Gravitational Anomalies, Dark Matter and Leptogenesis

14
16th Marcel Grossmann Meeting- MG16 1 Gravitational Anomalies, Dark Matter and Leptogenesis Sarben Sarkar Dept. of Physics, Kingโ€™s College London, UK References: M de Cesare, N E Mavromatos, S Sarkar, Eur. Phys. J C 75 514 (2015) T Bossingham, N E Mavromatos, S Sarkar, Eur Phys J C 78 113 (2018) T Bossingham, N E Mavromatos and S Sarkar, Eur. Phys. J. C 79 50 (2019) N E Mavromatos and S Sarkar, Universe 5, no. 1:5 https://doi.org/10.3390/5010005 N E Mavromatos and S Sarkar, Eur. Phys. C 80 558 (2020) J Ellis, N E Mavromatos and S Sarkar, Phys. Lett. B 725 407 (2013)

Transcript of Gravitational Anomalies, Dark Matter and Leptogenesis

16th Marcel Grossmann Meeting-MG16 1

Gravitational Anomalies, Dark Matter and Leptogenesis

Sarben SarkarDept. of Physics, Kingโ€™s College London, UK

References: M de Cesare, N E Mavromatos, S Sarkar, Eur. Phys. J C 75 514 (2015)T Bossingham, N E Mavromatos, S Sarkar, Eur Phys J C 78 113 (2018)T Bossingham, N E Mavromatos and S Sarkar, Eur. Phys. J. C 79 50 (2019)N E Mavromatos and S Sarkar, Universe 5, no. 1:5 https://doi.org/10.3390/5010005N E Mavromatos and S Sarkar, Eur. Phys. C 80 558 (2020)J Ellis, N E Mavromatos and S Sarkar, Phys. Lett. B 725 407 (2013)

Tie together Bary(Lepto)ogenesis (BAU), dark matter and neutrino mass from a string-inspired perspective

16th Marcel Grossmann Meeting-MG16 2 Sarben Sarkar

D

A

M

S

Our recipe:

D Dark matter( gravitational axion)

A Anomalies (gravitational + gauge)

M ordinary matter(SM)

S strings(gravity with torsion)

Components of the Universeโ€™s energy density: l ๐†๐ŸŽ component energy densityl ๐†๐’„ critical energy density

l ๐›€ = ๐†๐ŸŽ๐†๐’„, ๐›€๐’Ž๐’‚๐’•๐’•๐’†๐’“ = ๐ŸŽ. ๐Ÿ๐Ÿ• ยฑ ๐ŸŽ. ๐ŸŽ๐Ÿ’, ๐›€๐‘ฉ = ๐ŸŽ. ๐ŸŽ๐Ÿ’๐Ÿ’ ยฑ ๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ’

l ๐›€๐‘ฉ is the ratio for baryonic matter

l ๐’๐‘ฉ baryon number density, ๐’๐œธ photon number density

l๐’๐‘ฉ๐’๐œธ= ๐Ÿ”. ๐Ÿ ยฑ ๐ŸŽ. ๐Ÿ‘ร—๐Ÿ๐ŸŽ,๐Ÿ๐ŸŽ ๐š๐ญ ๐“~๐Ÿ๐‘ฎ๐’†๐‘ฝ

l If Universe had been matter-antimatter symmetric ๐’๐‘ฉ๐’๐œธ=

๐’๐‘ฉ๐’๐œธโ‰ˆ ๐Ÿ๐ŸŽ,๐Ÿ๐Ÿ–

l Leptogenesis: creation of primordial lepton-antilepton asymmetry (M Fukugita and T Yanagida, Phys. Lett. B174 45 (1986))

16th Marcel Grossmann Meeting-MG16 3 Sarben Sarkar

Sakharovโ€™s Baryogenesis recipe ( A D Sakharov, JETP Lett. 5 24 (1967))

