Fitting the short-baseline anomalies

33
Fitting the short-baseline anomalies Joachim Kopp The 4th neutrino – U Chicago, May 19, 2012 Fermilab Joachim Kopp Fitting the short-baseline anomalies 1

Transcript of Fitting the short-baseline anomalies

Page 1: Fitting the short-baseline anomalies

Fitting the short-baseline anomalies

Joachim Kopp

The 4th neutrino – U Chicago, May 19, 2012

Fermilab

Joachim Kopp Fitting the short-baseline anomalies 1

Page 2: Fitting the short-baseline anomalies

Outline

1 Sterile neutrinos

2 Data sets and fitting procedure

3 Fit results

4 Relation between appearance and disappearance

5 Conclusions

Joachim Kopp Fitting the short-baseline anomalies 2

Page 3: Fitting the short-baseline anomalies

Outline

1 Sterile neutrinos

2 Data sets and fitting procedure

3 Fit results

4 Relation between appearance and disappearance

5 Conclusions

Joachim Kopp Fitting the short-baseline anomalies 3

Page 4: Fitting the short-baseline anomalies

Theoretical motivation for sterile neutrinosStandard Model singlet fermions are a very generic feature of “newphysics” models

I Leftovers of extended gauge multiplets (e.g. GUT multiplets) (typically heavy)I Dark matter (keV . . . TeV or above)

Neutrino–singlet mixing is one of the allowed “portals” between the SMand a hidden sector.SM singlet fermions can live at any mass scale

I Here: Focus on O(eV) sterile neutrinos (accessible to oscillationexperiments)

I Motivated experimentally

Typical Lagrangian:

Lmass ⊃ Yν L̄H∗NR + ms ν̄sNR +12

M NcRNR + h.c.

⇒ mass mixing between active and sterile neutrinos

Joachim Kopp Fitting the short-baseline anomalies 4

Page 5: Fitting the short-baseline anomalies

Signatures in oscillation experiments

Disappearance of active neutrinos (e.g. νe → νs oscillations)Anomalous transitions Appearance among active neutrinos(e.g. νµ → νs → νe)Oscillation length Losc = 4πE/∆m2

41 different from SM expectation(typically shorter)

Notation: ∆m2jk = m2

j −m2k ; m4,5: mostly sterile, m1,2,3: mostly active

Joachim Kopp Fitting the short-baseline anomalies 5

Page 6: Fitting the short-baseline anomalies

Sterile neutrino oscillations

Idea:Introduce extra neutrino flavor νs, mixing with the active onesAppearance searches (KARMEN, NOMAD, MiniBooNE . . . ) constrain(_ )ν µ →

(_ )ν s →

(_ )ν e,

(_ )ν τ

Disappearance searches (reactors, CDHS, MINOS . . . ) constrain(_ )ν e,

(_ )ν µ → ν̄s

ν̄e → ν̄s oscillations explain reactor anomaly(_ )ν µ →

(_ )ν s →

(_ )ν e oscillations explain LSND + MiniBooNE ν̄

Joachim Kopp Fitting the short-baseline anomalies 6

Page 7: Fitting the short-baseline anomalies

Outline

1 Sterile neutrinos

2 Data sets and fitting procedure

3 Fit results

4 Relation between appearance and disappearance

5 Conclusions

Joachim Kopp Fitting the short-baseline anomalies 7

Page 8: Fitting the short-baseline anomalies

Our fitting procedure

Atmospheric neutrinos: Eight classes of events: Sub-GeV e, µ(p < 400 GeV/c), Sub-GeV e, µ (p > 400 GeV/c), Multi-GeV e, µ,Upward stopping µ, upward throughgoing µ, 10 zenith angle bins eachMINOS: Include NC and CC disappearance search(based on 1001.0336 and Neutrino 2010 talk by P. Vahle)

Reactor experiments: Bugey 3 (incl. spectrum), Bugey 4, Chooz (incl.spectrum), Goesgen 1–3, ILL, Krasnoyarsk 1–3, Palo Verde, RovnoSBL νe appearance experiments: LSND, KARMEN, MiniBooNE (ν (2010)and ν̄ data, consider only E > 475 MeV, i.e. low-E excess in νe samplenot included)Gallium anomaly not includedSBL νµ disappearance experiments: CDHS, NOMADAll codes reproduce the individual fits from the respective experiments.

