Handout II

5

Transcript of Handout II

Page 1: Handout II

7/21/2019 Handout II

http://slidepdf.com/reader/full/handout-ii 1/5

Mathematics 55 - Elementary Analysis III First Semester, A.Y. 2014-2015

Summary Granario

I.   Double integrals

a. Let  f (x, y) and  R = [a, b] × [c, d] be given. The   double integral  of  f   is the limit

 R

f (x, y) dA = lim∆→0

ni=1

m j=1

f (x∗i , y∗ j )∆xi∆y j ,

where ∆ = max1≤i≤n,1≤ j≤m

 x2i  + y2 j , provided that the limit exists. In this case, we say that f   is

integrable.

b.   Partial integration:

i.   b

a

f (x, y)dx  - Integrate the function with respect to  x with  y  fixed.

ii.

   dc

f (x, y) dy  - Integrate the function with respect to  y  with  x fixed.

Note.  The integral

   ba

f (x, y) dx  is a function of  y  and the integral

   ba

f (x, y) dx   is a function

of  x.

Exercise.   Evaluate the following integrals.

a.

   10

x2y + xy2 + 2x− 3y + 1 dx

b.

   21

ln(x + y) + 2x2ey dy

c.

   π0

cos(x− y) + sin(xy) dx

d.

   10

2x

x2 + y2 + 1 dy

c.   Theorem   (Fubini). Let  R = [a, b] × [c, d] and let  f (x, y) be continuous on  R. Then

 R

f (x, y) dA =   ba

   dc

f (x, y) dydx =   dc

   ba

f (x, y)dx.

Exercise.  Find the volume of the solid under  z  =  f (x, y) over the closed rectangular region  R.

a.   f (x, y) = ye−xy ;  R = [−1, 1] × [0, 1]

b.   f (x, y) = cos(3x) sin(2y) ;  R = [−π, 0] × [0,  π2 ]

c.   f (x, y) =  1

1 + x + y  ;  R = [1, 3] × [1, 2]

d. A region D  ⊆  R2 is said to be   bounded   if  D  ⊆  R   for some closed rectangular region  R   (you

can enclose  D   with a rectangle). A  Type I region  D ⊆ R2 is a region of the form

Page 2: Handout II

7/21/2019 Handout II

http://slidepdf.com/reader/full/handout-ii 2/5

D =  {(x, y) ∈ R2 : a  ≤  x  ≤  b, g1(x) ≤  y  ≤  g2(x)},

where  g1, g2  are continuous functions. In this case,

 D

f (x, y)dA =

   ba

   g2(x)g1(x)

f (x, y) dy dx.

A  Type II  region  D ⊆ R2 is a region of the form

D =  {(x, y) ∈ R2 : f 1(y) ≤  x  ≤  f 2(y), c ≤  y  ≤  d},

where  f 1, f 2  are continuous functions. In this case,

 D

f (x, y) dA =

   dc

   f 2(y)f 1(y)

f (x, y) dxdy.

e.   Theorem.   Let  D ⊆ R2 be bounded and  f, g  be integrable functions on  D. Then

i.

 D

f (x, y) + g(x, y) dA =

 D

f (x, y) dA +

 D

g(x, y) dA

ii.

 D

cf (x, y) dA =  c

 D

f (x, y) dA  for any  c ∈ R

iii.

 D

f (x, y) dA =

 D1

f (x, y) dA +

 D2

f (x, y) dA   if  D  =  D1 ∪ D2  and the intersection of 

D1  and  D2  are only boundary points of  D1  and  D2  (their interiors do not overlap).

iv. If  f (x, y) ≥  g(x, y) on  D, then  D

f (x, y) dA ≥  D

g(x, y) dA.

Page 3: Handout II

7/21/2019 Handout II

http://slidepdf.com/reader/full/handout-ii 3/5

Page 4: Handout II

7/21/2019 Handout II

http://slidepdf.com/reader/full/handout-ii 4/5

(c)

 

R

 x2 + y2 + 4 dA, where R  is the region bounded by  x2 + y2 = 4,  y  =  x2− 4, and  x  = 1.

(d)

 

R

ex2+y2+1 dA, where  R  is the region between the circles  x2 + y2 = 4 and  x2 + y2 = 8.

(e) R

x3 + y dA, where  R  is the region in the first quadrant bounded by the  y-axis and  x2 +

y2 − 6y + 6 = 0.

(f)

 

R

xy − y2 dA, where  R  is the region outside  r = 1 and inside r = 2cos 2θ.

h.   Parametric surfaces.   A   parametric surface  S   is a surface defined by a set of functions

S  :

x =  x(u, v)

y =  y(u, v)

z  =  z(u, v)

where (u, v) ranges over a set  D, the  domain of parameter. The surface  S   is also defined by

the vector function  r(u, v) = x(u, v), y(u, v), z(u, v). If  u  is held constant,  u =  u0,  r(u0, v) is a

curve on  S , called a   constant  u-curve. Similarly, we have a   constant   v-curve  r(u, v0) if  v   is

fixed,  v =  v0.

i.   Surfaces of revolution:

i. About the  x-axis:

x =  x

y =  f (x)cos θ

z =  f (x)sin θ

, where  f (x) ≥  0.

ii. About the y-axis:

x =  f (y)

y =  y

z  =  f (y)sin θ

, where  f (y) ≥  0.

iii. About the x-axis:

x =  f (z)cos θ

y =  f (z)sin θ

z =  z

, where  f (z) ≥  0.

Exercise.

a. Find a set of parametric equations for the portion of the cylinder y2 + z2 = 5 that extends

between x = 0 and  x = 1.

b. Find a set of parametric equations for the portion of the plane   y  −  2z   = 5 that extends

between x = 0 and  x = 3.

c. Find parametric equations for the surface generated by revolving the curve  y  = sinx  about

the  x-axis.

d. Find parametric equations for the surface generated by revolving the curve y− ex = 0 about

the  x-axis.

e. Give a set of parametric equations for 4x2 − 3y2 + 2z2 = 6.

Page 5: Handout II

7/21/2019 Handout II

http://slidepdf.com/reader/full/handout-ii 5/5

 j.   Surface area.   Let S  be a parametric surface defined by  r(u, v) = x(u, v), y(u, v), z(u, v). The

area of  S  over a bounded region  R  is

 R

∂r∂u  ×

 ∂r

∂v

dA.

If  S  is the surface defined by  z  =  f (x, y), then the area of  S   over  R  is

 R

 f x(x, y)2 + f y(x, y)2 + 1 dA.

Exercise.  Express the area of the given surface as an iterated integral.

a. The portion of cylinder  y2 + z2 = 36 above  R = [0, 4] × [−6, 6].

b. The portion of sphere x2 + y2 + z2 = 16 between  z  = 1 and  z  = 3.

c. The portion of the sphere x2 + y2 + z2 = 8 inside  z = x2 + y2.

d. The portion of  z = x2 + y2 inside  x2 + y2 = 2x.

k. A   lamina  L   is an indealized flat object that is thin enough to be viewed as a two-dimensional

object.   L   is said to be  homogeneous   if its composition is uniform throughout. Otherwise, we

say that  L   is  inhomogeneous. Let  δ (x, y) be the density function of  L. Its   mass  M   is given

by  R

δ (x, y) dA

where  R   is the region of the lamina  L. The center of gravity  C (x, y) of  L is given by

x =

  1

M  

R

xδ (x, y

)dA

and

y =  1

 R

yδ (x, y) dA.