GTSTRUDL User’s Group

44
GTSTRUDL User’s Group GTSTRUDL User’s Group Dynamic Analysis of Service Water Pump for Seismic Restraint June 24, 2011 Parimal Gandhi, PE Sr. Engineer 1 Annual Meeting - Annual Meeting - 2011 2011

description

GTSTRUDL User’s Group. Annual Meeting - 2011. Dynamic Analysis of Service Water Pump for Seismic Restraint. June 24, 2011 Parimal Gandhi, PE Sr. Engineer. PURPOSE. Dynamic Analysis of Service Water Pump to Evaluate Seismic Loads on the Restraint . AND - PowerPoint PPT Presentation

Transcript of GTSTRUDL User’s Group

Page 1: GTSTRUDL User’s Group

GTSTRUDL User’s GroupGTSTRUDL User’s Group

Dynamic Analysis of

Service Water Pump for

Seismic Restraint

June 24, 2011Parimal Gandhi, PE

Sr. Engineer1

Annual Meeting - 2011Annual Meeting - 2011

Page 2: GTSTRUDL User’s Group

PURPOSE

2

Dynamic Analysis of Service Water Pump to Evaluate Seismic Loads on the Restraint.

AND

NRC Reg. Guide 1.92 & NRC Gupta Method for Missing Mass Impact on Seismic Loads.

Page 3: GTSTRUDL User’s Group

AGENDA

3

Background of Plant Service Water System, Pump, and Seismic Restraint.

Failure of Seismic Restraint.

Dynamic Analysis of SW Pump With and Without Seismic Restraint.

Impact of NRC Reg.Guide 1.92, Rev. 2 on SW Pump Dynamic Analysis.

Conclusion.

Page 4: GTSTRUDL User’s Group

BACKGROUNDPLANT SERVICE WATER SYSTEM

4

The Service Water Pond covers approximately 94 surface acres, and is required to provide adequate cooling for 30 days following an accident.

Page 5: GTSTRUDL User’s Group

BACKGROUNDPLANT SERVICE WATER SYSYEM

5

The Plant Service Water System is designed to:

Withstand the design basis earthquake (DBE) without impairing its function.

Have sufficient capacity and redundancy to provide reliable cooling.

Be operable during loss-of-offsite power

Page 6: GTSTRUDL User’s Group

BACKGROUNDSW PUMP

6

The SW pumps' capable to withstand a design basis earthquake (DBE) without a loss of function.

If the seismic restraints are degraded to the point that their design function can-not be met, then the associated SW pumps may not be able to withstand a DBE. 

Page 7: GTSTRUDL User’s Group

7

BACKGROUND SW PUMP PUMP MOTOR

COLUMN ASSEMBLY

BOWL ASSEMBLY

DISCHARGE HEAD ASSEMBLY

PUMP BASE PLATE

SEISMIC RESTRAINT

Page 8: GTSTRUDL User’s Group

BACKGROUNDSEISMIC RESTRAINT

8

Page 9: GTSTRUDL User’s Group

FAILURESEISMIC RESTRAINT

9

Page 10: GTSTRUDL User’s Group

10

CORROSION

MAINTANCE LOAD (VERTICAL)