JK Maltoni Schwetz 1103.4570 and work in progress

Joachim Kopp Fitting the short-baseline anomalies 8

Page 9: Fitting the short-baseline anomalies

LSND and MiniBooNE

Joachim Kopp Fitting the short-baseline anomalies 9

other

p(ν_

e,e

+)n

p(ν_

µ→ν

_

e,e

+)n

L/Eν (meters/MeV)

Beam

Excess

Beam Excess

0

2.5

5

7.5

10

12.5

15

17.5

0.4 0.6 0.8 1 1.2 1.4

LSND ν̄e

(GeV)QEνE

Even

ts / M

eV

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1

1.5

2

2.5

3

Dataµ from eν

+ from Keν

0 from Ke

ν

misid 0πγ N→ ∆

dirtother

Total Background

1.5 3.

MiniBooNE νe

MiniBooNE ν̄e

LSND:I ν̄e appearance in ν̄µ beam from

stopped pion source (3σ)

MiniBooNE:I No significant νe or ν̄e excess in the

LSND-preferred regionI but ν̄e consistent with LSNDI Low-E excess not understood

Page 10: Fitting the short-baseline anomalies

The reactor anomaly

Recent reevaluation of expected reactor ν̄e flux is ∼ 3.5% higher thanprevious prediction Mueller et al. arXiv:1101.2663, confirmed by P. Huber arXiv:1106.0687

Method: Use measured β-spectra from 238U, 235U, 241Pu fission at ILLand convert to ν̄e spectrum (for single β-decay: Eν = Q − Ee)

Problem: Requires knowledge of Q-values for all contributing decays.→ take from nuclear databases where available, fit to data otherwiseCross check:

I Simulate mock e− spectra using few well-understood β-decaysI Reconstruct ν̄e spectrum using old method: Result is 3% too lowI Reconstruct ν̄e spectrum using new method: Result is exact.

Possible problem: Poorly understood effects in nuclei with large log ftHuber arXiv:1106.0687

Joachim Kopp Fitting the short-baseline anomalies 10

Page 11: Fitting the short-baseline anomalies

The reactor anomaly

Have short-baseline reactor experiments observed a ν̄e deficit?

NO

BS/(

NE

XP) p

red

,new

Distance to Reactor (m)

Bugey−

4

RO

VN

O91

Bugey−

3

Bugey−

3

Bugey−

3 G

oesgen−

I

Goesgen−

II

Goesgen−

III

ILL

Kra

snoyars

k−

I

Kra

snoyars

k−

II

Kra

snoyars

k−

III

SR

P−

I

SR

P−

II

RO

VN

O88−

1I

RO

VN

O88−

2I

RO

VN

O88−

1S

RO

VN

O88−

2S

RO

VN

O88−

3S

Palo

Verd

e

CH

OO

Z

101

102

103

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Mention et al. arXiv:1101.2755

red = old reactor ν̄e flux predictionblue = new reactor ν̄e flux prediction

Joachim Kopp Fitting the short-baseline anomalies 11

Page 12: Fitting the short-baseline anomalies

MINOS NC disappearance search

Based on arXiv:1001.0336 and data shown at Neutrino 2010GLoBES simulationNC data:

I Use spectra and detector response functions based on MINOS MC(courtesy Alex Sousa)

CC data:I NuMI fluxes courtesy Mary BishaiI Backgrounds and efficiencies based on published results

Systematic uncertainties:I Based on published numbers, but simplified treatmentI Some fudging in CC channel

Joachim Kopp Fitting the short-baseline anomalies 12

Page 13: Fitting the short-baseline anomalies

MINOS NC disappearance search (2)

æ

æ

æ

æ

æ

æ

æ

æ

ææææ æ æ æ æ æ æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

ææææ æ æ æ æ æ æ æ æ

0 5 10 15 20

0

100 000

200 000

300 000

400 000

500 000

Ereco @GeVD

Events�GeV

Near detector NC

GLoBES

GLoBESBG

GLoBES osc.

ææ MINOS data

MINOSMC

MINOSMC BG

æ

æ

æ

æ

æ

æ

æ

æææææææ æ

æ ææ æ æ

æ

æ

æ

æ

æ

æ

æ

æææææææ æ

æ ææ æ æ

0 5 10 15 20

0

100 000

200 000

300 000

400 000

500 000

Ereco @GeVD

Events�GeV

Near detector CC

GLoBES

GLoBESBG

GLoBES osc.

ææ MINOS data

MINOSMC

MINOSMC BG

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ æ æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ æ æ

æ

æ æ

æ

0 5 10 15 20

0

20

40

60

80

100

120

140

Ereco @GeVD

Events�GeV

Far detector NC

GLoBES

GLoBESBG

GLoBES osc.