16th Marcel Grossmann Meeting-MG16 4 Sarben Sarkar

Baryon number violating processes(sphaleron) in Standard Model

C and CP violation

CPT invariance assumed

Out of equilibrium: first orderelectroweak phase transition

\

ฮ“ Xโ†’Y +b( )โ‰  ฮ“ Xโ†’Y +b( )Xโ†’Y +b ฮ”B =1 Xโ†’Y +b ฮ”B = โˆ’1

ฮ“ ๐‘‹ โ†’ ๐‘Œ + ๐‘โ‰  ฮ“ ๐‘Œ + ๐‘ โ†’ ๐‘‹

CPT symmetry

C is charge conjugationP is parity (space reflection)T is time-reversal

๐šฏ = ๐‘ช๐‘ท๐‘ป

CPT theorem:For any Lorentz invariant Hermitian local Lagrangian

ฮ˜L x( )ฮ˜โˆ’1 = Lโ€  โˆ’x( )

Anomalies here there and everywhere:( literally the spice of life)

l Electroweak interactions chiral

l ๐‘ฑ๐๐‘ฉ =๐Ÿ๐Ÿ‘โˆ‘๐’‡ ๐’’๐’‡๐‘ณ๐œธ๐๐’’๐’‡๐‘ณ + ๐’–๐‘น๐œธ๐๐’–๐‘น + ๐’…๐‘น๐œธ๐๐’…๐‘น

๐‘ฑ๐๐‘ณ = โˆ‘๐’‡ ๐’๐’‡๐‘ณ๐œธ๐๐’๐’‡๐‘ณ + ๐’†๐’‡๐‘น๐œธ๐๐’†๐’‡๐‘น

l Triangle (ABJ) anomaly ( S L Adler, Phys. Rev 177 2426 (1969))

l ๐๐ ๐‘ฑ๐๐‘ณ = ๐๐ ๐‘ฑ๐๐‘ฉ =๐‘ต๐’‡๐Ÿ‘๐Ÿ๐…๐Ÿ

โˆ’๐’ˆ๐Ÿ๐‘พ๐๐‚5๐‘พ๐๐‚ + ๐’ˆ,๐Ÿ๐‘ฉ๐๐‚7๐‘ฉ๐๐‚

where the ๐‘พ๐๐‚ and ๐‘ฉ๐๐‚ are the ๐‘บ๐‘ผ ๐Ÿ and ๐‘ผ(๐Ÿ) gauge field two forms

l ๐‘ฉ โˆ’ ๐‘ณ is conserved Leptogenesis leads to baryogenesis

16th Marcel Grossmann Meeting-MG16 5 Sarben Sarkar

l Sakharov recipe difficulties: insufficient CP violation in the Standard Model, electroweak phase transition required to be 1st order

l DAMS ingredients beyond SM

16th Marcel Grossmann Meeting-MG16 6 Sarben Sarkar

Bosonic gravitational multiplet of strings consists of a โ€ข graviton, ๐’ˆ๐๐‚โ€ข spin 0 scalar field ๐šฝ the dilatonโ€ข spin 1 antisymmetric gauge field ๐‘ฉ๐๐‚ with gauge invariant

field strength

๐’†,๐Ÿ๐šฝ๐œบ๐’ƒ๐’‚๐’„๐๐‘ฏ๐’‚๐’ƒ๐’„ = ๐Ÿ’๐๐๐’ƒ ๐’™ = ๐Ÿ’๐‘ฉ๐ ๐’™

โ€ข ๐‘ต right-handed sterile neutrino with large Majorana mass โ€ข A CPTV background with non-zero ๐‘ฉ๐ ๐’™

Hยตฮฝฯ = โˆ‚ ยตโŽกโŽฃBฮฝฯโŽคโŽฆ

axion

Strings Gravity with torsionl The Kalb-Ramond field tensor in the low energy string

gravitational action appears as:

where -๐‘น is the curvature for the affine connection

(D J Gross and J H Sloan, Nucl. Phys. B 291 41 (1987) contorsion

l Torsion tensor ๐‘ป ๐€๐๐œฟ = ๐šช๐€๐๐œฟ โˆ’ ๐šช๐๐€๐œฟ

l In a generlisation of Einsteinโ€™s theory: add torsion to get Einstein-Cartan theory

l Torsion is necessary to incorporate fermions

16th Marcel Grossmann Meeting-MG16

7 Sarben Sarkar

S = d4x โˆ’g 12ฮบ 2 Rโˆ’

