for d=1.4 nm)

(0.84 eV for d=1 nm)

Saraswat - EE311/Future Devices44araswattanford University

Nanotube Band Structure

!k!kmetal semiconducting

k||

E

0

k||

E

0gapE

-10 0 100

1.0

Vgate (V)Vgate (V)

large bandgap

-10 0 10

0.15

0

G (e

2 /h)

semiconducting

G (e

2 /h)

-4 0 40

0.15

G (e

2 /h)

Vgate (V)

small bandgapsemiconducting

Due to curvature, strain, etc.

Eg ≈ 0.8/d (nm) eV)

McEuen et al., IEEE Trans. Nanotech., 1 , 78, 2002.

Page 23: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

23

Saraswat - EE311/Future Devices45araswattanford University

C. Kane, G. Mele, Phys. Rev. Lett. 78 1932 (1997)

(3)m-n ≠ 3 · integersemiconductorEg ~ 1/R

(3)

Band Gap vs. Diameter

Saraswat - EE311/Future Devices46araswattanford University

Nanotube

Gate

HfO2

10 nm SiO2

p++ Si

SD

Ballistic Nanotube Transistors

-25

-20

-15

-10

-5

I DS

(µA

)

-0.4 -0.3 -0.2 -0.1 0.0V

DS (V)

0.2 V

-0.1 V

-0.4 V

-0.7 V

-1.0 V

-1.3 V

L ~ 50 nm

-

-I DS

(µA)

VDS = -0.1,-0.2,-0.3 V10

-9

10-8

10-7

10-6

10-5

-I DS

(A

)

-1.5 -1.0 -0.5 0.0 0.5V

G (V)

I DS

(µA)

L ~ 50 nmDai (Stanford)McIntyre (Stanford)Gordon (Harvard)Lundstrom (Purdue)

Catalyst Support

CnHmCnHm Fe

Key Challenge: Low thermal budget controlled growth

Growth MOS Transistor

Page 24: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

24

Saraswat - EE311/Future Devices47araswattanford University

G

HfO2

500 nm SiO2

K+ K+

Pd Pd

G

S

D

CNT

p+ Si

n+ i n+

Dai/Gordon/Guo Groups

High Performance CNTN-MOSFETs

10

8

6

4

2

0

I ds (µ

A)

-0.4 -0.2 0.0 0.2 0.4Vds (V)

p-FET n-FETModerateS/D doping

10-10

10-8

10-6

I ds (

A)

10-1Vgs (V)

S~70mV/dec

S~80mV/dec

Vds=0.5 V

d~1.6 nm

Saraswat - EE311/Future Devices48araswattanford University

Ambipolar Schottky S/D Nanotube FETs

Page 25: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

25

Saraswat - EE311/Future Devices49araswattanford University

Conventional MOS Like Nanotube FETs

MOS

SB

Dai group, Stanford

Saraswat - EE311/Future Devices50araswattanford University

Theoretical Limits to Scaling

Ultimate limit:• xmin ~ 1.5 nm 5.103 transistors/cm3

• Switching speed tmin ~ 0.04 ps 25 Tbits/sec• Switching energy Ebit = 17 meV • Power = 55 nW/bit

Thermodynamic limit: Eb ≥ kB.T.ln2

Quantum mechanics∆x . ∆p ≥ h xmin (Integration density)∆E . ∆t ≥ h τ (witiching speed)

Eb

Emin

xmin

!

P =nmaxEbit

tmin

For densely packed, 100% duty cycle devices• Total power density = 4.106 W/cm2

With duty cycle ~1 %, Active transistors ~1 %• Total power density = 370 W/cm2

Source: George Bourianoff, Intel

Page 26: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

26

Saraswat - EE311/Future Devices51araswattanford University

aEb

aEb

w w

ΔEb(e-) ~1.7x10-2 eVCharge Spin

ΔE(spin) ~8.6x10-8 eV

B

+ =

Spin Based Switch

Single spin state can be detected bymeasuring if there is any tunneling current.

ΔE(spin) << ΔE(e-)

Jim Harris et al. (Stanford)

After Mark Bohr, (Intel)

Saraswat - EE311/Future Devices52araswattanford University

New materials

Moore’s Law increasingly relies on material innovations(S. Sze, Based on invited talk at Stanford Univ., Aug. 1999)

Al

SiO2

Si

Poly Si

Si3N4

Air

HSQ

Polymer

TiN

TaN

Cu

Low-kdielectrics

Metals

Ta2O5

HfO2

ZrO2

ZrSixOy

RuO2

Pt

IrO2

Y1

PZT

BST

High-kdielectrics

Electrodematerials

Ferroelectrics

PtSi2WSi2CoSi2TiSi2MoSi2TaSi2

Silicides

W

1970 1980 1990 20001950 2010

Al

SiO2

Si

SiGeGe

Semiconductors

Page 27: How far can we push Si CMOS? What lies beyond? Devices...1 1 Saraswat - EE311/Future Devices araswat tanford University How far can we push Si CMOS? What lies beyond? Prof. Krishna

27

Saraswat - EE311/Future Devices53araswattanford University

Source Drain

Gate

Feature Size (Time)

Conclusion: Technology ProgressionBulk CMOS

Si0.8Ge0.2

Si

Si

(tensile)

Si1-xGex

Strained Si

High k gate dielectric

Self-assembly

Metal gate

3D ICs

100 nm 2 nm

Cu interconnect

Low-k ILD

Nan

otec

hnol

ogy

Interconnectsand contacts

for nanodevices

FD SOI CMOS

Optical interconnect

Molecular device

Nanotube

Detectors, lasers,modulators, waveguides

Spin device

B

+ =

Ge on Si hetroepitaxy

Ge on Insulator

Wafer bondingCrystallization

Nanowires

(After P. Wong)

Ge/Si Heterostrcture

Double-Gate CMOS

Nanowire

Single etransistor