gcBiomass Sustainable Biomass

download gcBiomass Sustainable Biomass

of 8

Transcript of gcBiomass Sustainable Biomass

  • 8/3/2019 gcBiomass Sustainable Biomass

    1/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

  • 8/3/2019 gcBiomass Sustainable Biomass

    2/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

    gcBIOMASSGREENHOUSE CROP BIOMASS

    THE SUSTAINANABLE AND FULL ENVIRONMENT FRIENDLY BIOMASS FEEDSTOCK

    In Southeastern Spain, Morgan AQUA manages 1,086,261 tyear -1 (fresh weight) up to 2,5 million t year of greenhousecrops Wastes (Cucurbita pepo L., Cucumis sativus L., Solanummelongena L., Solanum lycopersicum L., Phaseoulus vulgarisL.,Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumismelo L.).

    This document shows gcBIOMASS (Vegetable GreenhouseWaste) characterization. Reader must consider figures arethe minimum gcBIOMASS managed by Morgan AQUA.

    Morgan AQUA is the only company that has developed a proprietary technology to fit out thegreenhouse crop wastes into an homogeneous biomass, able to be provided on large scale basis tothe big biomass consumers.

    Economic viability of the greenhouse crop wastes likeBiomass is possible thanks to the Morgan AQUAsenvironmental technologies know-how; NO othercompany was capable to perform it.

    Korean, French, Spanish, German and some otherenvironmental expertise tech developers were trying tofind out a right model for this biomass on the last 30years with no results.

    All the analyses in this work involve the use of worldwide recognized standards and methods andall variables were performed in quintuplicate for each species (more than the required by thestandards). The total potential energy for the gcBIOMASS, was determined by direct analysis usingInternational Standards.

    Readers must take into account that the provided figures are MINIMUM results obtained, it meansthat could be bigger/better at any case.

    gcBIOMASS has not the higher values of HHV, but is a continued and safe source of biomassfeedstock; stocks and provision are fully granted month by month, year by year.

  • 8/3/2019 gcBiomass Sustainable Biomass

    3/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

    CROP RESIDUEAVERAGE VALUES OF PROXIMATE AND ELEMENTAL ANALYSIS, AND HIGHER HEATING VALUE (HHV)

    HHV(HIGHER HEATING VALUE)

    CHLORIDE(Cl)

    SULPHUR(S)

    ASHCONTENT

    HUMIDITY

    KWh/Kg kcal/Kg Percentage (%DRY WEIGHT )

    gcBIOMASS 4,7 4.073 0,007 0,001% 3,20 < 8

    CEREAL A 4,2 3.614 0,04 --- 2 ---

    CEREAL B 4,8 4.130 0,17 --- 3 ---

    WOODCHIPS PELLETS 4,0 3.442 0,15/0,45 --- 0,2/0,5 20%

    STRAW PELLETS 3,6/4,0 3.097/3.441 0,003 --- --- ---

    ASH METAL, CHLORIDE AND SULPHUR SPECIES (mg/kg)

    ASH %

    (DRY

    WEIGHT)

    Al Ca Cu Fe K Mg Mn Mo Na P S Cl

    CURCUBITA PEPO L. (courgette) 3,42 0,23 10,5 0,31 0,02 53 13 0,17 0,003 5 8 4,7 31,4

    CUCUMIS SATIVUS L.(pepper) 3,50 0,18 11,4 0,36 0,03 62 15 0,20 0,003 6 10 5,6 37,0

    SOLANUM MELONGENA L. (aubergine) 2,65 0,28 30,4 0,95 0,08 163 39 0,52 0,009 14 26 14,6 96,8

    SOLANUM LYCOPERSYCUM L. (tomato) 3,04 0,26 20,7 0,63 0,05 108 26 0,35 0,006 41 17 9,7 64,0

    PHASEOULUS VULGARIS L. (bean) 2,88 0,18 11,7 0,32 0,03 55 13 0,18 0,003 5 9 5,0 32,9

    CAPSICUM ANNUM L. (pepper) 3,56 0,15 31,4 0,96 0,08 165 40 0,53 0,009 13 26 14,8 98,2

    CITRILLUS VULGARIS SCHARAD (watermelon)

