Hankel Determinant for a Subclass of Alpha Convex Functions

download Hankel Determinant for a Subclass of Alpha Convex Functions

of 6

description

Bonfring International Journal of Data Mining,Volume 4, Issue 3, 2014

Transcript of Hankel Determinant for a Subclass of Alpha Convex Functions

  • 5/20/2018 Hankel Determinant for a Subclass of Alpha Convex Functions

    http:///reader/full/hankel-determinant-for-a-subclass-of-alpha-convex-functio

    Bonfring International Journal of Data Mining, Vol. 4, No. 3, August 2014 1

    Hankel Determinant for a Subclass of AlphaConvex Functions

    Gagandeep SinghandGurcharanjit Singh

    Abstract---In the present investigation, the upper bound of

    second Hankel determinant 2342 aaa

    for functions

    belonging to the subclass of analytic functions is

    studied. Results presented in this paper would extend the

    corresponding results of various authors.

    ( )BAM ,;

    Keywords--- Analytic Functions, Starlike Functions,

    Convex Functions, Alpha Convex Functions, Subordination,

    Schwarz Function, Second Hankel Determinant

    I.

    INTRODUCTION

    LET Abe the class of analytic functions of the form

    ( )

    =

    +=2k

    k

    kzazzf (1.1)

    In the unit disc { }: 1E z z= < .

    By S we denote the class of functions ( ) Azf andunivalent inE.

    Let U be the class of Schwarzian functions

    ( )

    k

    == 1kkzdzw

    Which are analytic in the unit disc { }: 1E z z= zp .1)0(1 =pand Define the functionby

    (zh

    ( ) ( ) ( ) ( )( )

    ( ) ( ) =

    zfzzfz 32 ..1 321 ++++ zbzbzb (3.7)+=zfzf

    zh 1

    In view of the equations (3.4), (3.6) and (3.7), we have

  • 5/20/2018 Hankel Determinant for a Subclass of Alpha Convex Functions

    http:///reader/full/hankel-determinant-for-a-subclass-of-alpha-convex-functio

    Bonfring International Journal of Data Mining, Vol. 4, No. 3, August 2014 1

    ( ) ( )

    ( )

    ++++

    +++=

    +

    =

    ...2

    ...

    1

    13

    32

    21

    33

    221

    1

    1

    zczczc

    zczczc

    zp

    zpzh

    +

    ++

    += ...

    42

    1

    22

    1

    2

    1 33

    1213

    22

    121 z

    ccccz

    cczc

    ...3

    8

    313

    2

    2122

    12

    4

    312132

    1

    2

    4

    212

    2

    21

    22

    1

    2

    111

    +++++

    +++=

    zcBc

    ccBc

    cccB

    zcBc

    cB

    zcB

    Thus,

    422;

    2

    212

    21

    21

    211

    1

    cBcc

    Bb

    cBb +

    ==

    And

    (3.8).

    82242

    313

    21

    212

    31

    2131

    3

    cBcc

    cBcccc

    Bb +

    +

    +=

    ( )( )

    Using (3.5) and (3.7) in (3.8), we obtain

    ( )

    ( ) ( )

    ( )

    ( ) ( ) ( ) ( ){ }[ ]

    ( )

    ( ) ( )( )

    ( ) ( ) ( )

    ( )

    ( ) 212

    82772

    516

    21321

    318

    21113131

    22

    12

    212

    183

    ,12

    12

    +++++++

    ++

    +++++

    +++

    ++++++

    +

    ++

    ++

    +

    ++++

    +++

    =

    +++++

    ++

    ++

    =

    +

    =

    c

    B

    A

    AB

    BA

    ccB

    A

    c

    BAa

    cBA

    cBAa

    cBAa

    ( )( )

    ( )( )

    ( ) ( )( )( )

    ( )( ) ( )( )[ ]

    ( )( )( )( ) ( ) ( )

    .

    31

    213

    122

    82772

    1

    2

    1513

    712142

    83513

    2

    21761

    24113

    21322

    1761

    2118

    31213

    1484

    ,22

    (3.9)

    (3.9) yields,

    ( ) ( ) ( ){ }2244122213412

    2342 cRNccMccLc

    C

    BAaaa ++

    =

    ( ) ( ) ( ) ( ),31211192 24 +++=C

    (3.10)

    ( ) ( ) ,2114 23 ++=LWhere

    ( ) ( ) ( )( )

    ( )( )( )[ ],2741312

    28277214

    252311221

    316

    +++

    +++

    ++++++=

    BAM

    ISSN 2277 - 5048 | 2014 Bonfring

  • 5/20/2018 Hankel Determinant for a Subclass of Alpha Convex Functions

    http:///reader/full/hankel-determinant-for-a-subclass-of-alpha-convex-functio

    Bonfring International Journal of Data Mining, Vol. 4, No. 3, August 2014 1

    ( )( )( ) ( ) ( ) ( )

    ( )( )( ) ( )( )( )

    ( ) ( ) ( )( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )( )( )

    ( )( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( )( )

    ( ) ( ) ( )