ZERO GAP FOR LATERAL RESTRAINT

FAILURESEISMIC RESTRAINT

Page 11: GTSTRUDL User’s Group

EXAMPLE: STRUDL Math Model For PumpWith Seismic Restraint

11

20- FLOOR PUMP BASEPLATE

17- UPPERSEISMIC RESTRAINT

12 - LOWERSEISMIC RESTRAINT

Page 12: GTSTRUDL User’s Group

DYNAMIC ANALYSIS

12

Page 13: GTSTRUDL User’s Group

13

DYNAMIC ANALYSIS

Page 14: GTSTRUDL User’s Group

14

EIGENPROBLEM SOLUTIONEIGENPROBLEM SOLUTION

Page 15: GTSTRUDL User’s Group

15

DYNAMIC MASS PARTICIPATION FACTORSDYNAMIC MASS PARTICIPATION FACTORS

Page 16: GTSTRUDL User’s Group

16

RESPONSE SPECTRA CURVEEAST-WEST

RESPONSE SPECTRA CURVEEAST-WEST

Page 17: GTSTRUDL User’s Group

17

STORING RESPONSE SPECTRAEAST-WEST

STORING RESPONSE SPECTRAEAST-WEST

Page 18: GTSTRUDL User’s Group

18

RESPONSE SPECTRA CURVEVERTICAL

RESPONSE SPECTRA CURVEVERTICAL

Page 19: GTSTRUDL User’s Group

19

STORING RESPONSE SPECTRAVERTICAL

STORING RESPONSE SPECTRAVERTICAL

Page 20: GTSTRUDL User’s Group

20

RESPONSE SPECTRA CURVENORTH-SOUTH

RESPONSE SPECTRA CURVENORTH-SOUTH

Page 21: GTSTRUDL User’s Group

21

STORING RESPONSE SPECTRANORTH-SOUTH

STORING RESPONSE SPECTRANORTH-SOUTH

Page 22: GTSTRUDL User’s Group

22

RESPOSNSE SPECTRUM LOADINGRESPOSNSE SPECTRUM LOADING

Page 23: GTSTRUDL User’s Group

23

NRC REG. GUIDE 1.92 Rev.1 LOADINGNRC REG. GUIDE 1.92 Rev.1 LOADING

Reg.Guide Rev.1: TOTAL = [(LOAD1-Z) 2 + (LOAD2-X) 2 +(LOAD3-Y) 2 ]1/2

Page 24: GTSTRUDL User’s Group

24

SUPPORT REACTIONS & DISPLACEMENTWITH SEISMIC RESTRAINT

SUPPORT REACTIONS & DISPLACEMENTWITH SEISMIC RESTRAINT

Reg.Guide Rev.1: TOTAL = [(LOAD1-Z) 2 + (LOAD2-X) 2 +(LOAD3-Y) 2 ]1/2

UNITS: FORCE LBS, MOMENT IN-LBS

UNITS: DISPACEMENT INCH, ROTATION RAD

Page 25: GTSTRUDL User’s Group

STRUDL MATH MODEL FOR PUMPWITHOUT SEISMIC RESTRAINT

25

20- FLOOR PUMP BASEPLATE

Page 26: GTSTRUDL User’s Group

26

SUPPORT REACTIONS & DISPLACEMENTWITHOUT SEISMIC RESTRAINT

SUPPORT REACTIONS & DISPLACEMENTWITHOUT SEISMIC RESTRAINT

Reg.Guide Rev.1: TOTAL = [(‘LOAD1-Z’) 2 + (‘LOAD2-X’) 2 +(‘LOAD3-Y’) 2 ]1/2

UNITS: FORCE LBS, MOMENT IN-LBS

UNITS: DISPACEMENT INCH, ROTATION RAD

Page 27: GTSTRUDL User’s Group

27

PUMP STRESSES & DISPLACEMENTPUMP STRESSES & DISPLACEMENTCheck Pump Base Plate Stresses

ForcesAt Pump Base

PlateDue to Seismic

Condition

With Seismic Restraint

Without Seismic Restraint

Remarks

Fx (kips) 2.21 2.67Fy (kips) 2.05 2.05Fz (kips) 2.26 3.0

Mx (in-kips) 161.9 1065.6

My (in-kips) 0 0

Mz (in-kips) 158.2 843.4

Bolt Tensile Stress with

Nozzle & Seismic Loads

10.0 ksi 20.2 ksi Allowable 19.2 ksi for 1 ¼” Bolts A-307

Check Pump DisplacementDisplacement At

Lower end of Pump

Due to Seismic Condition

With Seismic Restraint

Without Seismic Restraint

Remarks

Δ x ( inch) 1.51 4.27Δ y ( inch) 0.0 0.0Δ z ( inch) 1.55 5.51

`

Page 28: GTSTRUDL User’s Group

28

NRC Reg Guide 1.92, Rev 1 Missing Mass Positions

NRC Reg Guide 1.92, Rev 1 Missing Mass Positions

All modes are assumed to be out-of-phase with the ground acceleration and out-of-phase with each other