    3,08 0,24 22,1 0,65 0,05 111 27 0,36 0,006 9 18 10,0 66,2

    CUCUMIS MELO L. (melon) 3,21 0,21 31,6 0,88 0,07 151 37 0,48 0,008 37 24 13,6 89,9

    BALANCED AVERAGE 3,20 0,22 23 0,7 0,1 116 28 0,37 0,01 26 18 10,4 68,8

    HIGHER HEATING VALUE (HHV)

    BEFORE MAQ TREATMENT AFTER MAQ TREATMENT

    KWh/Kg kcal/Kg KWh/Kg Kcal/Kg

    CURCUBITA PEPO L. (courgette) 3,57 3.069,65 4,14 3.559,76

    CUCUMIS SATIVUS L.(pepper) 3,50 3.009,46 4,05 3.482,37

    SOLANUM MELONGENA L. (aubergine) 4,59 3.946,69 5,46 4.694,75SOLANUM LYCOPERSYCUM L. (tomato) 4,12 3.542,56 4,85 4.170,25

    PHASEOULUS VULGARIS L. (bean) 4,73 4.067,07 5,74 4.935,51

    CAPSICUM ANNUM L..(pepper) 4,24 3.645,74 5,01 4.307,82

    CITRILLUS VULGARIS SCHARAD (water melon) 3,96 3.404,99 4,64 3.989,68

    CUCUMIS MELO L. (melon) 3,75 3.224,42 4,37 3.757,52

    BALANCED AVERAGE 4,70 4.073,01

  • 8/3/2019 gcBiomass Sustainable Biomass

    4/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

    MINIMUM CROP RESIDUE BIOMASS PRODUCED

    STUDIED SPECIES

    PLANT

    REMAINS(T Ha. Year)

    AREA

    OCCUPIED(ha)

    MINIMUM AVAILABLE

    BIOMASS(TONES YEAR)

    FRESH WEIGHT

    MINIMUM AVAILABLE

    BIOMASS(TONES YEAR)

    DRY WEIGHT

    CURCUBITA PEPO L. (courgette) 20 4.492 89.840 17.968CUCUMIS SATIVUS L. (pepper) 24 4.551 109,224 21.844,8SOLANUM MELONGENA L.(aubergine)

    27 1.622 43.794 8.758,8

    SOLANUM LYCOPERSYCUM L.(tomato)

    49 10.250 502.250 100.450

    PHASEOULUS VULGARIS L. (bean) 23 1.259 28.957 5.791,4CAPSICUM ANNUM L. (pepper) 28 7.057 197.596 39.519,2CITRILLUS VULGARIS SCHARAD(water melon)

    24 4.775 114.600 22.920

    CUCUMIS MELO L. (melon) 33 4,981 164,373 32.874,6

    TOTAL 228 38.987* 1.086.261 250.126,8* Total area occupied that could be managed up to 46.900 ha

    BIOMASS ANALYSIS METHODS

    PROPERTY ANALYTICAL METHOD

    PROXIMATE ANALISYS

    MOISTURE CONTENT UNE-CEN/TS 14780:2008 EX; UNE-CEN/TS 14774-1:2007 EXASH UNE-CEN/TS 14775:2007 EX

    ELEMENTAL ANALISYS

    SULPHUR (S) ASTM D4239-08CHLORINE (Cl) ASTM E776-87HIGHER HEATING VALUE (via direct analysis). UNE 164001:2005 EXASH ELEMENTAL METALS UNE-CEN/TS 14775 EXASH FUSIBILITY ASTM D1857-04 (Oxidising Atmosphere)

    ASH FUSIBILITY OF THE STUDIED SPECIES

    SPECIES SPECIES FUSIBILITY

    IT (C) ST (C) HT (C) FT (C)

    Cucurbita pepo L. 1.546,00 1.553,00 1.650,00 1.650,00Cucumis sativus L. 993,00 1.650,00 1.650,00 1.650,00Solanum melongena L. 1.650,00 1.650,00 1.650,00 1.650,00Solanum lycopersicum L. 994,00 1.650,00 1.650,00 1.650,00Phaseoulus vulgaris L. 1.353,00 1.650,00 1.650,00 1.650,00Capsicum annuum L. 993,00 1.650,00 1.650,00 1.650,00Citrillus vulgaris Schrad. NO DATA NO DATA NO DATA NO DATACucumis melo L. NO DATA NO DATA NO DATA NO DATA

    IT: deformation temperature; ST: softening temperature; HT: hemisphere temperature; FT: fluidity temperature.

