F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the...

48
F(t) F() Trasformata di Fourier

Transcript of F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the...

Page 1: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

F(t) F()

Trasformata di Fourier

Page 2: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

The NMR ExperimentThe NMR Experiment After the pulse is After the pulse is switched off, the switched off, the magnetization magnetization

precesses in the xy precesses in the xy plane and relaxes plane and relaxes to equilibriumto equilibrium

The current induced in a coil The current induced in a coil by the magnetization by the magnetization precessing in the xy plane is precessing in the xy plane is recorded. It is called FID.recorded. It is called FID.

zz

yy

xx

zz

yy

xx

zz

yy

xx

MM

BB11

90°90° tt

II

II

tt

2T

t

e

)(

2

1I

To have a spin transition, a To have a spin transition, a magnetic field Bmagnetic field B11 , oscillating , oscillating

in the range of in the range of radiofrequencies and radiofrequencies and

perpendicular to z, is applied perpendicular to z, is applied ((perturbing pulseperturbing pulse) )

The BThe B11 field creates field creates

coherence among the coherence among the spins (they all have spins (they all have

the same phase) and the same phase) and net net magnetizationmagnetization in in

the x,y plane is the x,y plane is createdcreated

Page 3: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

FTrelax.

x90

Preparation Detection

x

y

z

x90 t2

0

dte)t(f)(F ti

Page 4: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

FOURIER TRANSFORMATIONS

F()=(0)

F()=A(sin)/ centered at 0

F()=T2/1+(2T2)2 -i 2(T2)2/1+(2T2)20

F()=T2/1+(2T2)2 -i 2(T2)2/1+(2T2)20

F(t)=exp(-t/T2)

F(t)=exp(-t/T2)exp(i2A)

Page 5: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Why bother with FT?

FT allows to decompose a function in a sum of sinusoidal function(deconvolution).

In NMR FT allows to switch from the time domain, i.e. the signal emitted by the sample as a consequence of the

radiofrequency irradiation and detected by the receiving coil to the frequency domain (NMR spectrum)

The FT allows to determine the frequency content of a squared function

Page 6: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

A “real” F.I.D.

Page 7: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.
Page 8: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Pulse!-y -y

-y -y

-y -y

-y-y

-y

y

The rotation of magnetization under the effect of 90° pulses according to the convention

of Ernst et al..

Page 9: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

=-1/t =1/tt

Page 10: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Signal to noise

Page 11: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Signal to noiseScans S/N1 1.00 80 8.94 8 2.83 800 28.28 16 4.00

Page 12: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

I parametri NMR

Il chemical shift

Le costanti di accoppiamento

La intensità dei segnali

Il rilassamento

Page 13: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Lezione 4

• Le costanti di accoppiamento

• Il rilassamento

Page 14: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Costanti di accoppiamento

Page 15: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

Page 16: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

Page 17: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

2J

3J

3J

Page 18: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

13C 1H

Page 19: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

13C 1H

Page 20: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

1H 13C

S I

Page 21: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

Page 22: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

Page 23: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare omonucleare

3J HNH2J HH

Page 24: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

N

Page 25: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

N

Importante

3J dipendono dall’angolo

diedro

INFORMAZIONE

STRUTTURALE IMPORTANTE

PER RISOLVERE LE STRUTTURE

Page 26: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.
Page 27: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Costanti di accoppiamento in sistemi uniformemente arricchiti

in 13C ed in 15N

Page 28: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Costanti di accoppiamento

The scheme of 1J scalar couplings

Page 29: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Rilassamento

Page 30: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

T1 and T2

T2 describes the time evolution of magnetization in the xy plane, where

acquisition takes place.It can be observed directly in the FID

(linewidth)

T1 describes the time evolution of magnetization in the z axis. This can only be observed if a final 90° pulse is

applied to rotate the magnetization from the z axis to the xy plane.

The intensity of the overall magnetization on the z axis is

related to the overall energy of the system . i.e. the populations of

ground and excited states

The intensity of the magnetization on the xy axis is related to the rate of dephasing

of the magnetization.

Page 31: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

x

-y

z

B0

A Pulse x

E E

B1

x

-y

z

B0

A Pulse x

B1

x

-y

z

B0

A Pulse x

B1

x

-y

z

B0

A Pulse x

B1

x

-y

z

B0

A Pulse x

B1

x

-y

z

B0

A Pulse x

E E

x

-y

z

B0

A Pulse x

x

-y

z

B0

A Pulse x

x

-y

z

B0

A Pulse x

x

-y

z

B0

A Pulse x

x

-y

z

B0

A Pulse

E E

Page 32: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Rilassamento

Il sistema reagisce alla perturbazione applicata per tornare all’equilibrio

Rilassamento T1

La constante di velocità con cui la magnetizzazione ritorna all’equilibrio

Page 33: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

T1

T1 describes the time evolution of magnetization in the z axis.

