Future of Cm

download Future of Cm

of 45

Transcript of Future of Cm

  • 8/6/2019 Future of Cm

    1/45

    1

    The Future of Condensed

    Matter and Materials Physics

    Steven M. Girvin

    Yale University

    APS MeetingMarch 3, 2003

  • 8/6/2019 Future of Cm

    2/45

    2

    Connections

    Biophysics, Biologically Inspired PhysicsHigh Energy Theory

    Condensed MatterTheory and Expt.

    High Energy Expt.

    Atomic, Molecular, OpticalMaterials Science

    Astronomy CS, EE

    Technology Fundamental Physics

  • 8/6/2019 Future of Cm

    3/45

    3

    Paradigms

    Spherical Cow Paradigm

    Dark Reality equilibrium

    linear response ordered

    non-interacting

    local

    ?

    Terra Incognita

    non-equilibrium

    non-linear

    disordered

    interacting non-local

  • 8/6/2019 Future of Cm

    4/45

    4

    Soft-Matter and Physics at

    Human Scales

    The World is an interesting and complex place

  • 8/6/2019 Future of Cm

    5/45

    5

    Navier-Stokes Equations

    Glycerol/water into Air

    A Cascade of Structure in a Drop Falling from a Faucet ,X. D. Shi, M. P. Brenner and S. R. Nagel, Science 265, 219-222 (1994).

  • 8/6/2019 Future of Cm

    6/45

    6

    Crumple

    S. R. Nagel

  • 8/6/2019 Future of Cm

    7/45

    7

    Avalanche:

    S. R. Nagel

  • 8/6/2019 Future of Cm

    8/45

    8

    The Thomson Problem and Spherical CrystallographyThe Thomson Problem and Spherical Crystallography(Nelson and Weitz groups, Harvard)

    Finding the ground state of ~26,000 particleson a sphere is replaced by minimizing the energy of

    only ~ 250 interacting disclinations, representing

    points of local 5- and 7-fold symmetry.

    Grain boundaries in ground state for R/a > 5-10have important implications for the mechanicalstability and porosity of colloidosomes, proposed as

    delivery vehicles for drugs, flavors and fragrances.

    1904: J. J. Thomson asks how particles packon a sphere relevant to viruses, colloid-coated

    droplets, and multielectron bubbles in helium

    Bausch et al. Science (in press)

    Colloidosome = colloids of

    radius a coating water droplet

    (radius R) -- Weitz Laboratory

    Simian virus SV40

    Ordering on a sphere a minimum of 12

    5-fold disclinations, as in soccer balls and

    fullerenes -- what happens forR/a >> 1 ?Dislocations (5-7 defect pairs) embedded in

    spherical ground states

  • 8/6/2019 Future of Cm

    9/45

    9

    Hard Matter and the Quantum

    World of Electrons

  • 8/6/2019 Future of Cm

    10/45

    10

    RNG, Field Theory Paradigm

    Powerful ideas and tools- quantum criticality

    - stability analysis of fixed points

    - recognize danger of fine tuning

    - direction of flow hints at strong coupling f.p.

    - broken symmetry

    - emergence; new degrees of freedom

    - fractionalization of particles- non-Fermi liquids

    Band Insulator

    Fermi Liquid

    Superconductor

    Al, Cu, Si

    20 eV

    2 eV

    10-4 eV

  • 8/6/2019 Future of Cm

    11/45

    11

    Emergence from the muck(thank goodness for stable fixed points!)

    Fractional charge and statistics (electrons are gone)

    2

    xy

    p e

    q h

    =Chiral relativistic bosons

    Chern-Simons angle is adjustable

  • 8/6/2019 Future of Cm

    12/45

    12

    Fractional Quantum Hall State

  • 8/6/2019 Future of Cm

    13/45

    13

    QHE Bilayer Tunneling

    ~ 2 eV0.4

    0.3

    0.2

    0.1

    0.0

    dI/dV

    (

    10-6-1)

    420-2-4Interlayer Voltage (mV)

    Which Layer? Broken Symmetry

    Counter-flow superfluidity rapidly

    relaxes charge defects created by

    tunneling.

