Finite Element Methods Lectures_Lui.pdf

download Finite Element Methods Lectures_Lui.pdf

of 58

Transcript of Finite Element Methods Lectures_Lui.pdf

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    1/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 1

    Chapter 1. I ntroduction 

    I . Basic Concepts 

    The finite element method  (FEM), or finite element analysis

    (FEA), is based on the idea of building a complicated object with

    simple blocks, or, dividing a complicated object into small and

    manageable pieces. Application of this simple idea can be found

    everywhere in everyday life as well as in engineering.

     Examples:

    • Lego (kids’ play)

    • Buildings

    • Approximation of the area of a circle:

    Area of one triangle: S Ri i=1

    2

    2sinθ

    Area of the circle: S S R N   N 

     R as N  N ii

     N 

    = =  

       → → ∞=

    ∑1

    2 21

    2

    2sin

    ππ

    where N = total number of triangles (elements).

    θi

    “Element” S i

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    2/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 2

    Why F ini te Element M ethod? 

    •  Design analysis: hand calculations, experiments, and

    computer simulations

    • FEM/FEA is the most widely applied computer simulationmethod in engineering

    • Closely integrated with CAD/CAM applications

    • ...

    Appli cations of FEM in Engineer ing 

    • Mechanical/Aerospace/Civil/Automobile Engineering

    •Structure analysis (static/dynamic, linear/nonlinear)

    • Thermal/fluid flows

    • Electromagnetics

    • Geomechanics

    • Biomechanics

    • ...

     Examples:

    ...

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    3/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 3

    A Brief H istory of the FEM 

    • 1943 ----- Courant (Variational methods)• 1956 ----- Turner, Clough, Martin and Topp (Stiffness)

    • 1960 ----- Clough (“Finite Element”, plane problems)

    • 1970s ----- Applications on mainframe computers

    • 1980s ----- Microcomputers, pre- and postprocessors

    • 1990s ----- Analysis of large structural systems

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    4/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 4

    FEM in Structural Analysis 

     Procedures:

    • Divide structure into pieces (elements with nodes)

    • Describe the behavior of the physical quantities on eachelement

    • Connect (assemble) the elements at the nodes to form anapproximate system of equations for the whole structure

    • Solve the system of equations involving unknownquantities at the nodes (e.g., displacements)

    • Calculate desired quantities (e.g., strains and stresses) atselected elements

     Example:

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    5/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 5

    Computer Implementations 

    • Preprocessing (build FE model, loads and constraints)

    • FEA solver (assemble and solve the system of equations)

    • Postprocessing (sort and display the results)

    Available Commercial FEM Software Packages 

    •  ANSYS   (General purpose, PC and workstations)

    • SDRC/I-DEAS   (Complete CAD/CAM/CAE package)

    •  NASTRAN   (General purpose FEA on mainframes)

    •  ABAQUS   (Nonlinear and dynamic analyses)

    • COSMOS   (General purpose FEA)

    •  ALGOR (PC and workstations)

    •  PATRAN   (Pre/Post Processor)

    •  HyperMesh  (Pre/Post Processor)

    •  Dyna-3D  (Crash/impact analysis)

    • ...

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    6/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 6

    Objectives of This FEM Course 

    • Understand the fundamental ideas of the FEM

    • Know the behavior and usage of each type of elementscovered in this course

    • Be able to prepare a suitable FE model for given problems

    • Can interpret and evaluate the quality of the results (knowthe physics of the problems)

    • Be aware of the limitations of the FEM (don’t misuse theFEM - a numerical tool)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    7/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 7

    I I . Review of Matrix Algebra 

    L inear System of Algebraic Equations a x a x a x b

    a x a x a x b

    a x a x a x b

    n n

    n n

    n n nn n n

    11 1 12 2 1 1

    21 1 22 2 2 2

    1 1 2 2

    + + + =

    + + + =

    + + + =

    ...

    ...

    .......

    ...

      (1)

    where x1 , x2 , ..., xn are the unknowns.

