Gravitational Anomalies (in) matter - TU...

38
Gravitational Anomalies (in) matter Karl Landsteiner Instituto de Física Teórica UAM-CSIC ESI, 30-05-2017 arXiv:1610.04413 [hep-th] arXiv:1703.10682 [cond-mat.mtrl-sci] (accepted for publication in Nature)

Transcript of Gravitational Anomalies (in) matter - TU...

Page 1: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Gravitational Anomalies (in) matter

Karl LandsteinerInstituto de Física Teórica UAM-CSIC

ESI, 30-05-2017

arXiv:1610.04413 [hep-th] arXiv:1703.10682 [cond-mat.mtrl-sci](accepted for publication in Nature)

Page 2: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Outline

• Anomalies

• Quantum Currents

• Applications: NMR and NTMR in WSMs

• Conclusions

Page 3: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Anomalies

• Symmetry (Noether)

• Quantum Mechanics

Early 20th century: 2 key concepts of physics

Second half of 20th century: not always compatible

•Chiral Anomalies (Adler-Bell-Jackiw)

Page 4: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

AnomaliesHigh energy physics: decay of neutral pion

Symmetries suggest process is strongly suppressed

⇥µJµ5 = f⇥m2

⇥�0

Quantum corrections destroy symmetry

� �

8⇤⇥µ⇤⌅�Fµ⇤F⌅�

[Adler], [Bell,Jackiw] 1969

Page 5: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

AnomaliesDecay of neutral pion into gravitons

[Kimura] 1969, [Delbourgo, Salam] 1972, [Eguchi,Freund] 1976

Suppressed by Planck scale, impossible to detect at LHC + successors

@µJµ5 =

1

384⇡2✏µ⌫⇢�Ra

bµ⌫Rba⇢�

Page 6: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Anomalies

DµJµa = ✏µ⌫⇢�

✓dabc96⇡2

F bµ⌫F

c⇢� +

ba768⇡2

R↵�µ⌫R

�↵⇢�

• Anomaly coefficients detect presence of anomalies• In 3+1 no pure gravitational anomaly• Anomalies can always be shifted into currents

dabc =X

r

qraqrbq

rc �

X

l

qlaqlbq

lc

ba =X

r

qra �X

l

qla

Page 7: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

AnomaliesLead to important consistency conditions

• Pure gauge field configuration does not decouple from the physical states!• Unphysical states (longitudinal) can scatter into physical sector (transverse)• HEP: Most basic principle of model building• COND-MAT: Classification of possible edge theories of top. Insulators

�AµJµ =

�⇥µ�Jµ = �

��⇥µJµ

New: collective dynamics induced by anomaly (CME, CVE)

Page 8: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Anomalies

The basic Rule

• Anomaly in gauge current = BAD!• Anomaly in global current = GOOD!

Page 9: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Anomalies

Weyl fermions (massless Dirac):

H = ±⌅�⌅p

Spin is either aligned or anti-aligned with momentum

-- Do you ever run across a fellow that even you can't understand?"

"Yes," says he.

"This well make a great reading for the boys down at the office," says I. "Do you mind releasing to me who he is?"

"Weyl," says he. ( ROUNDY INTERVIEWS PROFESSOR DIRAC )

Page 10: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Chiral fermions in magnetic field:

Landau Levels: n>0

Lowest Landau Level : n=0E0 = ±pz

Sign is determined by chiralityeB

2�Degeneracy of LL:

Anomalies and Landau levels

En =p

p2z + 2nB

Page 11: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

AnomaliesChiral Fermion in electric and magnetic fields: Landau levels

⇥R,L = ± 14�2

⌃E. ⌃B

p = E

2�d⇥ = dp

Page 12: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

AnomaliesAxial Anomaly: Jµ

5 = ⇥�5�µ⇥ = Jµ

R � JµL

⇥5 =1

2�2⇧E ⇧B

Page 13: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

AnomaliesDirac Fermion in electric and magnetic fields

⇥5 = ± 12�2

( ⌃E. ⌃B + ⌃E5. ⌃B5)

⇥ = ± 12�2

( ⌃E. ⌃B5 + ⌃E5. ⌃B)

Axial Anomaly

Not really an Anomaly

[Cortijo, Ferreiros, K.L, Vozmediano], [Cortijo, Kharzeev, K.L., Vozmediano] [Pikulin, Chen,Franz] [Grushin, Venderbos, Vishwanath, Ilan]WSM: B5 = Strain

But also violation of basic rule:

To say nature knows no axial field is not good enough.