    J. Eisenstein

    E t Q ti ti f H ll d H ll lt

  • 8/6/2019 Future of Cm

    14/45

    14

    I

    VDh/e2

    1%

    Exact Quantization of Hall drag: Hall voltage

    without current

    2DhV Ie

    =

    Rxy,Drag

    Chern-Simons (Giaver)

    Flux Transformer

    J. Eisenstein

  • 8/6/2019 Future of Cm

    15/45

    15

    Electronic Liquid Crystals

    Vdc

    (mV)

    (kHz)

    0

    00 21 3 4

    0.3

    20

    10

    30

    Idc (A)

    Narrow band noise

    Nematic to Isotropic Transition

    Fradkin and Kivelson

    Wexler and Dorsey

    Radzihovsky and Dorsey

    Quantum Soft Matter

    Higher Landau Levels

    Koulakov, Fogler, and Shklovskii;

    Moessner and Chalker 1996

    J. Eisenstein

  • 8/6/2019 Future of Cm

    16/45

    16

    Struggling with other Strongly

    Correlated Systemsis

    Difficult

    high Tc

    heavy fermions

    oxide magnets, CMR, magnetic SC

    ladders, chains

    organics

  • 8/6/2019 Future of Cm

    17/45

    17

    CopperCopper

    The Nano World

    Kondo Mirage

  • 8/6/2019 Future of Cm

    18/45

    18

    Kondo Mirage

    in a

    Quantum Corral

    K 56KT =

  • 8/6/2019 Future of Cm

    19/45

    100

    b

    7 pA

    0 pA

    Vortex-induced LDOS ofBi2Sr2CaCu2O8+ integratedfrom 1meV to 12meV

    J. Hoffman E. W. Hudson, K. M. Lang, V. Madhavan,S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis,Science 295, 466 (2002).

  • 8/6/2019 Future of Cm

    20/45

    20

    STM image of LDOS modulations in Bi2Sr2CaCu2O8+in zero magnetic field

    Period = 4 latticespacings

    Period = 4 latticespacings

    Energy spectroscopy

    can be done on the spatial

    Fourier transform signal

    C. Howald, H. Eisaki, N. Kaneko, and A. Kapitulnik, cond-mat/0201546

  • 8/6/2019 Future of Cm

    21/45

    21

    STM Electron Spin Resonance

    H. Manoharan

  • 8/6/2019 Future of Cm

    22/45

    22

    Scanning SQUID

    Hans Hilgenkamp, Ariando, Henk-Jan H. Smilde, Dave H.A. Blank, Guus Rijnders,Horst Rogalla, John R. Kirtley, and Chang C. Tsuei, Nature, March 6, 2002

    Nano-Mechanics

  • 8/6/2019 Future of Cm

    23/45

    23

    Nano-Mechanics

    H. Ohnishi et al.Nature 395, 780 (1998)

    Au bridges

  • 8/6/2019 Future of Cm

    24/45

    24

    F F/ 1.7nN in gold =

    N h i l "AND" G t

  • 8/6/2019 Future of Cm

    25/45

    Nano-mechanical "AND" GateCurvature Plots

    After (A then B)Ready After A

    Ready After B After (B then A)

    D. Eigler

    3 I S M l l C d L i Ci i

  • 8/6/2019 Future of Cm

    26/45

    26

    3-Input Sorter Molecule Cascade Logic Circuit

    OutputsInputs

    O3 = A + B + CC

    O2 = (A * B) + (B * C) + (C * A)B

    O1 = A * B * CA

    Circuit Components:3 "And" gates

    3 "Or" gates

    6 "Fan-Outs"

    3 "Cross-Overs"+ Wiring

    Circuit Dimensions: 12 nm x 17 nm

    541 molecules

    D. Eigler

  • 8/6/2019 Future of Cm

    27/45

    27

    Quantum Dots and

    Interferometersfour terminal

    R. Schusteret. al., Nature 385, 417 (97)

    QD plunger gate

    reflector

    gate

    drain

    source

    bridge

    2DEG

    gate

    QD

    two terminal

    A. Yacoby et. al., PRL 74, 4047 (95)

    Mach-Zehnder interferometer

  • 8/6/2019 Future of Cm

    28/45

    28

    Mach Zehnder interferometer

    D1

    S

    BS1 M1

    M2 BS2

    D2

    0 50 100 150 200

    0

    5

    10

    15

    -9.0 -7.5 -6.0 -4.5 -3.0

    Time (minute) = Magnetic Field

    Modualtion Gate Voltage, VMG (mV)

    VMG A Time B

    Current(a.u

    .)

    GateVoltag

    e,

    VMG

    (mV)

    Time = Magnetic Field

    Visibility = 60%

    Weizmann group

  • 8/6/2019 Future of Cm

    29/45

    29

    Tools

    Photons

    Neutrons

    Numerics

    ARPES

  • 8/6/2019 Future of Cm

    30/45

    30

    ARPES

    pseudogap

    Adapted by Millis and Orenstein from:Loeser et al.,Phys. Rev. B 56, 14185 (1997)

    Federov et al.,Phys. Rev. Lett. 82, 217 (1999)

    C h S h di i

  • 8/6/2019 Future of Cm

    31/45

    31Dynamics: liquids, polymers, bio-molecules, CDWs, glasses, critical phenomena

    Coherent Synchrotron Radiation

    Spallation Neutron Source

  • 8/6/2019 Future of Cm

    32/45

    32

    Spallation Neutron Source

    high intensity broad energy range

    pulsed/t-o-f/timing

    N i l T l

  • 8/6/2019 Future of Cm

    33/45

    33

    Numerical Tools

    Brute force is not enough

    QMC-cluster/loop/worm

    -fermions

    DMRG-higher dimensions

    CORE

    LDA (+U)

    -Order N

    DMFT

    -cluster

    d=

    M lti S d ti it i M B2

  • 8/6/2019 Future of Cm

    34/45

    34

    Choi, Roundy, Sun, Cohen & Louie, Nature (2002)

    Multigap Superconductivity in MgB2

    (k) on Fermi surface at T=4 K incolor scale

    Gap distribution as a function

    of temperature.

    Expt: 1 ~ 2 meV; 2 ~ 7 meV

    Dynamical Mean Field Theory

  • 8/6/2019 Future of Cm

    35/45

    35

    -PlutoniumRealistic band structure

    +

    local correlations

    Volume change 35%

    Savrosov, Kotliar and Abrahams

    Nature (2001)

    Electronic Structure

  • 8/6/2019 Future of Cm

    36/45

    36

    Challenges

    Spectroscopy of real materials

    Many body theory for real materials QMC: fermions; real-time vs. Euclidean time

    Prediction, rational materials design

    Multi-scale modeling spanning many decades in length and time

    New NMR Tools

  • 8/6/2019 Future of Cm

    37/45

    37

    New NMR Tools

    Note scale!

    McDermott et al.

    Science 295, 2247 (2002)1Hz

    SQUID detects notd

    dt

    iron law of NMR: signal 4B

    microTesla Fields

    Quantum Computation and NMR

  • 8/6/2019 Future of Cm

    38/45

    38

    Q p

    of a Single Spin

    Quantum MeasurementSingle Spin

    Box

    SET

    Vgb Vge

    Cgb

    Cc

    Cge

    Vds

    Radio-Frequency Single Electron Transistor

  • 8/6/2019 Future of Cm

    39/45

    39

    Radio Frequency Single Electron Transistor

    (RF-SET)

    10-5 e/Hz1/2 charge noise

    -10 0 10Time ( s )

    0.2 electrons

    SET

    RFR

    eflectedpower

    Measure RF powerreflected from LC

    transformer

    Response to step in Vge

    single time

    trace

    Transformer

    Electrometer

    input gate

    Sub-electron sensitivityfor > 100 MHz bandwidth

    Schoelkopfet al., (Science 1998)

    First Observation of RAMSEY FRINGES

  • 8/6/2019 Future of Cm

    40/45

    40

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    30

    35

    40

    45

    switching

    probabilit

    y(%)

    time between pulses t (s)

    RF = 16409.50 MHz

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    30

    35

    40

    45

    switchingprobability

    (%)

    time between pulses t (s)

    Q ~ 25000

    t

    Courtesy M. Devoret

    in a quantum electrical circuit

    Vion et al. Science 2002

  • 8/6/2019 Future of Cm

    41/45

  • 8/6/2019 Future of Cm

    42/45

    42

    Convergence of CM and AMO

    optical lattices

    Mott-Hubbard Transition

    Spinor Condensates

    Rotating Condensates = QHE

    Spin waves, vortices, Landau damping

    quantum computation

    many-body effects in condensate clocks 1D Luttinger liquids

    quantum chaos in optical billiards

    Mott Insulator Superfluid

  • 8/6/2019 Future of Cm

    43/45

    43

    1 kHz

    10nK 200Hz (!)

    U :

    :

    Greiner et al.

    Nature 2002

    /T scaling; quantumto classical cross over

    is in the audio!

  • 8/6/2019 Future of Cm

    44/45

    44

    Thanks for slides to:

    S. Louie

    A. Millis

    M. Devoret

    R. Schoelkopf

    J. Kirtley J. Eisenstein

    M. Heiblum

    C. Kallin

    C. Stafford

    S. Sachdev

    H. Manoharan

    D. Eigler S. Nagel

    L. Radzihovsky

    The Future is Bright

  • 8/6/2019 Future of Cm

    45/45

    45

    but will require someHeavy Lifting