  • 8/3/2019 gcBiomass Sustainable Biomass

    5/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

    POTENTIAL ENERGY OF THE STUDIED GREENHOUSE WASTES

    BEFORE MAQ TREATMENT

    Biomass

    (t year1)

    HHV

    (kJ kg1dry weight)

    kWhkg1dry weight

    kcal kg-1dry weight

    kJ year1kWh

    year1kcal year-1

    Cucurbita pepo L.- Calabacn-

    17.968,0 12.849,37 3,57 3.071,07 230.877.480 64.133 55.181,04

    Cucumis sativus L.- Pepino -

    21.844,8 12.595,82 3,50 3.010,47 275.153.169 76.431 65.763,18

    Solanum melongena L.- Berenjena -

    8.758,8 16.529,71 4,59 3.950,70 144.780.424 40.217 34.603,35

    Solanum lycopersicumL.- Tomate -

    100.450,0 14.826,78 4,12 3.543,69 1.489.350.051 413.708 355.963,20

    Phaseoulus vulgaris L.

    - Judas -5.791,4 17.014,23 4,73 4.066,50 98.536.212 27.371 23.550,72

    Capsicum annuum L.- Pimiento-

    39.519,2 15.264,44 4,24 3.648,29 603.238.457 167.566 144.177,45

    Citrillus vulgarisSchrad.- Sanda -

    22.920,0 14.258,58 3,96 3.407,88 326.806.654 90.780 78.108,66

    Cucumis melo L.- Meln -

    32.874,6 13.501,26 3,75 3.226,88 443.848.522 123.291 106.082,34

    TOTAL 250.126,8 3.612.590.968 1.003.497 863.429.241

    HHV: higher heating value.

    AFTER MAQ TREATMENT

    Biomass

    (t year1)

    HHV

    (kJ kg1dry weight)

    kWhkg1dry weight

    kcal kg-1dry weight

    kJ year1 kWh year1 kcal year-1

    CURCUBITA PEPO L.(courgette)

    17.968,0 14.904,00 4,14 3.559,76 267.795.072 74.388 63.961.768

    CUCUMIS SATIVUS L.(pepper)

    21.844,8 14.580,00 4,05 3.482,37 318.497.184 88.471 76.071.676

    SOLANUM MELONGENA L.(aubergine)

    8.758,8 19.656,00 5,46 4.694,75 172.162.973 47.823 41.120.376

    SOLANUM LYCOPERSYCUML. (tomato)

    100.450,0 17.460,00 4,85 4.170,25 1.753.857.000 487.183 418.901.613

    PHASEOULUS VULGARIS L.(bean) 5.791,4 20.664,00 5,74 4.935,51 119.673.490 33.243 28.583.513

    CAPSICUM ANNUM L.(pepper)

    39.519,2 18.036,00 5,01 4.307,82 712.768.291 197.991 170.241.600

    CITRILLUS VULGARISSCHARAD (water melon)

    22.920,0 16.704,00 4,64 3.989,68 382.855.680 106.349 91.443.466

    CUCUMIS MELO L.(melon)

    32.874,6 15.732,00 4,37 4.073,01 517.183.207 143.662 133.898.575

    TOTAL 4.244.792.897 1.179.109 1.024.222.586

  • 8/3/2019 gcBiomass Sustainable Biomass

    6/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

    VGW MANAGED BY MORGAN AQUA - PRODUCTION ANNUAL CALENDAR

    FRESH WEIGHT DRY WEIGHT

    MONTH VGW (%) VGW (m3) VGW (ton) VGW (ton)