All modes having frequencies ≤ “significant” frequency

If frequencies are not closely spaced:

SRSS Mode Combination Method

1/2n2

k kii=1

R = R , for k = ground motion directions 1, 2, 3

n = number of "significant" modes used in solution

Page 29: GTSTRUDL User’s Group

29

Frequency1F 2F

ZPAF

Low FrequencyOut-of-PhaseResponse

Mid FrequencyTransition fromOut-of-Phase toIn-Phase Response

High FrequencyIn-Phase Rigid StaticResponse

F1 = frequency at which peak spectral acceleration is observed

F2 = frequency above which the SDOF (modal) oscillators are in-phase with the transient

acceleration input used to generate the spectrum and in phase with each other

FZPA = frequency at which the spectral acceleration returns to the zero period acceleration;

maximum base acceleration of transient acceleration input used to generate the spectrum

NRC GUPTA METHODMissing Mass Positions

NRC Reg Guide 1.92, Rev 2

NRC GUPTA METHODMissing Mass Positions

NRC Reg Guide 1.92, Rev 2

Page 30: GTSTRUDL User’s Group

30

● For each mode i, in each ground motion direction k, the response is separated into a periodic part and a rigid part:

rki ki ki

2 1/2pki ki ki

ki

2 2 1/2ki rki pki

R = R (rigid modal response)

R = (1 - ) R periodic modal response

where 0 1 and k = 1, 2, 3

R = (R + R )

● The periodic modal response portions are combined using a double sum rule:

1/2n n

pk kij pki pkji=1 j=1

ZPA

R = R R ,k = 1, 2, 3,

and where n = number of modes below F

NRC GUPTA METHODMissing Mass Positions

NRC Reg Guide 1.92, Rev 2

NRC GUPTA METHODMissing Mass Positions

NRC Reg Guide 1.92, Rev 2

Page 31: GTSTRUDL User’s Group

31

● The rigid modal responses are combined algebraically,including the residual rigid contribution from the missing mass:

n

rk rki missingmasski=1

ZPA

R = R + R , k = 1,2,3,

and where n = number of modes below F

● The total response in each ground motion direction is computed from the SRSS of the modal combinations of the periodic and rigid responses:

