Forces of Nature Module

14
KNOX COUNTY SCHOOLS CURRICULUM & INSTRUCTION DEPARTMENT CURRICULUM FRAMEWORK 8 th Grade Science Forces of Nature Topic: Gravity and Electromagnetism Percent of time: 10% Overview: Everything in the universe exerts a gravitational force on everything else; there is interplay between magnetic fields and electrical currents. Essential Question(s): What are the scientific principles that explain gravity and electromagnetism? Tier III Vocabulary: Magnetic pole, magnetic force, magnetic field, electromagnetism, electromagnetic induction, solenoid, electromagnet, orbit, Newton’s law of universal gravitation, gravity, weight, mass, inertia *Tier II Vocabulary should be taught as referenced in the text. Standards: GLE 0807.12.1 Investigate the relationship between magnetism and electricity. SPI 0807.12.1 Recognize that electricity can be produced using a magnet and wire coil. GLE 0807.12.2 Design an investigation to change the strength of an electromagnet. SPI 0807.12.2 Describe the basic principles of an electromagnet. 08.12H (Honors Requirement) Build several electromagnets of varying strength using the engineering design cycle. (This should be very high level openinquiry lab as compared to the basic electromagnetic lab.) Describe the real world application of electromagnetism. GLE 0807.12.3 Compare and contrast the earth’s magnetic field to that of a magnet and an electromagnet. SPI 0807.12.3 Distinguish among the earth’s magnetic field, a magnet, and the fields that surround a magnet and an electromagnet GLE 0807.12.4 Identify factors that influence the amount of gravitational force between objects. SPI 0807.12.4 Distinguish between mass and weight using appropriate measuring instruments and units.

Transcript of Forces of Nature Module

Page 1: Forces of Nature Module

KNOX  COUNTY  SCHOOLS  CURRICULUM  &  INSTRUCTION  DEPARTMENT  CURRICULUM   FRAMEWORK    

8th Grade Science Forces of Nature

Topic: Gravity and Electromagnetism    

Percent of time: 10%

Overview: Everything in the universe exerts a gravitational force on everything else; there is interplay between magnetic fields and electrical currents.

Essential Question(s): What are the scientific principles that explain gravity and electromagnetism?

Tier III Vocabulary: Magnetic pole, magnetic force, magnetic field, electromagnetism, electromagnetic induction, solenoid, electromagnet, orbit, Newton’s law of universal gravitation, gravity, weight, mass, inertia

*Tier II Vocabulary should be taught as referenced in the text.

Standards: GLE  0807.12.1         Investigate  the  relationship  between  magnetism  and  electricity.    

• SPI 0807.12.1 Recognize that electricity can be produced using a magnet and wire coil. GLE  0807.12.2        Design  an  investigation  to  change  the  strength  of  an  electromagnet.    

• SPI 0807.12.2 Describe the basic principles of an electromagnet. 08.12H   (Honors   Requirement)    

• Build   several  electromagnets  of  varying  strength  using   the  engineering  design  cycle.  (This  should  be  very  high  level  open-­‐-­‐-­‐inquiry  lab  as  compared  to  the  basic  electromagnetic    lab.)  

• Describe   the   real  world   application  of   electromagnetism.  

GLE  0807.12.3        Compare  and  contrast  the  earth’s  magnetic  field  to  that  of  a  magnet  and  an  electromagnet.    

• SPI 0807.12.3 Distinguish among the earth’s magnetic field, a magnet, and the fields that surround a magnet and an electromagnet

GLE  0807.12.4        Identify  factors  that   influence  the  amount  of  gravitational   force  between  objects.      

• SPI 0807.12.4 Distinguish between mass and weight using appropriate measuring instruments and units.

Page 2: Forces of Nature Module

• SPI  0807.12.5  Determine  the  relationship  among  the  mass  of  objects,  the  distance  between  these  objects,  and  the  amount  of  gravitational  attraction.    

GLE  0807.12.5       Recognize  that  gravity  is  the  force  that  controls  the  motion  of  objects  in  the  solar   system.  