    January 19,2 654.190,66 208.562,11 48.024,35February 10,5 460.616,21 114.057,41 26.263,31March 5 221.682,73 54.313,05 12.506,34April 6,4 282.496,89 69.520,70 16.008,12May 23,6 1.029.793,97 256.357,60 59.029,92June 18,6 812.546,77 202.044,55 46.523,58July 9,3 408.481,28 101.022,27 23.261,79August 0,9 49.640,12 9.776,35 2.251,14September 0,4 26.333,74 4.345,04 1.000,51October 1,2 59.083,05 13.035,13 3.001,52

    November 1,7 83.215,38 18.466,44 4.252,16December 3,2 143.110,89 34.760,35 8.004,06

    TOTAL 100 4.231.191,69 1.086.261,00 250.126,80

    VGW: Vegetable Greenhouse Wastes

    250.126,80 Ton of gcBIOMASS produced yearly

  • 8/3/2019 gcBiomass Sustainable Biomass

    7/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

    REFERENCES

    [1] Gil Maero, Gloria, Ujados Lopez, Manuel. Agricultural crops waste conversion on homogeneous biomass.2008.

    [2] Pardosi A, Tognoni F, Incrocci L. Mediterranean greenhouse technology. Chronica Horticult 2004;44:2834.

    [3] Callejn-Ferre AJ, Manzano-Agugliaro F, Daz-Prez M, Carreo-Ortega A, Prez-Alonso J. Effect of shadingwith aluminised screens on fruit production and quality in tomato (Solanum lycopersicum L.) under greenhouseconditions. Span J Agric Res 2009;7:419.

    [4] Sanjun JF. Deteccin de la superficie invernada en la provincia de Almera a travs de imgenes ASTER.Fundacin para la Investigacin Agraria de la Provincia de Almera (FIAPA). Almera; 2007.

    [5] Castilla N. Invernaderos de plstico. Tecnologa y manejo. Ed. Mundiprensa Madrid; 2005. 462 p.

    [6] Callejn-Ferre AJ, Lpez-Martnez JA. Briquettes of plant remains from the greenhouses of Almera (Spain).Span J Agric Res 2009;7:52534.

    [7] Callejn-Ferre AJ, Carreno-Ortega A, Snchez-Hermosilla J, Prez-Alonso J. Environmental impact of anagricultural solid waste disposal and transformation plant in the Province of Almera (Spain). Inf Constr2010;62:7993.

    [8] Demirbas A. Combustion characteristics of different biomass fuels. Prog Energ Combust 2004;30:21930.

    [9] Chen LJ, Xing L, Han LJ. Renewable energy from agro-residues in China: solid biofuels and biomass briquettingtechnology. Renew Sust Energ Rev 2009;13:268995.

    [10] Yanli Y, Peidong Z, Wenlong Z, Yongsheng T, Yonchong Z, Lisheng W. Quantitative appraisal and potentialanalysis for primary biomass resources for energy utilization in China. Renew Sust Energ Rev 2010;14:30508.

    [11] Tock JY, Lay CL, Lee KT, Tan KT, Bhatia S. Banana biomass as potential renewable energy resource: aMalaysian case study. Renew Sust Energ Rev 2010;14:798805.

    [12] Van Dam J, Faaij APC, Hilbert J, Petruzzi H, Turkenburg WC. Large-scale bioenergy production fromsoybeans and switchgrass in Argentina Part A: potential and economic feasibility for national and internationalmarkets. Renew Sust Energ Rev 2009;13:171033.

    [13] Saracoglu N. Fuel word as a source of energy in Turkey. Energ Source Part B 2009;4:396406.

    [14] Campbell AG. Recycling and disposing of wood ash. Tappi J 1990;73:1416.

    [15] Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler

    power systems and combustion related environmental issues. Prog Energy Combust 2005;31:17192.

    [16] Dai JJ, Sokhansanj S, Grace JR, Bi XT, Lim CJ, Melin S. Overview and some issues related to co-firing biomassand coal. Can J Chem Eng 2008;86:36786.

    [17] Masarovicova E, Kralova K, Pesko M. Energetic plantscost and benefit. Ecol Chem Eng S 2009;16:26376.

    [18] Demirbas A. Calculation of higher heating values of biomass fuels. Fuel 1997;76:4314.

    [19] Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data.Biomass Bioener 2005;28:499507.

  • 8/3/2019 gcBiomass Sustainable Biomass

    8/8

    MORGAN AQUA, S.L.