16HยตฮฝฯH

ยตฮฝฯโŽ›โŽโŽœ

โŽžโŽ โŽŸโˆซ = d4x โˆ’gโˆซ

12ฮบ 2 R

โŽ›โŽโŽœ

โŽžโŽ โŽŸ

ฮ“ฮฝฯยต = ฮ“ฮฝฯ

ยต + ฮบ3Hฮฝฯ

ยต โ‰  ฮ“ฯฮฝยต

16th Marcel Grossmann Meeting-MG16 8 Sarben Sarkar

โ„’ = โ„’๐‘บ๐‘ด +i ๐‘ต๐œธ๐๐๐๐‘ตโˆ’๐’Ž๐‘ต๐Ÿ ๐‘ต๐’„๐‘ต+๐‘ต๐‘ต๐’„ -

๐‘ต๐œธ๐๐‘ฉ๐๐œธ๐Ÿ“๐‘ตโˆ’ โˆ‘๐’Œ๐’š๐’Œ๐‘ณ๐’Œ7๐“๐‘ต + ๐’‰. ๐’„.

DAMS Leptogenesis effective Lagrangian

CPTV and LIV background from torsion

โ€ข Model leads to acceptable leptogenesis at thetree level, owing to Majorana nature of ๐‘ต which is taken to be very heavyโ€ข Freeze out of N at ๐‘ป = ๐‘ป๐‘ซ.โ€ข B-L conservation converts ๐šซ๐‘ณ to ๐šซ๐‘ฉโ€ข ๐‘ฉ๐ = ๐๐๐’ƒโ€ข Non-zero ๐‘ฉ๐ŸŽ backgroundโ€ข The underlying torsion connects this model

to dark matter

Details of leptogenesis

16th Marcel Grossmann Meeting-MG16 9 Sarben Sarkar

โ€ข Stick to ๐’Œ = ๐Ÿ for simplicityโ€ข Background:

๐‘ฉ๐’Š = ๐ŸŽ, ๐’Š = ๐Ÿ, ๐Ÿ, ๐Ÿ‘๐‘ฉ๐ŸŽ ๐”ƒ = ๐šฝ๐’‡ ๐”ƒ

where ๐”ƒ = ๐’Ž๐‘ต๐‘ป, and ๐’‡ ๐”ƒ = ๐Ÿ or ๐’‡ ๐”ƒ = ๐”ƒ,๐Ÿ‘.

โ€ข Gravitational background๐’ˆ๐ŸŽ๐ŸŽ = ๐Ÿ, ๐’ˆ๐’Š๐’‹= โˆ’๐’‚๐Ÿ ๐’• ๐œน๐’Š๐’‹, space Cartesianโ€ข Generation of lepton asymmetry due to CP and CPTV

tree-level decays:โ€ข ๐‘ต โ†’ ๐’,๐’‰8, ๐Š๐’‰๐ŸŽ channel 1โ€ข ๐‘ต โ†’ ๐’8๐’‰,, ๐Š๐’‰๐ŸŽ channel 2where ๐’ยฑ are charged leptons, ๐Š ๐‚ are active (anti)neutrinosโ€ข For ๐šฝ โ‰  ๐ŸŽ the decay rates of ๐‘ต differ for channels 1

and 2 leading to a lepton asymmetry which freezes out at ๐‘ป๐‘ซ.

Results for leptogenesis

16th Marcel Grossmann Meeting-MG16 10 Sarben Sarkar

๐šซ๐‘ณ๐’•๐’๐’•

๐’”โ‰ƒ. ๐ŸŽ๐Ÿ๐Ÿ• ๐‘ฉ๐ŸŽ

๐’Ž๐‘ตat freezeout temperature ๐‘ป = ๐‘ป๐‘ซ

๐’Ž๐‘ต๐‘ป๐‘ซ

โ‰ƒ ๐Ÿ. ๐Ÿ”

For ๐’š~๐Ÿ๐ŸŽ,๐Ÿ“ and ๐’Ž๐‘ต = ๐šถ ๐Ÿ๐ŸŽ๐ŸŽ ๐‘ป๐’†๐‘ฝ and ๐‘ฉ๐ŸŽ~๐ŸŽ. ๐Ÿ๐‘ด๐’†๐‘ฝ forphenomenologically acceptable leptogenesis to occur at