• SPI 0807.12.6 Illustrate how gravity controls the motion of objects in the solar system

Media/Technology Integration:

http://www.school-­‐-­‐-­‐for-­‐-­‐-­‐champions.com/science/magnetism.htm      

Build   Your   Own   Electromagnet        Exploratorium  Lesson  Index    

Mad  Science    

www.internet4classrooms.com/skills_8th_science.htm      

www.kidsastronomy.com/solar_system.htm    

http://classroom.jc-­‐-­‐-­‐schools.net/coleytech/webquest/Save    our    Gravity/gravitywebquest.html        

Text and Other Resources: SPI 0807.12.1 - Probe Volume 4 #9 Magnets in Water, Holt 438-443

SPI 0807.12.2 – Holt 432-437

SPI 0807.12.3 – Lab Page 509, Holt 424-430

SPI 0807.12.4 – Holt 185-187

SPI 0807.12.5 – Holt 412-413

SPI 0807.12.6 – Holt 521, 410-411

Writing Extension:

1. Explain how gravity played a part in the formation of the solar system. 2. Write a timeline of Earth’s Magnetic Field.

   

Page 3: Forces of Nature Module

Cross-Curricular Connections/Applications ELA/Literacy Standard:

CCSS.ELA.R1-- Cite the textual evidence that most strongly supports an analysis of what the text says explicitly as well as inferences drawn from the text.

Connections/Applications: Read an informational text or article on the connection between electricity and magnetism and have students analyze the textual evidence within the article, annotating text that helps them understand the connection.

Numeracy Connections/Applications: CCSS.MATH.CONTENT.8.EE.A.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions.

When building an electromagnet, students need to know the exponential increase in heat as the amount of current is increased. Students can deduce the amount of heat increase as they add a battery to their system not only for knowledge but also as a safety precaution. (See Hints to Make Your Electromagnet Stronger section of the “Build Your Own Electromagnet” Lab listed in the Media/Technology Integration above.

ACT Standard: Select a simple hypothesis, prediction, or conclusion that is supported by a data presentation or a model

Connections/Applications: Predict the magnetic field shape of the arrangement of different magnets. See Magnetic fields PPT

Understand a simple experimental design Identify the control in an experiment Understand the methods and tools used in a complex experiment

Create an electromagnet, varying the number of coils, the size of the batteries, the size of the iron core. PHeT Simulations https://phet.colorado.edu/en/simulation/legacy/magnets-and-electromagnets https://phet.colorado.edu/en/simulation/legacy/faraday

Page 4: Forces of Nature Module

Identify similarities and differences between models

Comparing the Earth’s magnetic field to a magnet and an electromagnet. See PPT Magnetic Fields PHeT Simulations https://phet.colorado.edu/en/simulation/magnet-and-compass

Page 5: Forces of Nature Module

Vocabulary Glossary Definition

Magnetic pole One of two points, such as the ends of a magnet, that have opposing magnetic qualities.

Magnetic force The force of attraction or repulsion generated by moving or spinning electric charges.

Magnetic field A region of space near a magnet, electric current, or moving charged particle in which a magnetic force acts on any other magnet, electric current, or moving charged particle.

Electromagnetism The interaction between electricity and magnetism.

Electromagnetic induction The process of creating a electric current in a circuit by changing a magnetic field.

Solenoid A coil of wire with an electric current in it. Electromagnet A coil that has a soft iron core and that

acts as a magnet when an electric current is in the coil.

Orbit The path that a body follows as it travels around another body in space.

Newton’s law of universal gravitation Scientific principle which states that the force of gravity depends on the product of the masses of the objects divided by the square of the distance between the objects.

Gravity A force which attracts objects with mass to one another. Gravity is most familiar as the agent that gives weight to objects with mass and causes them to fall to the ground when dropped.

Weight A measure of the gravitational force exerted on an object; it’s value can change with the location of the object in the universe.

Inertia The tendency of an object to resist being moved or, if the object is moving, to resist a change in speed or direction until an outside force acts on an object.

Mass A measure of the amount of matter in an object.