    ( ) [ ]27413131

    213

    2313

    5121312

    214212

    316

    712

    218212

    1516

    213151122

    12

    3163

    316

    2

    21

    231631

    413

    3313

    221714

    221

    314

    51312162

    151216

    2]

    331371

    22145131216[

    ++++

    +++

    ++++++++

    ++++++

    ++++++++

    ++++

    ++++++

    +++++++

    +

    ++++++=

    BA

    AB

    B

    AN

    And

    ( )( ) .1313 4 ++=R

    Using Lemma 2.1 and Lemma 2.2 in (3.10), we get

    ( )( )

    ( )( )( )

    ( ) ( ) ( )

    ( )( ) ( )( )( )( )

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )( )( )( )

    ( )( ) ( )

    ( ) ( )

    ( ) ( )( ) ( ){ }

    ( )( )( ) ( )

    ( ) ( )

    ( )( ) ( )

    ( )

    ( ) ( )

    ( ) ( ) ( ) ( ){ } ( )

    ( ) ( ) ( )( )

    .

    21

    2141

    31

    2218

    214

    22131

    413

    221

    314

    314

    112

    214

    21

    212

    1516

    221

    318

    314

    16

    2

    31516

    2312151

    216

    41

    712

    218

    212

    1516

    21315112

    21

    2316

    3316

    2

    21

    231631

    413

    331371

    2214

    221314

    2131516

    212

    1516

    22342

    zxcc

    cx

    c

    cxcB

    A

    c

    AB

    B

    C

    BAaaa

    +++

    +++++

    ++

    +++

    ++

    +++

    ++

    +

    ++++

    +

    +++

    +++

    +++

    ++++

    +

    ++++

    +++

    +++

    ++++

    +++

    +

    =

    23

    313712

    214

    2131516A

    +++

    +++

    ISSN 2277 - 5048 | 2014 Bonfring

  • 5/20/2018 Hankel Determinant for a Subclass of Alpha Convex Functions

    http:///reader/full/hankel-determinant-for-a-subclass-of-alpha-convex-functio

    Bonfring International Journal of Data Mining, Vol. 4, No. 3, August 2014 2

    Assume that and , using triangular inequality andcc =1 [ 2,0c ] 1z , we have

    ( )( )

    ( )( )( ) ( ) ( )

    ( )

    ( )( ) ( )

    ( )( )( )

    ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( )( )( )

    ( )( ) ( )

    ( ) ( )

    ( ) ( )( ) ( ){ }( )( ) ( ) ( )

    ( ) ( )( )( ) ( )

    ( )

    ( ) ( ) ( ) ( )

    ( ) ( )( )

    ( ) ( ) ( )( )

    .

    21

    24

    31

    2218

    24

    22

    314

    13

    221

    314

    314

    112

    24

    2

    212

    1516

    2

    21

    3

    18

    314

    162

    31516

    2312151

    216

    4

    712

    218

    212

    1516

    21315112

    21

    2316

    3316

    2

    21

    231631

    413

    331371

    2214

    221

    314

    2131516

    212

    1516

    23

    313

    712

    2142131516

    22342

    +++

    ++

    ++++++

    +++

    ++

    +++++

    +

    ++++

    +

    +++

    +++

    +++

    ++++

    +

    ++++

    +++

    +++

    ++++

    +++

    +

    +

    +++++

    cc

    cc

    cc

    B

    A

    c

    AB

    B

    A

    C

    BAaaa

    ( )( )

    ( ),

    FC

    =2

    BAwhere 1= x and

    ( )

    ( )( )( )

    ( ) ( ) ( )

    ( )( ) ( )

    ( )( )( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    ( ) ( ) ( )

    ( )( )( )

    ( )( ) ( ) ( ) ( )

    ( ) ( )( ) ( ){ }( )( ) ( ) ( )( ) ( )

    ( )( ) ( )

    ( )

    ( ) ( ) ( ) ( )

    ( ) ( )( )

    ( ) ( ) ( )( )2124312218

    24

    22

    314

    13

    221

    314

    314

    112

    24

    2

    212

    1516

    221

    318

    314

    162

    31516

    2

    312151

    2

    16

    4

    712

    218212

    1516

    21315112

    21

    2316

    3316

    2

    21

    231631

    413

    331371

    2214

    221

    3142131516

    212

    1516

    2331371

    2214

    2131516

    +++

    ++

    ++++++

    +++

    ++

    +++++

    +

    ++++

    +

    ++++++

    +++

    ++++

    +

    ++++

    +++

    +++++++

    +++

    +

    +++

    +++

    =

    cc

    cc

    ccB

    A

    c

    AB

    B

    A

    F

    Is an increasing function. Therefore ( ) ( ).1. FFMax =

    Consequently

    ( )( )

    ( ),2

    2342 cG

    C

    BAaaa

    (3.11)

    Where

    ( ) ( ).1FcG =

    So

    ( ) ( ) ( ) ( ) ( ),31148 424 ++++= cQcPcG

    ( )Where P and ( )Q are defined in (3.2) and (3.3respectively.