    In matrix form:

    Ax b=   (2)

    where

    [ ]

    { } { }

    A

    x b

    = =

    = =

    = =

    a

    a a a

    a a a

    a a a

     x

     x

     x

     x

    b

    b

    b

    b

    ij

    n

    n

    n n nn

    i

    n

    i

    n

    11 12 1

    21 22 2

    1 2

    1

    2

    1

    2

    ...

    ...

    ... ... ... ...

    ...

    : :

      (3)

    A is called a n×n (square) matrix, and x and b are (column)

    vectors of dimension n.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    8/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 8

    Row and Column Vectors 

    [ ]v w= =

    v v v

    w

    w

    w1 2 3

    1

    2

    3

    Matrix Addition and Subtraction 

    For two matrices A and B, both of the same size (m×n), the

    addition and subtraction are defined by

    C A B

    D A B

    = + = +

    = − = −

    with

    with

    c a b

    d a b

    ij ij ij

    ij ij ij

    Scalar M ul tipli cation 

    [ ]λ λA = a ij

    Matrix Multiplication 

    For two matrices A (of size l×m) and B (of size m×n), the

     product of AB is defined by

    C AB= = ∑=

    with c a bij ik  

    m

    kj

    1

    where i = 1, 2, ..., l ;  j = 1, 2, ..., n.

     Note that, in general, AB BA≠ , but ( ) ( )AB C A BC=(associative).

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    9/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 9

    Transpose of a Matri x 

    If A = [aij], then the transpose of A is

    [ ]AT 

     jia=

     Notice that ( )AB B AT T T = .

    Symmetr ic Matrix 

    A square (n×n) matrix A is called symmetric, if 

    A A=T   or a aij ji=

    Uni t (I dentity) Matrix 

    I =

    1 0 0

    0 1 0

    0 0 1

    ...

    ...

    ... ... ... ...

    ...

     Note that AI = A, Ix = x.

    Determinant of a Matri x 

    The determinant of square matrix A is a scalar number denoted by det A  or |A|. For 2×2 and 3×3 matrices, their 

    determinants are given by

    deta b

    c d ad bc

     = −

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    10/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 10

    and

    det

    a a a

    a a a

    a a a

    a a a a a a a a a

    a a a a a a a a a

    11 12 13

    21 22 23

    31 32 33

    11 22 33 12 23 31 21 32 13

    13 22 31 12 21 33 23 32 11

    = + +

    − − −

    Singular Matrix 

    A square matrix A is singular  if det A = 0, which indicates

     problems in the systems (nonunique solutions, degeneracy, etc.)

    Matr ix I nversion 

    For a square and nonsingular  matrix A (detA ≠ 0), itsinverse A-1 is constructed in such a way that

    AA A A I

    − −

    = =

    1 1

    The cofactor matrix C of matrix A is defined by

    C M ij

    i j

    ij= −   +( )1

    where M ij is the determinant of the smaller matrix obtained by

    eliminating the ith row and jth column of A.

    Thus, the inverse of A can be determined by

    AAC

    − =11

    det

    We can show that ( )AB B A− − −=1 1 1.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    11/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 11

     Examples:

    (1)a b

    c d  ad bc

    d b

    c a

      =

    −11

    ( )

    Checking,

    a b

    c d 

    a b

    c d  ad bc

    d b

    c a

    a b

    c d 

     = −

     =

     

    −11 1 0

    0 1( )

    (2)

    1 1 0

    1 2 1

    0 1 2

    1

    4 2 1

    3 2 1

    2 2 1

    1 1 1

    3 2 1

    2 2 1

    1 1 1

    1−

    − −

    =− −

    =

    ( )

    Checking,

    1 1 0

    1 2 1

    0 1 2

    3 2 1

    2 2 1

    1 1 1

    1 0 0

    0 1 0

    0 0 1

    − −

    =

    If det A = 0 (i.e., A is singular), then A-1 does not exist!