               

Page 6: Forces of Nature Module

Grade:     8th    Domain/Subject:    Science                                                                          Module:    Forces  in  Nature    Materials:       Iron  nails,  batteries,  copper  wire,  paper  clips,   lab   instructions  &  data  table,  computer  website  activity    

Standards     Emerging   Learner     Grade   Level   Learner     Advanced   Learner         Students  will  learn  the  basic  parts  of  an     Students  will  learn  the  basic  parts  of  an     Students  will  learn  the  basic  parts  of  an    Science     electromagnet  from  the  teacher’s  model  of     electromagnet  from  the  teacher’s  model  of     electromagnet  from  the  teacher’s  model  of         the  proper  set  up  of  the  electromagnet.       the  proper  set  up  of  the  electromagnet.           the  proper  set  up  of  the  electromagnet.            SPI  12.2  Describe  the  basic  principles  of  an     Students  will  manipulate  the  variables  that     Students  will  use  inquiry  skills  to  manipulate     Students  will  use  inquiry  skills  to  manipulate    electromagnet.   are  part  of  an  electromagnet  to  see  how  it     the  variables  that  are  part  of  an     the  variables  that  are  part  of  an    

  affects  the  strength  of  the  electromagnet.         electromagnet  to  see  how  it  affects  the     electromagnet  to  see  how  it  affects  the    

   CC   Science   Literacy        RST  6-­‐-­‐-­‐8.3      Follow  precisely   a  multistep    

   Students  will  identify  the  variables  to  be  manipulated:  iron  core,  number  of  coils,  voltage  of  the  battery.   Students  will  experiment  with  these  variables  to  measure  the  dependent  variable:  the  strength  of  the    

strength  of  the  electromagnet.            Students  will  identify  the  variables  to  be  manipulated:  iron  core,  number  of  coils,  voltage  of  the  battery.   Students  will  experiment  with  these  variables  to  measure    

strength  of  the  electromagnet.            Students  will  identify  the  variables  to  be  manipulated:  iron  core,  number  of  coils,  voltage  of  the  battery.   Students  will  experiment  with  these  variables  to  measure    

procedure  when   carrying  out     electromagnet  as  determined  by  the  number     the  dependent  variable:  the  strength  of  the     the  dependent  variable:  the  strength  of  the    experiments,   taking   measurements,     of  paperclips  that  the  electromagnet  can     electromagnet  as  determined  by  the  number     electromagnet  as  determined  by  the  number    

or  performing   technical   tasks.        I  Can  Statements:        I  can  describe  the  basic  principles  of  an  electromagnet  and  manipulate  variables  that  make  up  an  electromagnet  to  alter  the  strength  of  the  electromagnet.    

   

attract.          For  emerging  learners,  the  variables  are  already  specified  for  them  and  students  are  told  exactly  what  variable  to  change  in  each  experimental  trail.  Students  will  express  their  findings  in  a  data  table.            

of  paperclips  that  the  electromagnet  can    attract.          For  grade  level  learners,  students  can  choose  what  to  manipulate  in  each  experimental  trial.  Students  will  express  their  findings  in  a  data  table  that  can  also  be  graphed.        Grade  level  learners  will  have  a  virtual  lab  on  electromagnets  showing  electricity  produced    

of  paperclips  that  the  electromagnet  can    attract.          For  advanced  learners,  students  can  choose  what  to  manipulate  in  each  experimental  trial.  Students  will  express  their  findings  in  a  data  table  that  will  also  be  graphed  in  bar  graphs  that  shows  each  of  the  different  variables  that  compare  to  the  dependent  variable  of  electromagnet  strength.    

using  a  bar  magnet  and  a  wire  coil.        Advanced  learners  will  also  be  enriched  with    a  virtual  lab  on  electromagnets  showing    electricity  produced  using  a  bar  magnet  and    a  wire  coil  as  well  as  linking  to  the  SPI  that    the  Earth  is  a  bar  magnet.        

Implementation     ESSENTIAL  QUESTIONS      

           

What  are  the  basic  principles  of  an  electromagnet  and  how  will  it  affect  the  electromagnet  strength  if  those  basic  variables  are  manipulated?    Common  Misconceptions      When  the  battery  and  coil  of  wire  are  connected,  there  is  heat  produced.   Many  students  think  that  if  heat  is  produced  there  should  also  be  a  magnetic  field  produced  that  should  pick  up  paper  clips.        

    AA,  AAA,  C  &  D  batteries  all  have  1.5  volts.   The  size  of  the  battery  does  not  change  the  voltage  of  the  battery.   In  order  to  change  the  voltage,    

    you  must  connect  more  than  one  battery  together.    Model  use  of  academic  math  vocabulary:      Independent  variable,  dependent  variable,  x  axis,  y  axis    Notes  to  Teachers    These  electromagnets  will  produce  heat.   Students  need  to  protect  their  fingers  when  connecting  wire  to  batteries  to  avoid  being  burned.      Students  using  inquiry  skills  and  changing  the  number  of  batteries  connected  will  increase  the  heat  produced.   You  may  wish  to  have  students    wear  goggles  as  well  in  case  a  battery  leaks  battery  acid.    

