FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17...

23
FLMs, PSD Increment, and FLMs, PSD Increment, and AQRVs: AQRVs: the Oregon experience the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ

Transcript of FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17...

Page 1: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

FLMs, PSD Increment, and AQRVs:FLMs, PSD Increment, and AQRVs:the Oregon experiencethe Oregon experience

WESTAR Fall Technical Conference

Seattle

15-17 September 2003

Philip Allen, Oregon DEQ

Page 2: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

OverviewOverview

Class I Area Increment & AQRVs

• Oregon’s permit process• EPA & FLMs• Class I areas• Standards and criteria levels• Example results

Page 3: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Federal Class I Areas: Oregon and Washington(NPS, Forest Service Region 6)

Page 4: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

U.S.D.A. Forest Service RegionsU.S.D.A. Forest Service Regions

Region 6

Page 5: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Single Source NSR AQ AnalysisSingle Source NSR AQ Analysis

• Scope– Class II NAAQS and PSD Increment– Class I NAAQS, PSD Increment, AQRVs

• Comments/input on the AQ analysis– Recommendations from FLM and other agencies

(states, EPA as available)– Final recommendation based on DEQ review of

impacts vs. standards, and FLM and other comments.

Page 6: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

ProtocolDevelopment

FinalProtocol

AQ Analysisby consultant

ReviewCompleted

DEQ Review < 45 days

since Completeness

Protocol Review

Target is < 21 days

DEQReview

DEQ: Single source AQ Analysis TimelineDEQ: Single source AQ Analysis Timeline

FLMInput

FLMInput

Applicationsubmittal

CompletenessDetermination

Completeness

Determination < 10 days

DEQReview

Page 7: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Protocol Development

• Initial informal discussions with consultant– Location of proposed source– Type and availability of met data– Availability of background data– Provide consultant initial guidance

• Protocol meeting – Scheduled in coordination with DEQ Regional Office– Attended by HQ AQ analyst, RO permit engineer,

FLM, client, modeling consultant, and other client consultants.

Page 8: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Protocol Development (cont.)

• Protocol meeting scope– Type and size of new or modified source

– Applicable AQ standards• Class II and Class I NAAQS and PSD Increment• Class I AQRV analysis required or requested ?

– Models for near-source impact analysis and long range transport• Aermod-Prime/ISCPrime• Calpuff Lite/Calpuff• Other

Page 9: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Protocol Development (cont.)

• Protocol meeting scope (cont.)– Met data

• Screening met• NWS• On-site

– Background data

– Competing sources

Page 10: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Class I Area Visibility Monthly f(RH)Class I Area Visibility Monthly f(RH)

Monthly f(RH) are from: Appendix A of Draft Guidance for Estimating Natural Visibility Conditions under the RHR (Sept. 27,2001)

Monthly f(RH)Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

Class I Area ST f(RH) f(RH) f(RH) f(RH) f(RH) f(RH) f(RH) f(RH) f(RH) f(RH) f(RH) f(RH)HellsCanyon ID 3.70 3.12 2.51 2.17 2.12 2.00 1.63 1.58 1.79 2.41 3.45 3.87Saw tooth ID 3.34 2.87 2.32 2.01 2.00 1.84 1.43 1.40 1.50 1.96 2.94 3.31Selw ay-Bitterroot ID 3.50 3.02 2.59 2.34 2.36 2.31 1.93 1.86 2.09 2.55 3.30 3.50Mount Hood OR 4.29 3.81 3.46 3.87 2.95 3.15 2.85 3.00 3.10 3.86 4.53 4.55Mount Jefferson OR 4.41 3.90 3.56 3.74 3.07 3.11 2.89 2.91 3.03 3.78 4.55 4.54Mt Washington OR 4.44 3.93 3.58 3.73 3.09 3.11 2.98 2.91 3.02 3.76 4.56 4.56Straw berry Mt OR 3.89 3.33 2.75 2.93 2.27 2.39 1.98 1.97 1.87 2.63 3.69 4.07ThreeSisters OR 4.47 3.95 3.61 3.72 3.11 3.11 3.00 2.91 3.03 3.79 4.60 4.57GoatRocks WA 4.25 3.75 3.36 4.24 2.83 3.38 3.03 3.19 3.07 3.77 4.42 4.55Mount Adams WA 4.29 3.80 3.44 4.40 2.92 3.49 3.12 3.27 3.13 3.86 4.49 4.56MountRainier WA 4.42 3.96 3.64 4.65 3.06 3.69 3.30 3.50 3.40 4.11 4.66 4.66OlympicNP WA 4.51 4.08 3.82 4.08 3.17 3.46 3.12 3.48 3.71 4.38 4.83 4.75