    Paseo de la Castellana, 115. 7

    28046 Madrid. SPAIN

    CIF: B85476091

    www.morganaqua.com

    ENVIRONMENTAL TECHNOLOGIES

    BIOMASS AND SUSTAINABLE RAW MATERIALS

    [20] Erol M, Haykiri-Acma H, Kckbayrak S. Calorific value estimation of biomass from their proximate analysesdata. Renewable Energy 2010;35:1703.

    [21] Camacho-Ferre F, Callejn-Ferre AJ, Fernndez-Rodrguez EJ, Montoya-Garca ME, Moreno-Casc J,

    Valverde-Garca A, et al. Estudio Tcnico de Plan de Higiene Rural. Trmino Municipal de Njar. Ed. MnsulIngeniera. Almera, Spain; 2000. 554 p.

    [22] Agugliaro FM. Gasificacin de residuos de invernadero para la obtencin de energa elctrica en el sur deEspaa: Ubicacin mediante SIG. Interciencia 2006;32:1316.

    [23] Delegacin Provincial de Almera. Memoria resumen. Consejera de Agricultura y Pesca de la Junta deAndaluca, 2008.

    [24] Cspedes-Lpez AJ, Garca-Garca MC, Prez-Parra JJ, Cuadrado-Gmez IM. Caracterizacin de laExplotacin Hortcola Protegida de Almera. Ed. Isabel Mara Cuadrado Gmez (FIAPA). Almera; 2009. 177 p.

    [25] Callejn-Ferre AJ, Prez-Alonso J, Snchez-Hermosilla J, Carreo-Ortega A. Ergonomics and psycho-

    sociological quality indices in greenhouses, Almera (Spain). Span J Agric Res 2009;7:508.

    [26] UNE-CEN/TS 14780:2008 EX. Biocombustibles slidos. Mtodos para la preparacin de muestras. AENOR,Madrid, Spain, 2008.

    [27] UNE-CEN/TS 14774-1:2007 EX. Biocombustibles slidos. Mtodos para la determinacin del contenido dehumedad. Mtodo de secado en estufa. Parte 1: Humedad total. Mtodo de referencia. AENOR, Madrid, Spain,2007.

    [28] UNE-CEN/TS 14775:2007 EX. Biocombustibles slidos. Mtodo para la determinacin del contenido decenizas. AENOR, Madrid, Spain, 2007.

    [29] UNE-CEN/TS 15148:2008 EX. Biocombustibles slidos. Mtodo para la determinacin del contenido enmaterias voltiles. AENOR, Madrid, Spain, 2008.

    [30] UNE-CEN/TS 15104:2008 EX. Biocombustibles slidos. Determinacin del contenido total de carbono,hidrgeno y nitrgeno. Mtodos instrumentales. AENOR, Madrid, Spain, 2008.

    [31] ASTM D4239-08. Standard test methods for sulfur in the analysis simple of coal and coke using high-temperature tube furnace combustion methods. ASTM International. West Conshohocken, USA, 2008.

    [32] ASTM E776-87. Standard test method for forms of chlorine in refuse-derived fuel. ASTM International, WestConshohocken, USA, 2009.

    [33] UNE 164001:2005 EX. Biocombustibles slidos. Mtodo para la determinacin del HHV. AENOR, Madrid,Spain, 2005.

    [34] ASTM D1857-04. Standard test method for fusibility of coal and coke ash. ASTM International, WestConshohocken, USA, 2004.

    [35] Dempster AP. Elements of Continuous Multivariate Analysis. Reading: Addison-Wesley; 1969.

    [36] Jobson JD. Applied multivariate data analysis, vol. 1: Regression and experimental design. New York:Springer Verlag; 1999.

    [37] Tomassone R, Audrain S, Lesquoy de Turckheim E, Miller C. La Rgression, Nouveaux Regards sur uneAncienne Mthode Statistique. Paris: INRA et MASSON; 1992.

    [38] Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value A.J.

    Callejn-Ferrea,, B. Velzquez-Martb, J.A. Lpez-Martneza, F. Manzano-Agugliaroa. Renewable andSustainable Energy Reviews 15 (2011) 948955 Science Direct.