Page 7: Forces of Nature Module

 

Page 8: Forces of Nature Module

ELECTROMAGNETISM          

Name(s)     Class          

 

     

Current  moving  down  a  wire  can  be  used  to  create  a  magnet.     Current  carrying  wires  create  a  magnetic  field.  Looping  the  wire  concentrates  the  field,  resulting   in  a  stronger  magnetic   force.      

     In  this  experiment,  you  will  be  challenged  to  design  and  build  an  electromagnet.    

 There  are  several  things  you  can  try  listed  below.     You  must  rank  how  effective  each  modification  is  at  increasing  the  magnetic   force.    

 

• Change  the  number  of   loops(turns)  of  wire   in  the  electromagnet.    • Change  the  diameter  of  the  loops  of  wire.    • Add  an  iron  core  inside  the  coil.    • Change  the  current  amount  going  through  the  wire.    

   

Prediction  Question:    Which  do  you  think  will   lead  to  the  greatest  increase  in  the  number  of  paper  clips  an  electromagnet   can  pick  up:    

1. Doubling  the  number  of   loops    2. Doubling  the  diameter  of  the   loops    3. Placing  an  iron  nail  in  the  coil.    4. Doubling  the  current  traveling   through  the  wire   in   the  electromagnet.    

   

Choose  ONE  and  give  reasoning  below:                          CAUTION!  Wires  get  HOT  when  running  current  through  them.     Protect  your  fingers  &  take  your  circuit  apart  if  the  wires  are  too  hot  to  handle.    

     

Page 9: Forces of Nature Module

Procedures:  Several  procedures  are   listed  below   in  the  table.     Each  varies  one  aspect  of  the  electromagnet.     All  procedures  compare  to   the  results  of  a  “reference  coil”      

Reference  Coil   Test:          Take  your  copper  wire  and  wrap  it  30  times  around  a  pencil.  Leave  at  least  6”  on  wire  at  either  end  of  the  coil  to  allow  for  connection   to   the  battery.  

Connect  to  a  1.5  V  battery  and  test  to  see  how  many  paper  clips  it  will  attract.  Record  your  data  in  your  data  table.          

A. Number  of   Loops:          

Wind  another  60   loop  coil   in  the  same  fashion  that  you  created  your  

reference  coil  test.     Connect  to  a  1.5  V  battery  and  test  to  see  how  many  

paper  clips   it  will  attract.  Record  your  data  in  your  data  table.  

 B. Diameter  of   Loops:    

   

Make  an  electromagnet  by  winding  wire  around  two  pencils  to  double  the  diameter  of  your  coil.  Wind  30   loops  in  the  same  fashion  that  you  created  your  reference  coil  test.     Connect  to  a  1.5  V  battery  and  test  to  see  how  many  

 paper  clips  it  will  attract.  Record  your  data  in  your  data  table.  

   

C. Placing  an  iron  core  in  the  coil:        

 Carefully   insert  an   iron  nail   into   the   core  of   the  30   turn,   small  diameter   coil   you  wound   in   the   “reference   coil”  procedure.  Connect   to  a  1.5  V  battery  and   test   to   see  how  many  paper  clips   it  will  attract.  Record  your  data   in  your  data   table.  

     

D. Doubling  the  current   through  the  wire:        

 

Connect  a  2nd   battery  in  series  with  the  first.     Connect  the  two  wires  of  the  small  diameter,  30  turn  coil  with  double  the  current  and  test  to  see  how  many  paper  clips  it  will  attract.  Record  your  data  in  your  data  table.  

Page 10: Forces of Nature Module

DATA   TABLE:       1)  #  of  paper  clips   2)  #  of  paper  clips   3)  ratio  of  

2)  to  1)  4)   ranking  

Number   of  turns  of  coil  

30  turn  coil  with  no  core  

60  turn  coil  with  no  core  

   

Diameter   of  coil  

Small  30  turn  coil  –  no  core  

Large  diameter   30  turn  coil  

   

Iron  core  in  the  coil  

Small  30  turn  coil  –  no  core  

Small  30  turn  coil  with   core  

   

Doubling   the  current  

Small  30  turn  coil  –  no  core  

Small  30  turn  coil  current   2x  

   

Page 11: Forces of Nature Module

 

.._............°'..Modt 0.-....S ..-..:111111 .......Pm.