Related to the overall energy of the system

The populations of ground and excited states

Page 34: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

x

-y

z

B0

A Pulse x

E E

B1

x

-y

z

B0

A Pulse x

B1

x

-y

z

B0

A Pulse x

B1

x

-y

z

B0

A Pulse x

x

-y

z

B0

A Pulse x

receiver

x

-y

z

B0

A Pulse x

receiver

x

-y

z

B0

A Pulse x

receiver

x

-y

z

B0

A Pulse x

receiver

x

-y

z

B0

A Pulse x

receiver

x

-y

z

B0

A Pulse x

Page 35: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

RilassamentoIl sistema reagisce alla perturbazione applicata per tornare all’equilibrio

Rilassamento T2

La constante di velocità con cui la magnetizzazione scompare dal piano xy

My=exp(-t/T2)

Page 36: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

T2

T2 describes the time evolution of magnetization in the XY plane.

In addition to the exchange of energy with the environment, nuclei exchange energy one with another. This does NOT

affect the energy of the system but contributes to relaxation

It can be observed directly in the FID (linewidth)

T2 is alwayes shorter or equal to T1.

Page 37: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

zz

yyxx

zz

yyxx

zz

yyxx

MM

BB11

90°90° tt

II

II

tt

2T

t

e

)(

2

1I

Page 38: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

The NMR spectrum The NMR spectrum

The Fourier Transform of The Fourier Transform of the the FIDFID provides the provides the NMR NMR spectrumspectrum

II 11

½ F½ Fmaxmax(())

12 T

FIDFID

SpectruSpectrumm

2T

t

II e)tisint(cos)t(f

22

2I1

2

T)(1

T)(F

Page 39: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Da ricordare

• La larghezza di riga di un segnale dipende dal valore del tempo di rilassamento T2. Tanto piu’ T2 é lungo, ovvero tanto piu’ il sistema impiega tempo per tornare allo stato di equilibrio, tanto piu’ la riga NMR é stretta.

• Una riga stretta permette al segnale di essere osservato con maggiore accuratezza

• INOLTRE……

Page 40: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Da ricordare

• Se un segnale ha un T2 molto piccolo, sarà impossibile osservare gli accoppiamenti scalari perché il sistema rilassa “durante” la osservazione dell ‘effetto.

Page 41: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Costante di accoppiamento scalareAccoppiamento scalare

2 spin sono accoppiati per effetto di una interazione elettronica, ovvero per effetto di un legame chimicoQuesti effetto è generalmente osservabile per nuclei che distano fino a 3 legami sigma.Il fenomeno dell’accoppiamento scalare si esprime attrvaerso una constante di accoppiamento JEs HN-H 3J = 3-10 Hz

LA costante di accoppiamento scalare ha come effetto la formazione di un doppietto.Ovvero ogni spin non appare come un singolo picco ma come un doppietto, le cui componenti sono separate in Hertz, dalla costante di accoppiamento

3-10 Hz

Page 42: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare e rilassamento T2

La larghezza di riga di un segnale NMR dipende dalle proprietà di rilassamento T2.

In prima approssimazione, il T2 dipende a sua volta dalle dimensione della molecola studiata.Piu’ la molecola è grande, piu’ il T2 è corto e piu’ i segnali sono larghi

In una proteina, la larghezza di riga di un Hn o di un Ha è tipicamente maggiore di 10 Hz, ovvero della separazione del doppietto.In queste condizioni, l’accoppiamento scalare non da luogo a doppietti osservabili

Page 43: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare

Accoppiamento dipolare

Page 44: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento dipolare

Reference experiment

Saturation of signal S e

Difference experiment

Page 45: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento dipolare

A differenza dell’accoppiamento scalare, l’accoppiamento dipolare altera la popolazione dei livelli del sistema e non i valori di energia

L’accoppiamento DIPOLARE ha a che vedere con il rilassamento lungo l’asse z, quindi con il rilassamento T1

Page 46: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento dipolare

A differenza dell’accoppiamento scalare, l’accoppiamento dipolare altera la popolazione dei livelli del sistema e non i valori di energia

Da un punto di vista fisico, é l’accoppiamento tra due “magneti” che

sono vicino nello spazio

Page 47: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Accoppiamento scalare ed accoppiamento dipolare

L’accoppiamento scalare è l’accoppiamento tra spin nucleari che avviene tra atomi che sono legati da legami chimici (THROUGH BOND)E’ l’accoppiamento tra spin determinato dagli orbitali molecolari, ovvero le energie dei livelli di spin nucleari sono interdipendentiPorta alla formazione di doppietti e multipletti. Puo’ essere sfruttato per trasferire magnetizzazione da uno spin ad un altro, sfruttando il trasferimento atraverso legami chimici

L’accoppiamento dipolare è l’accoppiamento tra spin nucleari che avviene tra atomi che sono vicini nella spazio (THROUGH SPACE)E’ l’accoppiamento tra due dipoli magnetici che sono vicini tra di loroPuo’ essere sfruttato per trasferire magnetizzazione da uno spin ad un altro, in funzione della loro prossimità spaziale

Page 48: F(t) F( ) Trasformata di Fourier. The NMR Experiment After the pulse is switched off, the magnetization precesses in the xy plane and relaxes to equilibrium.

Through space AND throuhg bonds

Through space

Through bond