๐‘ป๐‘ซ~๐Ÿ”๐ŸŽ๐‘ป๐’†๐‘ฝ

Gravitational axions as Dark Matter I

l Peccei and Quinn solution of strong CP problemโ„’ โŠƒ ๐‘ ๐’™ ๐œถ๐’”

๐Ÿ๐…๐‘ป๐’“ ๐‘ฎ โˆง ๐‘ฎ

where the ๐‘ vacuum parameter becomes a field and ๐‘ฎ is the QCD gauge field 2-form (R D Peccei and H R. Quinn, Phys Rev. Lett 38 1440 (1977))

Standard procedure: select a vacuum with ๐‘ ๐’™ = ๐ŸŽ with a fluctuation a ๐’™

l Move away from Goldstone axion a ๐‘ฅ ๐ญ๐จ gravitational axion b ๐’™ whose couplings are determined by the Planck scale

l Classical torsionful spacetime manifold characterised by:torsion 2-from

๐’…๐’†๐’‚ +๐Ž ๐’ƒ๐’‚ โˆง ๐’†๐’ƒ = โ„‘๐’‚, curvature 2-from

๐’…๐Ž ๐’„๐’‚ +๐Ž ๐’ƒ

๐’‚ โˆง ๐Ž ๐’„๐’ƒ = ๐‘น ๐’„

๐’‚

where ๐’†๐’‚ is the vierbein and ๐Ž ๐’ƒ๐’‚ is the spin-connection 1-forms

16th Marcel Grossmann Meeting-MG16 11 Sarben Sarkar

๐’†๐’‚ = ๐’†๐๐’‚ ๐’…๐’™๐

๐Ž๐’‚๐’ƒ = ๐Ž๐๐’‚๐’ƒ๐’…๐’™๐

Gravitational axions as Dark Matter II

16th Marcel Grossmann Meeting-MG16 12 Sarben Sarkar

The action of fermions of SM on a torsionful manifold is given by

๐‘บ = ๐‘บ๐’ˆ๐’“๐’‚๐’—๐’Š๐’•๐’š โˆ’๐Ÿ๐Ÿโˆ‘๐’‡โˆซ ๐šฟ๐’‡๐œธ โˆงโˆ— ๐““๐šฟ๐’‡ โˆ’๐““๐šฟ๐’‡ โˆงโˆ— ๐œธ๐šฟ๐’‡ -๐Ÿ

๐Ÿโˆซโ„ฑ โˆงโˆ—โ„ฑ-โˆซ๐‘ป๐’“ ๐‘ฎ โˆงโˆ— ๐‘ฎ

where for any fermionic field ๐šฟ๐‘บ๐’ˆ๐’“๐’‚๐’—๐’Š๐’•๐’š=

๐Ÿ๐Ÿ’๐œฟ๐Ÿ โˆซ๐œบ๐’‚๐’ƒ๐’„๐’…๐“ก

๐’‚๐’ƒ โˆง ๐’†๐’„ โˆง ๐’†๐’…

๐““๐šฟ = ๐’…๐šฟ+๐Ÿ๐Ÿ’๐Ž๐’‚๐’ƒ๐œธ๐’‚๐’ƒ๐šฟ+ ๐’Š๐’†๐“๐šฟ+ig๐“‘ ๐šฟ, ๐œฟ๐Ÿ= ๐Ÿ–๐…๐‘ด๐‘ท๐’

๐Ÿ

with ๐“ and ๐“‘ the gauge connection 1-forms for ๐‘ผ ๐Ÿ ๐’†๐’Ž and SU(3)c,๐œธ = ๐œธ๐’‚๐’†๐’‚ and ๐œธ๐’‚๐’ƒ=

๐Ÿ๐Ÿ๐œธ๐’‚, ๐œธ๐’ƒ .