""'f;illO: ........, ................._

,...,..,

Wltoy'9 ...,....,,... _•..............-.:

""'*""O•usi ..,..,........_ _.,.. -----...........

(N I S

rs N\s 1

('9GIJ O ... 111•

-•• .., ••w1...

Alt tlld,...,...1191 hM M hftcort ......Mth

'.".'- fMllM!l.i5...._......,............................ AINl"I -""cor. tln1ct0:,......1....'"""",._.,.,.....,..,of.".".' ..

AA t 1 1n ..._.......,_ .....,., ,,. 1 ......... . ....,...,. ...........

.... : t , ......... c:................

oc -•

Page 12: Forces of Nature Module

CMl!9l ...-........._..,.. •.-...1ne _,...... AC MoYl"'•--a- •Mllotww -.....: -*C..-. f' S Siie

....-..-. ...............•ceilolwh ........_

- -- ...,....tl.ll.lctrk: ........ ---

Page 13: Forces of Nature Module

VIRTUAL LABS RELATED: Electromagnet Lab PhET website: Faraday’s Electromagnet experiment (Questions to follow below)

https://phet.colorado.edu/en/simulation/faraday

Sample   Learning   Goals        

• Predict   the  direction  of   the  magnetic   field   for  different   locations  around  a  bar  magnet  and  an  electromagnet.  • Compare   and   contrast   bar  magnets   and   electromagnets.  • Identify  the  characteristics  of  electromagnets  that  are  variable  and  what  effects  each  variable  has  on  the  

magnetic   field's   strength   and   direction.  • Relate  magnetic   field   strength   to   distance   quantitatively   and   qualitatively.  • Identify   equipment   and   conditions   that   produce   induction.  • Compare  and  contrast  how  both  a   light  bulb  and  voltmeter  can  be  used  to  show  characteristics  of  the   induced  

current.  • Predict  how  the  current  will  change  when  the  conditions  are  varied.  

     Magnets & Electromagnets virtual lab https://phet.colorado.edu/en/simulation/magnets-and-electromagnets

Sample   Learning   Goals        

• Predict   the  direction  of   the  magnet   field   for  different   locations  around  a  bar  magnet  and  electromagnet  • Compare   and   contrast   bar  magnets   and   electromagnets  • Identify  the  characteristics  of  electromagnets  that  are  variable  and  what  effects  each  variable  has  on  the  

magnetic   field's   strength   and   direction  • Relate  magnetic   field   strength   to  distance  quantitatively   and  qualitativel  

   Earth as a magnet – Magnets & Compass

https://phet.colorado.edu/en/simulation/magnet-­‐-­‐-­‐and-­‐-­‐-­‐compass    

 

Sample   Learning   Goals        

• Predict  the  direction  of  the  magnet  field   for  different   locations  around  a  bar  magnet  • Relate  magnetic   field   strength   to   distance  quantitatively   and  qualitatively  • Describe  how  the  earth's  magnet  field  relates  to  a  bar  magnet  

Page 14: Forces of Nature Module

   

 !  Stage.1.  !  

Electromagnetism.Virtual.Lab.  

1.How!is!the!electric!current!induced?!  !  !  !  !  2.!!What!did!a!“!low”!reading!on!the!galvanometer!indicate?!  !  !  !  !  3.!!Which!color!on!the!galvanometer!did!the!needle!point!to!when!the!magnet!was!  moved!slow?!!medium?!!fast?!  !  !  !  !  4.!!When!the!motion!of!the!magnet!is!reversed,!what!happens!to!the!current!that!is!  generated?!  !  !  !  !  5.!!What!is!the!galvanometer!reading!for!the!coil!of!wire!with!10!loops?!  !  !  !  !  6.!!What!is!the!galvanometer!reading!for!the!coil!of!wire!with!20!loops?!  !  !  !  !  7.!!What!is!the!galvanometer!reading!for!the!coil!of!wire!with!50!loops?!  !  !  !  !  8.!!How!should!ElectroF!Metro!adjust!the!speed!of!the!magnet!and!the!number!of!  loops!of!wire!to!create!the!largest!current?!  !  !