Page 11: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Class I Area Monthly Reference BackgroundClass I Area Monthly Reference Background

Monthly f(RH) are from: Appendix A of Draft Guidance for Estimating Natural Visibility Conditions under the RHR (Sept. 27,2001)Default Annual Natural bext (Annual Reference Level) from Appendix B .Monthly Reference Background is backcalculated using Annual Natural bext, monthly f(RH), and east and w est speciation

For Background calculationsHygro = 0.6

Non-hygro = 4.5Rayleigh = 10

Caclulated Monthly Reference BackgroundJan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

Class I Area ST Mm-1 Mm-1 Mm-1 Mm-1 Mm-1 Mm-1 Mm-1 Mm-1 Mm-1 Mm-1 Mm-1 Mm-1HellsCanyon ID 16.72 16.37 16.01 15.80 15.77 15.70 15.48 15.45 15.57 15.95 16.57 16.82Saw tooth ID 16.50 16.22 15.89 15.71 15.70 15.60 15.36 15.34 15.40 15.68 16.26 16.49Mount Hood OR 17.07 16.79 16.58 16.82 16.27 16.39 16.21 16.30 16.36 16.82 17.22 17.23Mount Jefferson OR 17.15 16.84 16.64 16.74 16.34 16.37 16.23 16.25 16.32 16.77 17.23 17.22Mt Washington OR 17.16 16.86 16.65 16.74 16.35 16.37 16.29 16.25 16.31 16.76 17.24 17.24ThreeSisters OR 17.18 16.87 16.67 16.73 16.37 16.37 16.30 16.25 16.32 16.77 17.26 17.24Mount Adams WA 17.07 16.78 16.56 17.14 16.25 16.59 16.37 16.46 16.38 16.82 17.19 17.24MountRainier WA 17.15 16.88 16.68 17.29 16.34 16.71 16.48 16.60 16.54 16.97 17.30 17.30OlympicNP WA 17.21 16.95 16.79 16.95 16.40 16.58 16.37 16.59 16.73 17.13 17.40 17.35

Page 12: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Protocol guidance: AQRV calculations

Species Calpuff Convert (2) Seasonalof Output Intermediate Final Rate Scattering Visibility Class I

Application Interest Species Species Decimal Species Fraction Decimal Effic Factor f(RH)

CALP UFF - CALP UFF Lite(NH4)2SO4 SO4 1.0 (NH4)2SO4/SO4 132/96 1.290 3 3.87 see Class I listNH4NO3 NO3 1.0 NH4NO3/NO3 80/62 1.375 3 4.125 see Class I list

Delta bext = output species (ug/m3) * visibility factor * seasonal f(RH)] / seasonal Natural Background

notes: 1) For Class I visibility calculation, refer to FLAG Final Draft (Dec 2000)2) Visibility factor = decimal * scattering efficiency

(2)Units

Species Calpuff Convert Conversion (3) (4)of Output Intermediate Final Rate g/m2/s Deposition Deposition

Application Interest Species Species Decimal Species Fraction Decimal kg/ha/hr factor hrs

CALP UFF - CALP UFF LiteS SO4 S 1.0 S/SO4 32/96 0.333 36000 1.200E+04 *S SO2 S 1.0 S/SO2 32/64 0.500 36000 1.800E+04 *N NO2 N 1.0 N/NO2 14/46 0.304 36000 1.096E+04 *N HNO3 N 1.0 N/HNO3 14/63 0.222 36000 7.999E+03 *N NO3 NH4NO3 NH4NO3/NO3 80/62 1.29 N 1.0 1.290 * 2N/NH4NO31.290 * 28/80 1.290 * 0.350 0.452 36000 1.625E+04 *

N (5) SO4 (NH4)2SO4 (NH4)2SO4/SO4 132/96 1.375 N 1.0 1.375 * 2N/(NH4)2SO41.375 * 28/132 1.375 * 0.2121 0.292 36000 1.050E+04 *

Wet Deposition = wet output species (g/s/m2) * deposition factor * deposition hoursReference molecular weights: Dry Deposition = dry output species (g/s/m2) * deposition factor * deposition hours

Mol Total Deposition = wet + dry deposition for all species that contribute S or NSpecies Wt

N 14 notes: 1) For deposition calculation, refer to the IWAQM P hase 2 Recommendation (Dec 1998)S 32 a) For Calpuff Lite using standard ISC met files (not including precipitation), total deposition is twice dry O 16 deposition to account for wet deposition.

SO4 96 b) For Calpuff Lite (with expanded met data) and full Calpuff, each of the output species should be SO2 64 evaluated for both wet and dry deposition.NO2 46 c) If deposition calculated monthly or seasonally, deposition = aggregate of all months or seasons

HNO3 63 2) Conversion factor = 10 -̂3 (g to kg) * 10 4̂ (m2 to ha) * 3600 (secs to hrs) = 36000NO3 62 3) Deposition factor = decimal * units conversionSO4 96 4) Deposition hours represents the number of hours in the period over which deposition is calculated.NH4 18 5) The N contribution from the NH4 ion in (NH4)2SO4 is included in total N deposition.

NH4NO3 80 6) Example: for an annual run:(NH4)2SO4 132 total deposition = [(wet output species (g/s/m2) * dep factor) + (dry output specices (g/s/m2) * dep factor)] * 8760 hrs

Intermediate Ratio Ratio

Intermediate Ratio Ratio

Deposition (1)

Step 1 Conversion Step 2 Conversion

Conversion of output species to secondary aerosols and elemental S and N for evaluating visibility and deposition in C lass I areas

Visibility (1)Step 1 Conversion Step 2 Conversion

Page 13: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

AQRV Criteria LevelsAQRV Criteria Levels

Threshold SILBackground Criteria Criteria FLAG 5% of 0.4% of

Visual Plume Color Ref Level Ref Level Ref LevelRange Contrast Difference bext bext bext S N S N S N

Site Season km C Delta E (Mm-1) (Mm-1) (Mm-1) kg/ha kg/ha kg/ha kg/ha kg/ha kg/haOlympic NP Annual 227 0.05 2.0 17.2 0.86 0.069 5.6 2.0 0.005 0.005

Winter 227 0.05 2.0 17.2 0.86 0.069Spring 230 0.05 2.0 17.0 0.85 0.068

Summer 237 0.05 2.0 16.5 0.83 0.066Fall 217 0.05 2.0 18.0 0.90 0.072

Alpine Lakes Annual 234 0.05 2.0 16.7 0.84 0.067 7.2 5.2 3 5 0.005 0.005Winter 227 0.05 2.0 17.2 0.86 0.069Spring 237 0.05 2.0 16.5 0.83 0.066

Summer 243 0.05 2.0 16.1 0.81 0.064Fall 222 0.05 2.0 17.6 0.88 0.070

Mount Rainier NP Annual 233 0.05 2.0 16.8 0.84 0.067 3.1 2.4 0.005 0.005Winter 226 0.05 2.0 17.3 0.87 0.069Spring 237 0.05 2.0 16.5 0.83 0.066

Summer 243 0.05 2.0 16.1 0.81 0.064Fall 222 0.05 2.0 17.6 0.88 0.070

Wet Dep Max Load

(distances < = 50 km)(2)

(distance > 50 km)

AQRV Criteria and Significance Levels for Class I areas and the Gorge NSA in the Pacific NW

2 x Max Criteria Level SIL (3)

Visibility DepositionPlume Visibility Haze

Page 14: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

PM10 speciation

Consensus Combined-Cycle NG-fired Turbine ExampleTenaska-Buckingham County, VA--Bear Garden

from AP-42Heat Input Filterable PM Condensible PM Total PM SO2

Turbine (mmBtu/hr) (lb/mmBtu) (lb/hr) (lb/mmBtu) (lb/hr) (lb/mmBtu) (lb/hr) (lb/mmBtu) %S (lb/hr)GE 7FA 1887 0.0019 3.59 0.0047 8.87 0.0066 12.45 0.94 0.004 6.42

Consensus ApproachHeat Input Total PM (Applicant) Filterable PM = EC Condensible PM SO2 (Applicant)

(25% * Estimate) (75% * Estimate) Turbine (mmBtu/hr) (lb/mmBtu) (lb/hr) (lb/mmBtu) (lb/hr) (lb/mmBtu) (lb/hr) (gr/100scf) (lb/hr)

GE 7FA 1887 9.70 2.43 7.28 2.0 3.10

Adjusted SO2 SO4 Organic Carbon(Applicant SO2 *(Applicant SO2 * (Condensible -

2/3) 1/3*96/64) SO4)(lb/hr) (lb/hr) (lb/hr)2.07 1.55 5.73

Consensus Combined Cycle Turbine Example TotalRelative

Extinction bextType Name Coef. f(RH) Efficiency 1/MmFilterable = Elemental Carbon (EC) EC 10 10 24.25Inorganic CPM SOIL 1 1Inorganic CPM SO4 3 2 6 9.30Organic CPM SOA 4 4 22.90

56.45

Page 15: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Modeling guidance: Postutil visibility parameters

Project Name: Postutil Input Parameters

Visbility

Value

Variable Description Default Used

NFILES Number of CALPUFF data f iles 1

NSPECINP Number of species to process from CALPUFF runs 6

NSPECOUT Number of species to w rite to output f ile 8

NSPECCMP Number of species to compute from those modeled 3

MNITRATE Recompute the HNO3/NO3 partition for concentrations? 0

The follow ing NSPECINP species w ill be processed

ASPECI SO2 SO2

SO4 SO4

NOX NOX

HNO3 HNO3

NO3 NO3

PM10 PM10

The follow ing NSPECOUT species w ill be w ritten out

ASPECO SO2 SO2

SO4 SO4

NOX NOX

HNO3 HNO3

NO3 NO3

SOA SOA

EC EC

SOIL SOIL

CSPECCMPFollow ing species computed from processed input species: SOA

SO2 0.0

SO4 0.0

NOX 0.0

HNO3 0.0

NO3 0.0

PM10 0.25

CSPECCMPFollow ing species computed from processed input species: EC

SO2 0.0

Page 16: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Appendix Table 6.

Project Name: Calpost Input Parameters

Visibility

Value

Variable Description Default Used

ASPEC Species to process VISIB

ILAYER Layer/deposition code (1 = CALPUFF concentrations; -3 = w et+dry deposition f luxes) 1

RHMAX Maximum relative humidity (%) used in particle grow th curve 98

Modeled species to be included in computing the light extinction

LVSO4 Include SO4? T

LVNO3 Include NO3? T

LVOC Include Organic Carbon? T

LVPMC Include Coarse Particles? F

LVPMF Include Fine Particles? T

LVEC Include Elemental Carbon? T

LVBK w hen ranking for TOP-N, TOP-50, and Exceedance tables Include BACKGROUND? T

SPECPMC Species name used for particulates in MODEL.DAT file: COARSE = PMC

SPECPMF Species name used for particulates in MODEL.DAT file: FINE = SOIL

Extinction Eff iciencies (1/Mm per ug/m**3)

EEPMC PM COARSE = 0.6

EEPMF PM FINE = 1.0

EEPMCBK Background PM COARSE 0.6

EESO4 SO4 = 3.0

EENO3 NO3 = 3.0

EEOC Organic Carbon = 4.0

EESOIL Soil = 1.0

EEEC Elemental Carbon = 10.0

MVISBK Method for background light extinction (2 = Hourly RH adjust; 6 = FLAG seasonal f(RH)) 2 or 6

RHFAC Monthly RH adjustment factors from FLAG (unique for each Class I area) yes if 6

Background monthly extinction coeff icients (FLAG) unique for each Class I area

BKSO4 All hygroscopic as SO4 (raw extinction value w ithout scattering eff iciency adjustment) 0.2

BKNO3 0

BKPMC 0

BKOC 0

Modeling guidance: Calpost visibility parameters

Page 17: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Modeling guidance: Postutil deposition parametersAppendix Table 4.

Project Name: Postutil Input Parameters

Deposition

Value

Variable Description Default Used

NFILES Number of CALPUFF data f iles 2

NSPECINP Number of species to process from CALPUFF runs 6

NSPECOUT Number of species to w rite to output f ile 2

ASPECI The follow ing NSPECINP species w ill be processed SO2

SO4

NOX

HNO3

NO3

PM10

The follow ing NSPECOUT species w ill be w ritten out

ASPECO Nitrogen N

Sulfur S

CSPECCMPFollow ing species computed from processed input species: N

SO2 0

SO4 0.292

NOX 0.304

HNO3 0.222

NO3 0.452

PM10

CSPECCMPFollow ing species computed from processed input species: S

SO2 0.500

SO4 0.333

NOX 0

HNO3 0

NO3 0

PM10 0

Page 18: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Class I Area ImpactsClass I Area Impacts

• EPA regulated– NAAQS– PSD Increment

• Federal Land Manager (FLM) regulated– Air Quality Related Values (AQRVs)

• S deposition• N deposition• Visibility

– Ammonium Sulfate [(NH4)2SO4]– Ammonium Nitrate [NH4NO3]– Particulate Matter (PM)

– Ozone [O3]

Page 19: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Example: Class I PSD IncrementExample: Class I PSD Increment

TABLE 6-4 Class I PSD Increment Analysis Results for example power generation project

Area

SO2

Annual (g/m3)

SO2

24-hour (g/m3)

SO2

3-hour (g/m3)

PM10

Annual (g/m3)

PM10 24-hour (g/m3)

NOX

Annual (g/m3)

Mt. Jefferson Wilderness 0.0004 0.02 0.06 0.005 0.2 0.003

Mt. Hood Wilderness 0.0002 0.009 0.03 0.003 0.1 0.001

Columbia River Gorge National Scenic Area

0.0009 0.007 0.02 0.002 0.1 0.0009

Mt. Adams Wilderness 0.00006 0.002 0.006 0.001 0.04 0.0002

Mt. Washington Wilderness 0.0004 0.01 0.05 0.005 0.2 0.003

Crater Lake National Park 0.00003 0.001 0.003 0.0006 0.02 0.00006

Strawberry Mountain Wilderness 0.0002 0.002 0.01 0.002 0.03 0.0005

Diamond Peak Wilderness 0.00007 0.003 0.01 0.001 0.04 0.0002

Three Sisters Wilderness 0.0004 0.01 0.05 0.005 0.2 0.003

Proposed EPA Class I Significance Impact Level

0.10 0.20 1.00 0.20 0.30 0.10

Class I Increment 2 5 25 4 8 2.5

Page 20: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Example: Class I AQRVs - DepositionExample: Class I AQRVs - Deposition

Summary of Total Nitrogen and Sulfur Deposition Results

Area

Total N kg/(hectare*y

r)

Total S kg/(hectare*y

r)

Mt. Jefferson Wilderness 0.002 0.0004

Mt. Hood Wilderness 0.001 0.0003

Columbia River Gorge National Scenic Area 0.0007 0.0002

Mt. Adams Wilderness 0.0004 0.0001

Mt. Washington Wilderness 0.002 0.0004

Crater Lake National Park 0.0002 0.0001

Strawberry Mountain Wilderness 0.0007 0.0002

Diamond Peak Wilderness 0.0004 0.0001

Three Sisters Wilderness 0.002 0.0004

Criteria Level: NPS Deposition Analysis Thresholds 0.005 0.005

Page 21: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

Example: Class I AQRVs – Visibility Example: Class I AQRVs – Visibility

Visibility Analysis Results Maximum Percent Extinction Change

Area Day Year

Receptor Coordinate X

(km)*

Receptor Coordinate Y

(km)*

bext Modeled (1/Mm)

Bext Background

(1/Mm)

Extinction Change

(%)

Mt. Jefferson 292 1998 -56.292 -158.0 16.413 15.598 2.9

Mt. Hood 303 1998 -50.014 -74.017 16.517 15.804 4.52

Columbia Gorge 303 1998 -56.546 -59.716 16.373 15.804 3.6

Mt. Adams 357 1998 -41.232 13.25 15.442 15.25 1.26

Mt. Washington 264 1998 -61.835 -183.999 16.973 16.097 5.44

Crater Lake 255 1998 -81.791 -353.973 15.295 15.21 0.56

Strawberry Mts 322 1998 165.722 -184.572 16.643 16.445 1.2

Diamond Peak 255 1998 -77.86 -272.0 15.411 15.21 1.32

Three Sisters 212 1998 -58 -189.424 16.655 16.097 3.47

FLAG Threshold 5.0

Page 22: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

How it has worked for DEQ and FLMsHow it has worked for DEQ and FLMs

• California-Oregon Border (COB) project– Pacific Power– Bonanza (~ 30 km ESE of Klamath Falls)– Gerhart Wilderness Class I Area deposition ~> DAT

• Klamath Generation Facility (KGF)– Visibility ~> 5%– Offsets

• Pope and Talbot (Halsey)– Visibility ~> 5%– Deposition <= DAT

Page 23: FLMs, PSD Increment, and AQRVs: the Oregon experience WESTAR Fall Technical Conference Seattle 15-17 September 2003 Philip Allen, Oregon DEQ.

How it has worked for DEQ and FLMsHow it has worked for DEQ and FLMs

• DEQ views Class I PSD and AQRV analysis as a collaborative effort with EPA and the FLMs

• DEQ provides the door to FLM review: from protocol to application submittal prepare the source and their consultant for the FLM review of AQRV impacts

• Coordination with FLMs throughout process– Prevents surprises at end (get problems addressed early)– Consultant and source know what is expected– Accelerates review of the application– Fosters culture where FLM is considered the expert on

AQRVs, and manager of their respective Class I areas.