Page 14: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Physical field !

Quantum CurrentDirac Fermion in electric and magnetic fields

Anomaly is total derivative: consistent conserved current

No anomaly but quantum current

⇤µ(Jµ � 14⇥2

�µ⇤⌅�A5⇤F⌅�) = 0

⇤µJµ =1

16⇥2�µ⇤⌅�F 5

µ⇤F⌅�

[Wess, Zumino], [Bardeen], [Bardeen,Zumino] [Stora]

Mathematics of Anomalies: Consistency conditions, covariant anomalies, descent equation, cohomology

Page 15: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Quantum Current

Anomalous Hall Current: ⇧J =1

2�2⇧A5 � ⇧E

J0 =1

2�2⌃A5. ⌃B

⌃J = � 12�2

A05. ⌃B

Anomalous Hall Charge:

Chiral Magnetic Current:

?

Jµ =1

4⇥2�µ⇤⌅�A5

⇤Fµ⇤

Page 16: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Covariant vs. Consistent:

A50

�B

� �E5�E5

Anomalies:

Chern-Simons current via boundary conditions at cutoff

⇥JC.S = � 1

2�2A5

0⇥B

Friday 26 August 16

Page 17: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Landau Levels and TransportLandau levels of chiral fermion in magnetic field

HLLs:

LLL: E0 = ±pz

Current = charge x velocity

HLLs:

LLL:

Taking degeneracy of LLL into account : Chiral Magnetic Effect (CME)

~JL,R = ± µ

4⇡2~B

Z 1

�1

dpz2⇡

@En

@pz

✓1

eEn�µ

T + 1� 1

eEn+µ

T + 1

◆= 0

Z 1

0

dpz2⇡

(±1)

✓1

eE0�µ

T + 1� 1

eE0+µ

T + 1

◆=

µ

2⇡

En =p

p2z + 2nB

[Vilenkin], [Alekseev, Chainanov, Frohlich] [Giovannini, Shaposhnikov][Kharzeev,Fukushima,Warringa],…

Page 18: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Landau Levels and TransportEnergy transport = E . v = p = Momentum density

Chiral Magnetic Effect (CME) in energy current

Jonquiere inversion relations: Bernoulli polynomials

⇥PL,R = ⇥J�,L,R = ±⇤ ⇥

0

dpz2�

�p

ep�µT + 1

+p

ep+µT + 1

= ±T 2

2�

⌅Li2(�eµ/T ) + Li2(�e�µ/T )

⇥J�,L,R = ±�µ2L,R

8�2+

T 2

24

⇥⇥B

Friday 26 August 16

Page 19: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

RotationHeuristic relation magnetic field and rotation

⇧F = ⇧v � q ⇧B

Lorentz force Coriolis force

q ⌅B � 2E⌅�

⌅F = ⌅v � 2m⌅�

Quantum currents induced by rotation: Chiral Vortical Effect

⇥J =�

µ2

4⇤2 + T 2

12

⇥⇥�

⇥J� =�

µ3

6⇤2 + µT 2

6

⇥⇥�

[Vilenkin],[Son, Zhitnitsky] [Kharzeev, Zhitnitsky][Erdmenger, Haack, Kaminski,Yarom], [Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganayagam, Surowka],

Page 20: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Subtlety about CME

⇧J =µ5

2⇥2⇧B

⌃J =µ5 �A5

0

2⇥2⌃B

µ5 =12(µR � µL)

But there is also the “topological” contribution due to charge conservation:

[A. Gynther, K.L., F. Pena-Benitez, A. Rebhan]

Page 21: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Temperature dependence

⇧J� =T 2

24

�⇤

R

qR �⇤

L

qL

⇥⇧B

For a more general collection of chiral fermions with different charges

Coefficient of gravitational anomaly!

[K.L., E. Megias, F. Pena-Benitez]

~J =T 2

12~⌦

~J✏ =T 2

24~B +

µT 2

12~⌦

Page 22: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Gravitational Anomaly• Mixed between chiral and general covariance• General covariance can always be saved (cfg. electricity)

• Very similar to usual anomaly

F � dA + A ⇥A , R � ⇥� +� ⇥ �

• BUT also very different � � g�1�g

• HOW is this possible: ⇧J =b

12T 2⇧� !!????!!