Equation of motion with respect to ๐Ž๐’‚๐’ƒ gives that the torsion satisfies๐“ฃ๐’‚๐’ƒ๐’„ = โˆ’ ๐œฟ๐Ÿ

๐Ÿ๐œบ๐’‚๐’ƒ๐’„๐’… โˆ‘๐’‡ ๐‘ฑ ๐’‡๐Ÿ“ ๐’…

where ๐‘ฑ ๐’‡๐Ÿ“ ๐’…= ๐’Š๐šฟ๐’‡๐œธ๐’…๐œธ๐Ÿ“๐šฟ๐’‡. (See also R Utiyama, Phys Rev 101, 1597 (1956); T W B Kibble, J Math Phys 2 212(1961);D W Sciama, Monthly Not. Roy, Astr. Soc. 113 34 (1953); F W Hehl, Gen Rel Grav 4 333 (1973); E Cartan, Riemannian Geometry in an Orthogoanl Frame (World Scientific, 2001), O Casillo-Feliso;a et al. Phys Rev D 91 085017 (2015) )

Anomalies(cf S Basilakos et al. PRD 101 045001 (2020)

M J Duncan, N Kaloper, K A Olive, Nucl. Phys. B387 215 (1992))

16th Marcel Grossmann Meeting-MG16 13 Sarben Sarkar

Writing ๐‘ฑ๐Ÿ“ = โˆ‘๐’‡ ๐‘ฑ๐’‡๐Ÿ“ ๐’‚๐’†๐’‚ as a 1-form the axial anomaly implies

๐’… โˆ— ๐‘ฑ๐Ÿ“=โˆ’ ๐œถ๐’†๐’Ž๐‘ธ๐Ÿ

๐…๐“• โˆง ๐“•-๐œถ๐’”๐‘ต๐’’

๐Ÿ๐…๐‘ป๐’“ ๐‘ฎ โˆง ๐‘ฎ โˆ’ ๐‘ต๐’‡

๐Ÿ–๐…๐Ÿ\๐‘น๐’‚๐’ƒ โˆง \๐‘น๐’‚๐’ƒ

which leads to the following quantised torsion-field contribution to the action

โˆ’ ๐œถ๐’†๐’Ž๐‘ธ๐Ÿ

๐…๐’‡๐’ƒโˆซ๐’ƒ ๐“• โˆง ๐“• - ๐Ÿ

๐Ÿโˆซ๐’…b โˆงโˆ— ๐’…๐’ƒ โˆ’๐Ÿ๐Ÿ–๐…๐Ÿ โˆซ ๐šฏ + ๐‘ต๐’‡

๐’‡๐’ƒ๐’ƒ \๐‘น๐’‚๐’ƒ โˆง \๐‘น๐’‚๐’ƒ โˆ’

๐œถ๐’”๐Ÿ๐…โˆซ ๐œฝ + ๐‘ต๐’’

๐’‡๐’ƒ๐’ƒ ๐‘ป๐’“ ๐‘ฎ โˆง ๐‘ฎ

The parameter ๐’‡๐’ƒ = ๐œฟ:๐Ÿ ๐Ÿ–/๐Ÿ‘ = ๐Ÿ’ร—๐Ÿ๐ŸŽ๐Ÿ๐Ÿ– GeV.

๐šฏ and ๐œฝ terms label Pontryagin densities, are allowed in the theory, play therole of counterterms and do not affect the equations of motion.

From the last term see that b solves the strong CP problem and ๐’Ž๐’ƒ~๐Ÿ๐ŸŽ:๐Ÿ๐Ÿ๐’†๐‘ฝand so can be regarded as the QCD axion.

Concluding remarks

16th Marcel Grossmann Meeting-MG16 14 Sarben Sarkar

โ€ข The gravitational anomaly (GA) may not be cancelledin the early universe in a quantum theory of gravity.

โ€ข The gauge anomaly though can be designed to cancel for asuitable GUT theory. Anomaly cancellation is necessary for the theories to be renormalizable.

โ€ข GA implies breakdown of diffeomorphism lnvarianceand hence local Lorentz invariance (LIV)

โ€ข LIV allows a non-zero ๐šฝrequired for our leptogenesis model

โ€ข The Kalb-Ramond axion could play the role of a QCD axionand so be axionic dark matter (M Lattanzi and S Mercuri, Phys Rev D81 125015 (2010))