    The solution of the linear system of equations (Eq.(1)) can be

    expressed as (assuming the coefficient matrix A is nonsingular)

    x A b=   −1

    Thus, the main task in solving a linear system of equations is to

    found the inverse of the coefficient matrix.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    12/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 12

    Solution Techniques for L inear Systems of Equations 

    • Gauss elimination methods

    • Iterative methods

    Positive Defini te Matr ix 

    A square (n×n) matrix A is said to be positive definite, if for 

    any nonzero vector x of dimension n,

    x AxT  >

    0 Note that positive definite matrices are nonsingular.

    Di ff erentiation and I ntegration of a Matr ix 

    Let

    [ ]A( ) ( )t a t ij=then the differentiation is defined by

    dt t 

    da t 

    dt 

    ijA( )

    ( )=

     

    and the integration by

    A( ) ( )t dt a t dt  ij

    ∫ ∫ 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    13/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 13

    Types of F inite Elements 

    1-D (L ine) Element 

    (Spring, truss, beam, pipe, etc.)

    2-D (Plane) Element 

    (Membrane, plate, shell, etc.)

    3-D (Sol id) Element 

     

    (3-D fields - temperature, displacement, stress, flow velocity)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    14/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 14

    I I I . Spr ing Element 

    “Everything important is simple .”

    One Spring Element 

    Two nodes: i, j

     Nodal displacements: ui , u j (in, m, mm)

     Nodal forces:  f i , f  j (lb, Newton)

    Spring constant (stiffness): k   (lb/in, N/m, N/mm)

    Spring force-displacement relationship:

     F k = ∆ with ∆ = −u u j i

    k F = / ∆   (> 0) is the force needed to produce a unit stretch.

    i

    u juii  j

    onlinear 

    Linear 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    15/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 15

    We only consider linear  problems in this introductory

    course.

    Consider the equilibrium of forces for the spring. At node i,

    we have

     f F k u u ku kui j i i j= − = − − = −( )

    and at node j,

     f F k u u ku ku j j i i j

    = = − = − +( )

    In matrix form,

    k k 

    k k 

    u

    u

     f 

     f 

    i

     j

    i

     j

    or,

    ku f =

    where

    k  = (element) stiffness matrix

    u = (element nodal) displacement vector 

    f   = (element nodal) force vector 

     Note that k  is symmetric. Is k  singular or nonsingular? That is,

    can we solve the equation? If not, why?

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    16/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 16

    Spring System 

    For element 1,

    k k 

    k k 

    u

    u

     f 

     f 

    1 1

    1 1

    1

    2

    1

    1

    21

    =

     

    element 2,

    k k 

    k k 

    u

    u

     f 

     f 

    2 2

    2 2

    2

    3

    1

    2

    2

    2

    where  f im

    is the (internal) force acting on local  node i of elementm (i = 1, 2).

     Assemble the stiffness matrix for the whole system:

    Consider the equilibrium of forces at node 1,

     F f 1 1

    1=

    at node 2,

     F f f 2 2

    1

    1

    2= +

    and node 3,

     F f 3 2

    2=

    k 1

    u1, 1

    k 2

    u2, F 2 u3, 3

    1 2 3

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    17/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 17

    That is,

     F k u k u

     F k u k k u k u

     F k u k u

    1 1 1 1 2

    2 1 1 1 2 2 2 3

    3 2 2 2 3

    = −

    = − + + −

    = − +

    ( )

    In matrix form,

    k k 

    k k k k  

    k k 

    u

    u

    u

     F 

     F 

     F 

    1 1

    1 1 2 2

    2 2

    1

    2

    3

    1

    2

    3

    0

    0

    − + −

    =

    or 

    KU F=

    K is the stiffness matrix (structure matrix) for the spring system.

     An alternative way of assembling the whole stiffness matrix:

    “Enlarging” the stiffness matrices for elements 1 and 2, we

    have

    k k 

    k k 

    u

    u

    u

     f 

     f 

    1 1

    1 1

    1

    2

    3

    1

    1

    2

    1

    0

    0

    0 0 0 0

    =

    0 0 0

    0

    0

    0

    2 2

    2 2

    1

    2

    3

    1

    2

    2

    2

    k k 

    k k 

    u

    u

    u

     f 

     f 

    =

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    18/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 18

    Adding the two matrix equations ( superposition), we have

    k k 

    k k k k  k k 

    u

    uu

     f 

     f f  f 

    1 1

    1 1 2 2

    2 2

    1

    2

    3

    1

    1

    2

    1

    1

    2

    2

    2

    0

    0

    − + −

    = +

    This is the same equation we derived by using the force

    equilibrium concept.