[K.L., E. Megias, L. Melgar, F. Pena-Benitez]

DµJµ =b

768⇥2�µ⇧⌃⇤R�

⇥µ⇧R⇥�⌃⇤

Page 23: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Quantum Currents from 5D

Black Hole

ds2 = r2(�f(r)dt2 + d⌥x2) +dr2

f(r)r2

Strongly coupled QFT = gravity in 5D

UV

IR

Page 24: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Quantum Currents from 5D• Anomaly = dynamics of Chern-Simons terms

•Grav. Anomaly = dynamics of grav. Chern-Simons terms�

AdSd5xA ⇥R(5) ⇥R(5) �

�(AdS)d4x �(R(4) ⇥ R(4) +⇤K ⇥⇤K)

•“Extrinsic curvature” K appears• QFT anomaly knows only 4D curvature• K-terms does not contribute at r=∞ (UV)

AdSd5xA ⇥ F ⇥ F �

�(AdS)d4x�(F ⇥ F )

Page 25: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Quantum Currents from 5D• BUT: at the black hole horizon

⌅K ⇤⌅K ⇥ r4Hf �(rH)2

� ⌥A

�t(⌅� ⌥A)

ds2 = r2f(r)(�dt2 + 2 �Ad�xdt) + r2d�x2 +dr2

r2f(r)

• Following Hawking

⇥K �⇥K = 64�2T 2 ⌥Eg. ⌥Bg

• Local phenomenon in space time!

• Following Hawking

• No obvious restriction to (near) equilibrium!

Page 26: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

•Holography suggests in deep IR ⇥µJµ =T 2

12⌥Eg. ⌥Bg

•A new anomaly ??? ⇤µJµ =e2

4�2�E. �B

•NO! not anomaly but quantum current (Luttinger) T 2

12⌃Eg. ⌃Bg = ⌃� ⌃Jq

•The Chiral Vortical Effect (CVE) !!

Quantum Currents from 5D

⇧Jq =b

12T 2⇧�

�⇥⇥T

T⇥⇥� ⇥v

[Azayanagi, Loganayagam, Ng, Rodriguez],[Chapman, Neiman, Oz],[Jensen,Loganayagam,Yarom],[Grozdanov, Poovuttikul] global anomaly: [Gorkar, Sethi]

Page 27: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Quantum Currents⌃J =

µ

2⇥2⌃B ⌃J = ( µ2

2⇤2 + T 2

12 )⌃�

⌃J� = (µ2

4⇥2+

T 2

24) ⌃B ⌃J� = ( µ3

6⇤2 + µT 2

6 )⌃�

No entropy is produced: dissipationless

Page 29: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Applications: WSM

�µ�iDµ + �5A

� = 0

Page 30: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

CME in WSM

Conclusions

Page 31: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

NMR and NTMR in WSMNMR = Negative Magnetoresistivity

In equilibrium CME vanishes, Induce non-equilibrium steady state

⇥5 =1

2�2⌥E. ⌥B � 1

⇤5⇥5

⇥5 = ⇤5µ5 ⌥J = ⇤ ⌥E +µ5

2⇥2⌥B

�J =�

⇥ +⇤5B2

(2�2)⌅5

⇥�E

Page 32: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Test grav. Anomaly ?

~J✏ =b5T 2

24~B5

• No effect expected due to usual magnetic field

⇢5

✏5

Not conserved because of anomaly

Not conserved at all

BUT :

[K.L., Yan Liu]

Page 33: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

NMR and NTMR in WSM

[J. Zaanen, “Electrons go with the flow in exotic materials”, Science Vol. 351, 6277]

In our holographic calculations, we have not included dissipation e↵ects. It would be

very interesting to test the dissipation e↵ects holographically. Recently there has been a lot of

work in including momentum dissipation in holography. These include the lattice construction

which breaks the translational symmetry explicitly (e.g. [46, 47, 48, 49, 50]) and massive

gravity which breaks the di↵eomorphism symmetry in the bulk (e.g. [51, 52, 53]). Besides

momentum dissipations, we also need to include energy and charge dissipations.