ææ MINOS data

MINOSMC

MINOSMC BG

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æææ

æ

æ

æ

æ

0 5 10 15 20

0

20

40

60

80

Ereco @GeVD

Events�GeV

Far detector CC

GLoBES

GLoBESBG

GLoBES osc.

ææ MINOS data

MINOSMC

MINOSMC BG

Joachim Kopp Fitting the short-baseline anomalies 13

Page 14: Fitting the short-baseline anomalies

MINOS NC disappearance search (3)

30 35 40 45 50 55 60

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Θ23 @degreesD

DΧ2

GLoBES

MINOS

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Θ34 @degreesD

DΧ2

GLoBES

MINOS

0 2 4 6 8 10 12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Θ24 @degreesD

DΧ2

GLoBES

MINOS

Joachim Kopp Fitting the short-baseline anomalies 14

Page 15: Fitting the short-baseline anomalies

Outline

1 Sterile neutrinos

2 Data sets and fitting procedure

3 Fit results

4 Relation between appearance and disappearance

5 Conclusions

Joachim Kopp Fitting the short-baseline anomalies 15

Page 16: Fitting the short-baseline anomalies

A 3+1 model: 3 active neutrinos + 1 sterile neutrino

Short baseline: Standard oscillations ineffective (∆m221, ∆m2

31 too small)Add extra (sterile) neutrinoFit shows: 3+1 neutrino scheme does not work well

JK Maltoni Schwetz 1103.4570 and work in progresssee also Giunti Laveder 1107.1452 and 1109.4033; Mention et al. 1101.2755; Karagiorgi et al. 0906.1997 and 1110.3735

10- 4 10- 3 10- 2 10-1

10-1

100

101

sin 2 2Θ

Dm2

KARMEN

NOMAD

MB Ν

disappearance

LSND + MB Ν

90%, 99% CL, 2 dof

10-3 10-2 10-1

10-1

100

101

sin 2 2Θ

Dm2

disappearance

appearance

90%, 99% CL, 2 dof

“disappearance” = SBL reactors, CDHS, atmospheric ν, MINOSθ = effective mixing angle for

(_ )ν µ →

(_ )ν s →

(_ )ν e oscillations

Joachim Kopp Fitting the short-baseline anomalies 16

Page 17: Fitting the short-baseline anomalies

Global fit in a 4-flavor scheme

|∆m241| |Ue4| |Uµ4| χ2/dof

STD 287.6/2563+1 0.48 0.14 0.23 255.5/252

LSND+MB(ν̄) vs rest appearance vs disapp.old new old new

χ2PG,3+1/dof 27.3/2 25.8/2 15.7/2 14.2/2PG3+1 1.2× 10−6 2.5× 10−6 3.9× 10−4 8.2× 10−4

Parameter goodness of fit: Test compatibility of 2 data setsby comparing global χ2

min to χ2min for separate fits

Joachim Kopp Fitting the short-baseline anomalies 17

Page 18: Fitting the short-baseline anomalies

The Giunti–Laveder fit

Includes the following data sets:(_ )ν µ →

(_ )ν e appearance data:

I LSNDI MiniBooNEI KARMENI NOMAD

νµ disappearance data:I CDHSI MINOS bound on |Uµ4|

ν̄e disappearance data:I Short baseline reactor experimentsI KamLAND bound on |Ue4|I Gallium anomaly

νe disappearance data:I νe–12C CC scattering in KARMEN and LSND

Giunti Laveder arXiv:1111.1069

Joachim Kopp Fitting the short-baseline anomalies 18

Page 19: Fitting the short-baseline anomalies

The Giunti–Laveder fit (2)

APP/DIS curves: 3σ C.L.Parameter goodness of fit (APP vs. DIS): 3× 10−3

Giunti Laveder arXiv:1111.1069

Joachim Kopp Fitting the short-baseline anomalies 19

Page 20: Fitting the short-baseline anomalies

The Karagiorgi et al. fit

Includes the following data sets:(_ )ν µ →

(_ )ν e appearance data:

I LSNDI MiniBooNEI KARMENI NOMAD

νµ disappearance data:I CDHSI CCFR84

ν̄e disappearance data:I Short baseline reactor experiments

Karagiorgi arXiv:1110.3735, Karagiorgi Djurcic Conrad Shaevitz Sorel arXiv:0906.1997