     Boundary and load conditions:

    Assuming, u F F P  1 2 30= = =and

    we have

    k k 

    k k k k  

    k k 

    u

    u

     F 

     P 

     P 

    1 1

    1 1 2 2

    2 2

    2

    3

    10

    0

    0−

    − + −

    =

    which reduces to

    k k k 

    k k 

    u

    u

     P 

     P 

    1 2 2

    2 2

    2

    3

    + −

    and

     F k u1 1 2= −

    Unknowns are

    U = 

    u

    u

    2

    3

    and the reaction force  F 1 (if desired).

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    19/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 19

    Solving the equations, we obtain the displacements

    u

    u

     P k 

     P k P k 

    2

    3

    1

    1 2

    2

    2

    =+

    /

    / /

    and the reaction force

     F P 1 2= −

    Checking the Resul ts 

    • Deformed shape of the structure

    • Balance of the external forces

    • Order of magnitudes of the numbers

    Notes About the Spring Elements 

    • Suitable for stiffness analysis

    •  Not suitable for stress analysis of the spring itself 

    • Can have spring elements with stiffness in the lateraldirection, spring elements for torsion, etc.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    20/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 20

    Example 1.1 

    Given: For the spring system shown above,

    k k k 

     P u

    1 2 3

    4 0

    = = =

    = = =

    100 N / mm, 200 N / mm, 100 N / mm

    500 N, u1

     Find : (a) the global stiffness matrix

    (b) displacements of nodes 2 and 3

    (c) the reaction forces at nodes 1 and 4

    (d) the force in the spring 2

    Solution :

    (a) The element stiffness matrices are

    k 1

    100 100

    100 100=

      −

      (N/mm) (1)

    k 2 200 200

    200 200=   −−

      (N/mm) (2)

    k 3

    100 100

    100 100=

      −

      (N/mm) (3)

    k 1 k 2

    1 2 3

    k 3

    4

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    21/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 21

    Applying the superposition concept, we obtain the global stiffness

    matrix for the spring system as

    u u u u1 2 3 4

    100 100 0 0

    100 100 200 200 0

    0 200 200 100 100

    0 0 100 100

    K  =

    − + −

    − + −

    or 

    K  =

    − −

    − −

    100 100 0 0

    100 300 200 0

    0 200 300 100

    0 0 100 100

    which is symmetric and banded .

    Equilibrium (FE) equation for the whole system is

    100 100 0 0

    100 300 200 0

    0 200 300 100

    0 0 100 100

    0

    1

    2

    3

    4

    1

    4

    − −

    − −

    =

    u

    u

    u

    u

     F 

     P 

     F 

    (4)

    (b) Applying the BC (u u1 4

    0= = ) in Eq(4), or deleting the 1st and

    4th rows and columns, we have

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    22/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 22

    300 200

    200 300

    02

    3

    u

    u P (5)

    Solving Eq.(5), we obtainu

    u

     P 

     P 

    2

    3

    250

    3 500

    2

    3

    /

    /( )mm (6)

    (c) From the 1st and 4th equations in (4), we get the reaction forces

     F u1 2100 200= − = − (N)

     F u4 3

    100 300= − = − ( ) N

    (d) The FE equation for spring (element) 2 is

    200 200

    200 200

    u

    u

     f 

     f 

    i

     j

    i

     j

    Here i = 2, j = 3 for element 2. Thus we can calculate the spring

    force as

    [ ]

    [ ]

     F f f u

    u j i

    = = − = − 

    = − 

    =

    200 200

    200 2002

    3

    200

    2

    3

    (N)

    Check the results! 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    23/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 23

    Example 1.2 

    Problem : For the spring system with arbitrarily numbered nodes

    and elements, as shown above, find the global stiffness

    matrix.

    Solution :

    First we construct the following

    which specifies the global  node numbers corresponding to the

    local  node numbers for each element.