In [30], a bulk massive gauge theory was studied in the chiral anomalous fluid (see also

[54]). The massive gauge theory breaks the U(1) gauge symmetry in the bulk and leads

to charge dissipation for the boundary theory. In a follow up paper, we plan to study the

fluid/gravity analysis of this theory (similar to [8, 9]) to get the charge relaxation time from

the hydrodynamic modes [55].

The holographic energy dissipation e↵ects have not been considered so far. As we argued

in the paper, the holographic zero density system is automatically a system with energy not

conserved for the charge carriers. To encode energy dissipations at finite density, we can as

well mimic the way that momentum dissipations are introduced, such as the Q lattice [49]

or massive gravity constructions [51]. It is possible to combine all the momentum, energy

and charge dissipations holographically to test the formula in this work and we would like to

consider this in future work.

Figure 5: Schematic depiction of an inter valley scattering event. Such an event will lead to axial

charge relaxation. But if the two Weyl cones are at di↵erent chemical potentials (as they are in

parallel external electric and magnetic fields) inter valley scattering will also lead to energy relaxation

since �✏ ⇡ µ5�⇢5.

Finally we would like to point out that in the context of Weyl metals inter-valley scattering

does indeed lead to energy relaxation. A schematic picture of an intervalley scattering event

33

If WSM is not strongly coupled, hierarchy of scattering times

⌧inner < ⌧inter < ⌧ee

Kills Kills Is irrelevant ~P ⇢5, ✏5

Page 34: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

NTMR via CME

✏+ ~r ~J✏ = ~E. ~J

⇢+ ~r ~J = a� ~E. ~B

~J✏ =⇣a�

2µ2 + agT

2⌘~B

~J = a�µ ~B

Grad T pumps chiral energy into the system

Electric field (-grad µ) pumps chiral charge and energy into the system

⇢ = a�( ~E � ~rµ). ~B

✏ = �~r ~J✏ = �2agT ~rT. ~B

✏ = a�µ⇣~E � ~rµ

⌘. ~B

Page 35: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

NTMR via CME✓

✏⇢

◆= �i!

@(✏, ⇢)

@(T, µ)

✓�T�µ

✓✏⇢

◆=

✓�2agT a�µ

0 a�

◆✓~rT~E

The chiral pumping is stopped due to internally scattering

! ! i

⌧5

Page 36: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

NTMR via CMECalculate increase in T,µ and re-insert into chiral currents

~J = GE~E +GT

~rT

GE = ⌧5a2�

det(⌅)

✓@✏

@T� µ

@⇢

@T

◆B2

GT = ⌧52aga�det(⌅)

@⇢

@TB2

Large B (ultraquantum limit):•GE linear in B•GT vanishes

⇢ =|B|4⇡2

µ

[Spivak, Andreev], [Lundgren, Laurell, Fiete] kinetic theory[Lucas, Davison, Sachdev] chiral fluids

Supplementary material to arXiv:1703.10682

Page 37: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

NMR and NTMR in NbPJohannes Gooth, Anna Corinna Niemann, Tobias Meng, Adolfo G. Grushin, Karl Landsteiner, Bernd Gotsmann, Fabian Menges, Marcus Schmidt, Chandra Shekhar, Vicky Sueß, Ruben Huehne, Bernd Rellinghaus, Claudia Felser, Binghai Yan, Kornelius Nielsch

Experimental signatures of the mixed axial-gravitational anomaly in the Weyl semimetal NbP

arXiv:1703.10682 [cond-mat.mtrl-sci]

Angle dependence NMR and NTMR show B2 at small B NMR ~ linear for large B field NTMR vanishes for large B field

Oida !!!!!

Page 38: Gravitational Anomalies (in) matter - TU Wienquark.itp.tuwien.ac.at/~grumil/ESI2017/talks/landsteiner.pdf · Gravitational Anomalies (in) matter ... [Alekseev, Chainanov, Frohlich]

Summary

• Anomalies have moved from HEP-TH to Cond-Mat

• Rich anomaly induced transport phenomenology (CME, CVE, CSE, NMR, AHE, and now NTMR)

• Universal: QGP, WSM but also Cosmo (primordial magnetic fields), Astro (Neutron star kicks, Supernova explosions, ...)

• WSMs promise experimental observation of effect of gravitational anomaly

Thank You!