1/22 2k rk pkR = R + R , k = 1, 2, 3

NRC GUPTA METHODMissing Mass Positions

NRC Reg Guide 1.92, Rev 2

NRC GUPTA METHODMissing Mass Positions

NRC Reg Guide 1.92, Rev 2

Page 32: GTSTRUDL User’s Group

32

NRC Reg.Guide Rev.2: TOTAL+MM = [(‘LOAD1-Z’+’Z-MAS’) 2 + (‘LOAD2-X’+’X-MAS’) 2 +(‘LOAD3-Y’+ ‘Y-MASS’) 2 ]1/2

Missing MassNRC Reg Guide 1.92, Rev 2

Missing MassNRC Reg Guide 1.92, Rev 2

Page 33: GTSTRUDL User’s Group

33

NRC Gupta Method Reg Guide 1.92, Rev 2NRC Gupta Method

Reg Guide 1.92, Rev 2

Page 34: GTSTRUDL User’s Group

34

NRC Gupta Method Reg Guide 1.92, Rev 2NRC Gupta Method

Reg Guide 1.92, Rev 2

Page 35: GTSTRUDL User’s Group

35

NRC Gupta Method Reg Guide 1.92, Rev 2NRC Gupta Method

Reg Guide 1.92, Rev 2

Page 36: GTSTRUDL User’s Group

36

NRC Gupta Method Reg Guide 1.92, Rev 2NRC Gupta Method

Reg Guide 1.92, Rev 2

‘GUP-ZT’= [(‘ZR’+’ZPMM’) 2 + (‘Z-PERDC’) 2]1/2

‘GUP-XT’= [(‘XR’+’XPMM’) 2 + (‘Z-PERDC’) 2]1/2

‘GUP-YT’= [(‘YR’+’YPMM’) 2 + (‘Z-PERDC’) 2]1/2

‘GUP-TOTL’= [(‘GUP-ZT’) 2 + [(‘GUP-XT’) 2 + (‘GUP-YT’) 2]1/2

Page 37: GTSTRUDL User’s Group

37

Reg.Guide Rev.1: TOTAL = [(‘LOAD1-Z’) 2 + (‘LOAD2-X’) 2 +(‘LOAD3-Y’) 2 ]1/2

NRC Reg.Guide Rev.2: TOTAL+MM = [(‘LOAD1-Z’+ ‘Z-MAS’) 2 + (‘LOAD2-X’+ ‘X-MAS’) 2 +(‘LOAD3-Y’+’Y-MASS’) 2 ]1/2

‘GUP-TOTL’= [(‘GUP-ZT’) 2 + [(‘GUP-XT’) 2 + (‘GUP-YT’) 2]1/2

Missing Mass PositionsNRC Reg Guide 1.92, Rev 1 & 2

NRC Gupta Method

Missing Mass PositionsNRC Reg Guide 1.92, Rev 1 & 2

NRC Gupta Method

Page 38: GTSTRUDL User’s Group

38

FREQUENCY SPECIFICATONS O TO 900

NUMBER OF MODES 50

NRC Reg Guide 1.92, Rev 1, 2 & Gupta Method Missing Mass Positions

NRC Reg Guide 1.92, Rev 1, 2 & Gupta Method Missing Mass Positions

Frequency

Page 39: GTSTRUDL User’s Group

39

NRC Reg Guide 1.92, Rev 1 & 2 Missing Mass Positions

NRC Reg Guide 1.92, Rev 1 & 2 Missing Mass Positions

Page 40: GTSTRUDL User’s Group

40

DYNAMIC MASS PARTICIPATION FACTORSDYNAMIC MASS PARTICIPATION FACTORS

Page 41: GTSTRUDL User’s Group

41

Reg.Guide Rev.1: TOTAL = [(‘LOAD1-Z’) 2 + (‘LOAD2-X’) 2 +(‘LOAD3-Y’) 2 ]1/2

NRC Reg.Guide Rev.2: TOTAL+MM = [‘(LOAD1-Z’+ ‘Z-MAS’) 2 + (‘LOAD2-X’+ ‘X-MAS’) 2 +(‘LOAD3-Y’+ ‘Y-MASS’) 2 ]1/2

‘GUP-TOTL’= [(‘GUP-ZT’) 2 + [(‘GUP-XT’) 2 + (‘GUP-YT’) 2]1/2

Missing Mass PositionsNRC Reg Guide 1.92, Rev 1 & 2

NRC Gupta Method

Missing Mass PositionsNRC Reg Guide 1.92, Rev 1 & 2

NRC Gupta Method

Page 42: GTSTRUDL User’s Group

42

Reg.Guide Rev.2: TOTAL-X = [(X LOAD2) 2 + (MM LOAD2) 2]1/2

NRC Gupta Method: GUP XT = [(X RIGID+MM-XPERD) 2 + ( X PERDC) 2]1/2

Reg. Guide 1.92, Rev. 1: X LOAD 2

Missing Mass PositionsNRC Reg Guide 1.92, Rev 1 , 2 & NRC GUPTA Method

Missing Mass PositionsNRC Reg Guide 1.92, Rev 1 , 2 & NRC GUPTA Method

Page 43: GTSTRUDL User’s Group

CONCLUSION

43

Seismic Restraint : To Reduce Pump Deflection

and Stresses

No Impact of NRC Reg.Guide 1.92, Rev.

2 on Pump Dynamic Analysis

Page 44: GTSTRUDL User’s Group

Questions?Questions?

Thank you.Thank you.

44