    Then we can write the element stiffness matrices as follows

    k 1

    k 242

    3

    k 3

    5

    2

    1k 4

    1

    1

    2 3

    4

      Element Connectivity Table

    Element Node i (1) Node j (2)  

    1 4 2

    2 2 3

    3 3 5

    4 2 1

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    24/169

     Lecture Notes: Introduction to Finite Element Method Chapter 1. Introduction

    © 1998 Yijun Liu, University of Cincinnati 24

    u u

    k k 

    k k 

    4 2

    1

    1 1

    1 1

    k   =  −

    u u

    k k 

    k k 

    2 3

    2

    2 2

    2 2

    k   =  −

    u u

    k k 

    k k 

    3 5

    3

    3 3

    3 3

    k   =  −

    u u

    k k 

    k k 

    2 1

    4

    4 4

    4 4

    k   =  −

    Finally, applying the superposition method, we obtain the globalstiffness matrix as follows

    u u u u u

    k k 

    k k k k k k  

    k k k k  

    k k 

    k k 

    1 2 3 4 5

    4 4

    4 1 2 4 2 1

    2 2 3 3

    1 1

    3 3

    0 0 0

    0

    0 0

    0 0 0

    0 0 0

    K  =

    − + + − −

    − + −

    −−

    The matrix is symmetric, banded , but singular .

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    25/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 25

    Chapter 2. Bar and Beam Elements.

     L inear Static Analysis 

    I . Linear Static Analysis 

    Most structural analysis problems can be treated as linear 

     static problems, based on the following assumptions

    1. Small  deformations (loading pattern is not changed dueto the deformed shape)

    2. Elastic materials (no plasticity or failures)

    3. Static loads (the load is applied to the structure in a slow

    or steady fashion)

    Linear analysis can provide most of the information about

    the behavior of a structure, and can be a good approximation for 

    many analyses. It is also the bases of nonlinear analysis in most

    of the cases.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    26/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 26

    I I . Bar Element 

    Consider a uniform prismatic bar:

     L  length

     A  cross-sectional area

     E   elastic modulus

    u u x= ( ) displacement

    ε ε= ( ) x   strain

    σ σ= ( ) x stress

    Strain-displacement relation:

    ε =du

    dx

    (1)

    Stress-strain relation:

    σ ε= E  (2)

    i i  j

    ui u j

     ,E 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    27/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 27

    Stif fness Matr ix --- D irect Method 

    Assuming that the displacement u is varying linearly along

    the axis of the bar, i.e.,

    u x x

     Lu

     x

     Lu

    i j( ) = − 

        

        +1 (3)

    we have

    ε =  −

    =u u

     L L

     j i   ∆(∆  = elongation) (4)

    σ ε= = E   E  L

    ∆(5)

    We also have

    σ =  F  A

    ( F  = force in bar) (6)

    Thus, (5) and (6) lead to

     F  EA

     Lk = =∆ ∆ (7)

    where k  EA

     L=  is the stiffness of the bar.

    The bar is acting like a spring  in this case and we concludethat element stiffness matrix is

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    28/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 28

    k  =  −

     =

    k k 

    k k 

     EA

     L

     EA

     L EA

     L

     EA

     L

    or 

    k  =  −−

     EA

     L

    1 1

    1 1(8)

    This can be verified by considering the equilibrium of the forces

    at the two nodes. Element equilibrium equation is

     EA

     L

    u

    u

     f 

     f 

    i

     j

    i

     j

    1 1

    1 1

    −−

    (9)

     Degree of Freedom (dof)

     Number of components of the displacement vector at a

    node.

    For 1-D bar element: one dof at each node.

     Physical Meaning of the Coefficients in k 

    The jth column of k  (here j = 1 or 2) represents the forces

    applied to the bar to maintain a deformed shape with unit

    displacement at node j and zero displacement at the other node.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    29/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 29

    Stif fness Matrix --- A F ormal Approach 

    We derive the same stiffness matrix for the bar using a

    formal approach which can be applied to many other more

    complicated situations.