    Now

    ( ) ( ) ( )cQcP 23

    + c 4=G And

    ( ) ( ) ( ).22 QcPc + 12=G ( ) 0 cG = gives

    ( ) ( ) .024 =+ Qc 2 cP( )cG is negative at ( )

    ( ) .c =

    2P

    Qc=

    ISSN 2277 - 5048 | 2014 Bonfring

  • 5/20/2018 Hankel Determinant for a Subclass of Alpha Convex Functions

    http:///reader/full/hankel-determinant-for-a-subclass-of-alpha-convex-functio

    Bonfring International Journal of Data Mining, Vol. 4, No. 3, August 2014 2

    So

    ( ) ( ).. cGcGMax =Hence from (3.11), we obtain (3.1).

    The result is sharp for , andcc1 = 2212 = cc

    ( ).32113 = ccc

    For and , Theorem 3.1 gives thefollowing:

    1=A 1=B

    ( ) ( )Corollary 3.1.1: If Mzf , then

    ( )( )

    ( ) ( ),

    31

    1121

    21

    4

    2

    2342

    +

    +

    +

    Aaaa

    ( ) ( )( )

    1 2

    Where

    ( ) ( ) ( )( ) ( ) ( ) ( ).71221162741314 ++++++

    0=

    2273

    23112

    252512124 ++++++++=A

    For , Theorem 3.1 gives the following result due to

    Singh and Singh [16].

    Corollary 3.1.2: If , then( ) ( )BASzf ,

    ( ).

    4

    2B

    1=

    2342

    Aaaa

    For , Theorem 3.1 gives the following result due toSingh and Singh [16].

    Corollary 3.1.3: If , then( )BAKf ,

    ( ).

    25

    2

    2

    365122

    5

    576

    2342

    ++

    BAABBA

    BABAABBAaaa

    2

    22

    2162

    ++ BA

    Putting 1,0 == A and in Theorem 3.1, weobtain the following result due to Janteng et al. [5].

    1=B

    ( ) SzfCorollary 3.1.4: If , then

    .12 a 342 aa

    ,1=Putting 1=A and in Theorem 3.1, weobtain the following result due to Janteng et al. [5].

    1=B

    fCorollary 3.1.5: If , then( ) Kz

    .8

    123

    a

    42

    aa

    REFERENCES

    [1] D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math.Soc., Vol 69, pp 362-366, 1963.

    [2] P. Dienes,The Taylor Series, Dover, New York, 1957.[3] R. M. Goel and B. S. Mehrok,On the coefficients of a subclass of

    starlike functions, Ind. J. Pure and Appl. Math., vol.12, no. 5, pp 634-647,1981.

    [4] Aini Janteng, Suzeini Abdul Halim and Maslina Darus,Coefficient inequality for a function whose derivative has apositive real part, J. Ineq. Pure Appl. Math., vol.7, no.2, pp 1-5, 2006.

    [5] Aini Janteng, Suzeini Abdul Halim and Maslina Darus,Hankdeterminant for starlike and convex functions, Int. J. Math. Anavol.1, no.13, pp 619-625,2007.

    [6] Aini Janteng, Suzeini Abdul Halim and Maslina Darus, Hankdeterminant for functions starlike and convex with respect symmetric points, J. Quality Measurement and Anal., vol.2, no.1,pp 343, 2006.

    [7] R. J. Libera and E-J. Zlotkiewiez, Early coefficients of the inversof a regular convex function, Proc. Amer. Math. Soc., vol.8pp225-230, 1982.

    [8] R. J. Libera and E-J. Zlotkiewiez, Coefficient bounds for thinverse of a function with derivative in P, Proc. Amer. MatSoc., vol.87, pp 251-257, 1983.

    [9] T. H. MacGregor, Functions whose derivative has a positive repart, Trans. Amer. Math. Soc., vol.104, pp 532-537, 1962.

    [10] B. S. Mehrok and Gagandeep Singh, Estimate of second Hankdeterminant for certain classes of analytic functions, Scientia Magn8(3), 85-94, 2012.

    [11] P. T. Mocanu, Une proprit de convexit gnralise dala thorie de la reprsentation conforme, Mathematica, 11(34127-133, 1969.

    [12] J. W. Noonan and D. K. Thomas, On the second Hankel determinaof a really mean p-valent functions, Trans. Amer. Math. Socvol. 223, no. 2, pp 337-346, 1976.

    [13] Ch. Pommerenke, Univalent functions, Gttingen: Vandenhoeck anRuprecht., 1975.

    [14] Gagandeep Singh, Hankel determinant for new subclasses

    analytic functions with respect to symmetric points, Int. J. of ModerMath. Sci., vol.5, no.2, pp 67-76, 2013.

    [15] Gagandeep Singh, Hankel determinant for a new subclass analytic functions, Scientia Magna, vol.8. no.4, pp 61-65, 2012.

    [16] Gagandeep Singh and Gurcharanjit Singh, Second Hankdeterminant for subclasses of starlike and convex functions, TAppear.

    ISSN 2277 - 5048 | 2014 Bonfring