Joachim Kopp Fitting the short-baseline anomalies 20

Page 21: Fitting the short-baseline anomalies

The Karagiorgi et al. fit (2)

Karagiorgi arXiv:1110.3735, Karagiorgi Djurcic Conrad Shaevitz Sorel arXiv:0906.1997

Joachim Kopp Fitting the short-baseline anomalies 21

Page 22: Fitting the short-baseline anomalies

Global fit in a 5-flavor scheme

Check if more than one sterile neutrino improves the fit:

10-1 100 10110-1

100

101

Dm 41 @eV2D

Dm51@eV2D

90%, 95%, 99%, 99.73%

3+2

1+3+1

ø

ø

JK Maltoni Schwetz 1103.4570 and work in progress

Joachim Kopp Fitting the short-baseline anomalies 22

Page 23: Fitting the short-baseline anomalies

Global fit in a 5-flavor scheme (2)

|∆m241| |Ue4| |Uµ4| |∆m2

51| |Ue5| |Uµ5| δ/π χ2/dof

STD 287.6/2563+1 0.48 0.14 0.23 255.5/2523+2 1.10 0.14 0.11 0.82 0.13 0.12 -0.31 245.2/247

1+3+1 0.48 0.13 0.12 0.90 0.15 0.15 0.62 241.6/247

LSND+MB(ν̄) vs rest appearance vs disapp.old new old new

χ2PG,3+1/dof 27.3/2 25.8/2 15.7/2 14.2/2PG3+1 1.2× 10−6 2.5× 10−6 3.9× 10−4 8.2× 10−4

χ2PG,3+2/dof 30.0/5 24.8/5 24.7/4 19.5/4PG3+2 1.5× 10−5 1.5× 10−4 5.7× 10−5 6.1× 10−4

χ2PG,1+3+1/dof 24.9/5 21.2/5 19.6/4 10.7/4PG1+3+1 1.5× 10−4 7.5× 10−4 6.0× 10−3 3.1× 10−2

Parameter goodness of fit: Test compatibility of 2 data setsby comparing global χ2

min to χ2min for separate fits

Joachim Kopp Fitting the short-baseline anomalies 23

Page 24: Fitting the short-baseline anomalies

Does removing one experiment relax the tension?

Removing . . . LSND+MB(ν̄) vs rest appearance vs disapp.PG3+1 PG3+2 PG3+1 PG3+2

KARMEN 1.2× 10−5 6.2× 10−4 8.1× 10−4 1.0× 10−3

NOMAD 2.6× 10−6 1.5× 10−4 7.7× 10−4 6.1× 10−4

MB ν 2.2× 10−5 5.1× 10−4 1.7× 10−4 3.7× 10−4

MB ν̄ 2.9× 10−6 2.0× 10−3 1.9× 10−3 4.5× 10−3

LSND 2.3× 10−2 2.1× 10−2 2.0× 10−1 5.8× 10−2

Reactors 4.4× 10−4 7.9× 10−2 1.3× 10−1 2.9× 10−1

CDHS 1.2× 10−5 3.7× 10−4 3.6× 10−3 1.5× 10−3

Atmospheric 8.1× 10−6 6.9× 10−5 1.2× 10−4 2.3× 10−4

MINOS 1.4× 10−5 1.1× 10−3 4.1× 10−3 4.7× 10−3

Joachim Kopp Fitting the short-baseline anomalies 24

Page 25: Fitting the short-baseline anomalies

Impact on standard oscillation parameters

0.2 0.3 0.4 0.5 0.6 0.7 0.80.00

0.05

0.10

0.15

0.20

Sin2 Θ23

Sin22Θ13

ø

ç

0.2 0.3 0.4 0.5 0.6 0.7 0.80.0015

0.0020

0.0025

0.0030

0.0035

Sin2 Θ23

Dm312@eV2D

ø

ç

90%, 95%, 99%, 99.73%

Curves, circles: 3 flavors, atm +MINO

Colors, stars: 3+2 flavors, all exps

0.00 0.05 0.10 0.15 0.200.0015

0.0020

0.0025

0.0030

0.0035

Sin2 2Θ13

Dm312@eV2D

ø

ç

Joachim Kopp Fitting the short-baseline anomalies 25

Page 26: Fitting the short-baseline anomalies

Outline

1 Sterile neutrinos

2 Data sets and fitting procedure

3 Fit results

4 Relation between appearance and disappearance

5 Conclusions

Joachim Kopp Fitting the short-baseline anomalies 26

Page 27: Fitting the short-baseline anomalies

Relation between appearance and disappearance3 + 1 neutrinosAt large baseline (L � 4πE/∆m2

41, but L � 4πE/∆m231

Pee = 1− 2|Ue4|2(1− |Ue4|2)Pµµ = 1− 2|Uµ4|2(1− |Uµ4|2)Peµ = 2|Ue4|2|Uµ4|2

It follows

2Peµ ' (1− Pee)(1− Pµµ)

In the 3 + 1 case, at large enough baseline, there is a one-to-one relationbetween the appearance and disappearance probabilities.