    Define two linear shape functions as follows

     N N i j( ) , ( )ξ ξ ξ ξ= − =1 (10)

    where

    ξ ξ= ≤ ≤ x

     L , 0 1 (11)

    From (3) we can write the displacement as

    u x u N u N ui i j j( ) ( ) ( ) ( )= = +ξ ξ ξ

    or 

    [ ]u N N  uui j

    i

     j

    =  

    =  Nu (12)

    Strain is given by (1) and (12) as

    ε = = 

      =du

    dx

    dxN u Bu (13)

    where B is the element strain-displacement matrix, which is

    [ ] [ ]B = = •d 

    dx N N 

    d  N N 

    dxi j i j( ) ( ) ( ) ( )ξ ξ

    ξ  ξ ξ

      ξ

    i.e.,   [ ]B = −1 1/ / L L (14)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    30/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 30

    Stress can be written as

    σ ε= = E E Bu (15)

    Consider the strain energy stored in the bar 

    (   )

    (   )

    U dV E dV  

     E dV 

    V V 

    = =

    =

    ∫ ∫ 

    ∫ 

    1

    2

    1

    2

    1

    2

    σ εT T T

    T T

    u B Bu

    u B B u

    (16)

    where (13) and (15) have been used.

    The work  done by the two nodal forces is

    W f u f ui i j j

    = + =12

    1

    2

    1

    2u f 

    T (17)

    For conservative system, we state that

    U W = (18)

    which gives

    (   )1

    2

    1

    2u B B u u f  

    T T T E dV 

    ∫ 

    =

    We can conclude that

    (   )B B u f  T E dV V 

    ∫ 

    =

    or 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    31/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 31

    ku f = (19)

    where

    ( )k B BT= ∫   E dV V  (20)

    is the element stiffness matrix.

    Expression (20) is a general result which can be used for 

    the construction of other types of elements. This expression can

    also be derived using other more rigorous approaches, such as

    the Principle of Minimum Potential Energy, or the Galerkin’s Method .

     Now, we evaluate (20) for the bar element by using (14)

    [ ]k  =  −

    − =  −−

    ∫ 

    1

    11 1

    1 1

    1 10

    /

    // /

     L

     L E L L Adx

     EA

     L

     L

    which is the same as we derived using the direct method.

     Note that from (16) and (20), the strain energy in the

    element can be written as

    U  =1

    2u ku

    T (21)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    32/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 32

    Example 2.1 

     Problem: Find the stresses in the two bar assembly which is

    loaded with force P , and constrained at the two ends,

    as shown in the figure.

    Solution: Use two 1-D bar elements.

    Element 1,

    u u

     EA

     L

    1 2

    1

    2 1 1

    1 1k    =

      −−

    Element 2,

    u u

     EA

     L

    2 3

    2

    1 1

    1 1k    =

      −−

    Imagine a frictionless pin at node 2, which connects the twoelements. We can assemble the global FE equation as follows,

     EA

     L

    u

    u

    u

     F 

     F 

     F 

    2 2 0

    2 3 1

    0 1 1

    1

    2

    3

    1

    2

    3

    −− −

    =

    1

    2 A,E 

    2 3

     ,E 1 2

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    33/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 33

    Load and boundary conditions (BC) are,

    u u F P  1 3 2

    0= = =,

    FE equation becomes,

     EA

     Lu

     F 

     P 

     F 

    2 2 0

    2 3 1

    0 1 1

    0

    0

    2

    1

    3

    −− −

    =

    Deleting the 1st row and column, and the 3rd row and column,

    we obtain,

    [ ]{ } { } EA

     Lu P 3

    2  =

    Thus,

    u PL

     EA2

    3=

    and

    u

    u

    u

     PL

     EA

    1

    2

    3

    3

    0

    1

    0

    =

    Stress in element 1 is

    [ ]σ ε1 1 1 11

    2

    2 1

    1 1

    30

    3

    = = = − 

    =  −

    = −  

          =

     E E E L Lu

    u

     E u u

     L

     E 

     L

     PL

     EA

     P 

     A

    B u / /

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    34/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 34

    Similarly, stress in element 2 is

    [ ]σ ε2 2 2 22

    3

    3 2

    1 1

    03 3

    = = = − 

    =

      −= −  

          = −

     E E E L Lu

    u

     E u u

     L

     E 

     L

     PL

     EA

     P 

     A

    B u / /

    which indicates that bar 2 is in compression.

    Check the results! 

     Notes:

    • In this case, the calculated stresses in elements 1 and 2are exact within the linear theory for 1-D bar structures.

    It will not help if we further divide element 1 or 2 into

    smaller finite elements.

    • For tapered bars, averaged values of the cross-sectionalareas should be used for the elements.

    • We need to find the displacements first in order to findthe stresses, since we are using the displacement based 

     FEM .

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    35/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 35

    Example 2.2 

     Problem: Determine the support reaction forces at the two ends

    of the bar shown above, given the following,

     P E 

     A L =

    = × = ×

    = =

    6 0 10 2 0 10

    250 150

    4 4

    2

    . , . ,

    ,

     N N / mm

    mm mm, 1.2 mm

    2

    Solution:

    We first check to see if or not the contact of the bar with

    the wall on the right will occur. To do this, we imagine the wallon the right is removed and calculate the displacement at the

    right end,

    ∆ ∆0

    4

    4

    6 0 10 150

    2 0 10 25018 12= =   ×

    ×  = > = PL

     EA

    ( . )( )

    ( . )( ). .mm mm

    Thus, contact occurs.

    The global FE equation is found to be,

     EA

     L

    u

    u

    u

     F 

     F 

     F 

    1 1 0

    1 2 1

    0 1 1

    1

    2

    3

    1

    2

    3

    −− −

    =

    1

     ,E 

    2 3

    1 2

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    36/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 36

    The load and boundary conditions are,

     F P 

    u u

    2

    4

    1 3

    6 0 10

    0 12

    = = ×

    = = =

    .

    , .

     N

    mm∆FE equation becomes,

     EA

     Lu

     F 

     P 

     F 

    1 1 0

    1 2 1

    0 1 1

    0

    2

    1

    3

    −− −

    =

    The 2nd equation gives,

    [ ]   { } EA

     L

    u P 2 1

    2− 

    =∆

    that is,

    [ ]{ } EA

     Lu P 

     EA

     L2

    2   = +

    Solving this, we obtain

    u PL

     EA2

    1

    215= + 

        

       =∆ . mm

    and

    u

    u

    u

    1

    2

    3

    0

    15

    12

    =

    .

    .

    ( )mm

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    37/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 37

    To calculate the support reaction forces, we apply the 1st

    and 3rd equations in the global FE equation.

    The 1st equation gives,

    [ ]   ( ) F  EA

     L

    u

    u

    u

     EA

     Lu

    1

    1

    2

    3

    2

    41 1 0 50 10= −

    = − = − ×. N

    and the 3rd equation gives,

    [ ]   ( ) F  EA

     L

    uu

    u

     EA

     Lu u

    3

    1

    2

    3

    2 3

    4

    0 1 1

    10 10

    = −

    = − +

    = − ×. N

    Check the results.! 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    38/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 38

    Distr ibuted Load 

    Uniformly distributed axial load q  (N/mm, N/m, lb/in) can

     be converted to two equivalent nodal forces of magnitude qL/ 2.

    We verify this by considering the work done by the load q,

    [ ]

    [ ]

    [ ]

    W uqdx u q Ld  qL

    u d 

    qL N N 

    u

    ud 

    qLd 

    u

    u

    qL qL u

    u

    u uqL

    qL

    q

     L

    i j

    i

     j

    i

     j

    i

     j

    i j

    = = =

    = − 

    ∫ ∫ ∫ ∫ 

    ∫ 

    1

    2

    1

    2 2

    2

    21

    1

    2 2 2

    1

    2

    2

    2

    0 0

    1

    0

    1

    0

    1

    0

    1

    ( ) ( ) ( )

    ( ) ( )

    /

    /

    ξ ξ ξ ξ

    ξ ξ ξ

    ξ ξ ξ

    i

    q

    qL/2

    i

    qL/2

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    39/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 39

    that is,

    W qL

    qLq

    q q= =

     

    1

    2

    2

    2u f f with

    /

    /(22)

    Thus, from the U=W  concept for the element, we have

    1

    2

    1

    2

    1

    2u ku u f u f  

    T T T 

    q= + (23)

    which yields

    ku f f  = +q (24)

    The new nodal force vector is

    f f + =  +

    +

    q

    i

     j

     f qL

     f qL

    /

    /

    2

    2(25)

    In an assembly of bars,

    1 3

    q

    qL/2

    1 3

    qL/2

    2

    2

    qL

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    40/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 40

    Bar Elements in 2-D and 3-D Space 

    2-D Case 

    Local Global  

     x, y X, Y 

    u vi i' ', u vi i,

    1 dof at node 2 dof’s at node

     Note: Lateral displacement vi’  does not contribute to the stretch

    of the bar, within the linear theory.

    Transformation 

    [ ]

    [ ]

    u u v l m

    u

    v

    v u v m l  u

    v

    i i i

    i

    i

    i i i

    i

    i

    '

    '

    cos sin

    sin cos

    = + =

     

    = − + = − 

    θ θ

    θ θ

    where l m= =cos , sinθ θ .

    i

    ui’ Y 

    θ

    uivi

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    41/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 41

    In matrix form,

    u

    v

    l m

    m l 

    u

    v

    i

    i

    i

    i

    '

    '

    =−

    (26)

    or,

    u Tui i' ~=

    where the transformation matrix

    ~T

     = −

    l m

    m l  (27)

    is orthogonal , that is,~ ~T T

    − =1 T .

    For the two nodes of the bar element, we have

    u

    v

    u

    v

    l m

    m l 

    l m

    m l 

    u

    v

    u

    v

    i

    i

     j

     j

    i

    i

     j

     j

    '

    '

    '

    '

    =  −

    0 0

    0 0

    0 0

    0 0

    (28)

    or,

    u Tu' = with T

    T 0

    0 T=

     

    ~

    ~ (29)

    The nodal forces are transformed in the same way,

    f Tf ' = (30)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    42/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 42

    Sti f fness Matri x in the 2-D Space 

    In the local coordinate system, we have

     EA L

    uu

     f  f 

    i

     j

    i

     j

    1 11 1

    −−

    '

    '

    '

    '

    Augmenting this equation, we write

     EA

     L

    u

    v

    u

    v

     f 

     f 

    i

    i

     j

     j

    i

     j

    1 0 1 0

    0 0 0 0

    1 0 1 0

    0 0 0 0

    0

    0

    =

    '

    '

    '

    '

    '

    '

    or,

    k u f ' ' '=

    Using transformations given in (29) and (30), we obtain

    k Tu Tf  ' =

    Multiplying both sides by TT  and noticing that TT T = I, we

    obtain

    T k Tu f  T  ' =   (31)

    Thus, the element stiffness matrix k  in the global coordinate

    system is

    k T k T= T  '   (32)

    which is a 4×4 symmetric matrix.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    43/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 43

    Explicit form,

    u v u v

     EA

     L

    l lm l lmlm m lm m

    l lm l lm

    lm m lm m

    i i j j

    k  =− −− −

    − −

    − −

    2 2

    2 2

    2 2

    2 2

    (33)

    Calculation of the directional cosines l and m:

    l   X X  L

    m Y Y  L

     j i j i= =

      −= =

      −cos , sinθ θ (34)

    The structure stiffness matrix is assembled by using the element

    stiffness matrices in the usual way as in the 1-D case.

    Element Stress 

    σ ε= = 

    = −

     E E u

    u E 

     L L

    l m

    l m

    u

    v

    u

    v

    i

     j

    i

    i

     j

     j

    B

    '

    '

    1 1 0 0

    0 0

    That is,

    [ ]σ  = − −

     E 

     Ll m l m

    u

    v

    u

    v

    i

    i

     j

     j

    (35)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    44/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 44

    Example 2.3 

    A simple plane truss is made

    of two identical bars (with E, A, and

     L), and loaded as shown in thefigure. