Fundamentals of spectroradiometry and colorimetry János Schanda.

29
Fundamentals of spectroradiometry and colorimetry János Schanda

Transcript of Fundamentals of spectroradiometry and colorimetry János Schanda.

Page 1: Fundamentals of spectroradiometry and colorimetry János Schanda.

Fundamentals of spectroradiometry and colorimetry

János Schanda

Page 2: Fundamentals of spectroradiometry and colorimetry János Schanda.

SpectroradiometrySpectroradiometry

Publication CIE 63-1984:The spectroradiometric measurement of light sources– The spectroradiometer– Basic principles of measurement– Bandwidth considerations

Page 3: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colorimetry - Division 1Colorimetry - Division 1

Publication CIE 15.2-1986: Colorimetry– Standard illuminants– Standard observers– Calculation of tristimulus values– Uniform colour spacing

TC 1-36: New chromaticity diagram TC 1-38: Tabulation of spectral data Report on Improved Colorimetry

Page 4: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colorimetry - Division 2Colorimetry - Division 2

TC 2-04: Secondary standard sources TC 2-16: Characterization of the

performance of tristimulus colorimeters TC 2-33, -35: Standard illuminants and

V() & V’() TC 2-39: Geometric tolerances for

colorimetry

Page 5: Fundamentals of spectroradiometry and colorimetry János Schanda.

Spectroradiometry of LEDsSpectroradiometry of LEDs

Spectral irradiance measurement Spectral radiance and flux measurement The spectroradiometer Measurement principles Practical measurements

Page 6: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colorimetry of LEDsColorimetry of LEDs

Fundamentals of CIE colorimetry Light source colorimetry A new system of colorimetry?

Reportership: Improved colorimetry Work in CIE TC 1-36: Fundamental

chromaticity diagram with physiologically significant axes

Page 7: Fundamentals of spectroradiometry and colorimetry János Schanda.

The spectroradiometer systemThe spectroradiometer system

Page 8: Fundamentals of spectroradiometry and colorimetry János Schanda.

Input optical arrangement-1Input optical arrangement-1

Page 9: Fundamentals of spectroradiometry and colorimetry János Schanda.

Input optical arrangement-2Input optical arrangement-2

Page 10: Fundamentals of spectroradiometry and colorimetry János Schanda.

Monochromators - 1

Light grasp or etendu, throughput, efficiency:

Double monochromator: – Two gratings (additive, subtractive dispersion)– grating + prism

Zh A

f( )

( ).

d

d

Page 11: Fundamentals of spectroradiometry and colorimetry János Schanda.

Monochromators - 2

Stray radiationDetermination with– Interference filter:– Sharp cut-off filters– Lasers

Wavelength accuracy: +/- 0,1 nm– stability– temperature dependence: 0,1 - 0,5 nm/C°

s

( )

( )

R T

R2

11

Page 12: Fundamentals of spectroradiometry and colorimetry János Schanda.

Detector and measuring systemDetector and measuring system

Irradiation of detector - homogeneity Type of detector: photomultiplier, Si-cell

– linearity (superposition)– temperature dependence– high voltage stability

Standard sources Method of measurement

Page 13: Fundamentals of spectroradiometry and colorimetry János Schanda.

Method of measurementMethod of measurement

Sequence: test - standard Transmittance function - Bandwidth

Page 14: Fundamentals of spectroradiometry and colorimetry János Schanda.

Bandwidth & samplingBandwidth & sampling

Page 15: Fundamentals of spectroradiometry and colorimetry János Schanda.

Continuous scan methodContinuous scan method

Page 16: Fundamentals of spectroradiometry and colorimetry János Schanda.

Practical measurements - ErrorsPractical measurements - Errors

Stray light Wavelength error Bandwidth - interpolation, extrapolation Polarization Detector system Reference standard

Page 17: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colorimetry

Additive colour mixture

Page 18: Fundamentals of spectroradiometry and colorimetry János Schanda.

Laws of additive colour matching

Symmetry law:

Transitivity law:

Proportionality law:

Additivity law:

If thenA B B A

If and thenA B B C A C

If thenA B A B

If or

then

A B C D A C B D

A D B C

, ,

Page 19: Fundamentals of spectroradiometry and colorimetry János Schanda.

Grassmann’s lawsGrassmann’s laws

To specify a colour match three independent variables are necessary and sufficient

For additive mixture of colour stimuli, only their tristimulus values are relevant, not their spectral composition

In additive mixtures of colour stimuli, if one or more components are gradually changed, the resulting tristimulus values also change gradually

Page 20: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colour equation - 1

Positive additivity C R G B B R G

Page 21: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colour equation - 2

External colour mix - negative additivity C R G B R G B

Page 22: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colour equation - 3

Two spectral lights:

Many spectral lights:

C C R R G G B B( ) ( ) 1 2 1 2 1 2 1 2 R G B

R k P r

G k P g

B k P b

( ) ( )

( ) ( )

( ) ( )

380 nm

780 nm

380 nm

780 nm

380 nm

780 nm

Page 23: Fundamentals of spectroradiometry and colorimetry János Schanda.

Colour equation - 4

Integral form:

with three t values Three real primaries with

L = 1,000R + 4,5907G + 0,601B

T k ti i e

nm

780nm

d 380

( ) ,

Page 24: Fundamentals of spectroradiometry and colorimetry János Schanda.

R, G, B colour space

Page 25: Fundamentals of spectroradiometry and colorimetry János Schanda.

RGB - XYZ transformation

wavelength, nm

rel.

sen

s.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

350 400 450 500 550 600 650 700 750 800 850

x2(lambda)

y2(lambda)

z2(lambda)

Page 26: Fundamentals of spectroradiometry and colorimetry János Schanda.

A new system of colorimetry?

TC 1-36: Physiologically significant ...

-8

-7

-6

-5

-4

-3

-2

-1

0

1

350 450 550 650 750

wavelength, nm

log

co

ne

ac

tio

n s

en

sit

ivit

y

L-cone

M-cone

S-cone

Page 27: Fundamentals of spectroradiometry and colorimetry János Schanda.

Improved colorimetry?Improved colorimetry?

Luminance-brightness discrepancy Additivity problems New colour matching functions? Individual variations Highly metameric matches Colour appearance models

Page 28: Fundamentals of spectroradiometry and colorimetry János Schanda.

TC 1-36: Physiologically significant ...

L, M, S primaries based on psychophysical measurements:

König hypothesis - congenital dichromats Photopigment spectral absorbance Selective absorption by the lens Selective absorption by the macular

pigment

Page 29: Fundamentals of spectroradiometry and colorimetry János Schanda.

Thanks for your attention