Joachim Kopp Fitting the short-baseline anomalies 27

Page 28: Fitting the short-baseline anomalies

Relation between appearance and disappearance3 + 2 neutrinosAt large baseline (L � 4πE/∆m2

41, but L � 4πE/∆m231

Pee = 1− 2[|Ue4|2(1− |Ue4|2) + |Ue5|2(1− |Ue5|2)− |Ue4|2|Ue5|2

]Pµµ = 1− 2

[|Uµ4|2(1− |Uµ4|2) + |Uµ5|2(1− |Uµ5|2)− |Uµ4|2|Uµ5|2

]Peµ = 2

[|Ue4|2|Uµ4|2 + |Uµ4|2|Uµ5|2 + Re(U∗

e4Uµ4Ue5U∗µ5)

]

Joachim Kopp Fitting the short-baseline anomalies 28

Page 29: Fitting the short-baseline anomalies

Relation between appearance and disappearance3 + 2 neutrinosAt large baseline (L � 4πE/∆m2

41, but L � 4πE/∆m231

Pee = 1− 2[|Ue4|2(1− |Ue4|2) + |Ue5|2(1− |Ue5|2)− |Ue4|2|Ue5|2

]Pµµ = 1− 2

[|Uµ4|2(1− |Uµ4|2) + |Uµ5|2(1− |Uµ5|2)− |Uµ4|2|Uµ5|2

]Peµ = 2

[|Ue4|2|Uµ4|2 + |Uµ4|2|Uµ5|2 + Re(U∗

e4Uµ4Ue5U∗µ5)

]It follows

2Peµ ' (1− Pee)(1− Pµµ)

+ 4[Re(U∗

e4Uµ4Ue5U∗µ5) + 4|Ue4|2|Uµ5|2 + 4|Ue5|2|Uµ4|2

]= (1− Pee)(1− Pµµ)− 2

[|Ue4|2|Uµ5|2 + |Ue5|2|Uµ4|2

]− 2

∣∣Ue4Uµ5 − Ue5Uµ4∣∣2

Joachim Kopp Fitting the short-baseline anomalies 28

Page 30: Fitting the short-baseline anomalies

Relation between appearance and disappearance3 + 2 neutrinosAt large baseline (L � 4πE/∆m2

41, but L � 4πE/∆m231

Pee = 1− 2[|Ue4|2(1− |Ue4|2) + |Ue5|2(1− |Ue5|2)− |Ue4|2|Ue5|2

]Pµµ = 1− 2

[|Uµ4|2(1− |Uµ4|2) + |Uµ5|2(1− |Uµ5|2)− |Uµ4|2|Uµ5|2

]Peµ = 2

[|Ue4|2|Uµ4|2 + |Uµ4|2|Uµ5|2 + Re(U∗

e4Uµ4Ue5U∗µ5)

]It follows

2Peµ ≤ (1− Pee)(1− Pµµ)

Unlike in the 3 + 1 case, for 3 + 2 models, there is NO one-to-one relationbetween the appearance and disappearance probabilities.

However, there is an inequality, which can be used to set meaningfulconstraints.

Joachim Kopp Fitting the short-baseline anomalies 28

Page 31: Fitting the short-baseline anomalies

Outline

1 Sterile neutrinos

2 Data sets and fitting procedure

3 Fit results

4 Relation between appearance and disappearance

5 Conclusions

Joachim Kopp Fitting the short-baseline anomalies 29

Page 32: Fitting the short-baseline anomalies

Global fits — take home message

Substantial tension in the global fit.

Is one (or all) of the positive results not due toneutrino oscillations?Are some of the null results wrong?(one being wrong is not enough!)

Are there more than 2 sterile flavors?Are there sterile neutrinos plus something else?

Joachim Kopp Fitting the short-baseline anomalies 30

Page 33: Fitting the short-baseline anomalies

Thank you!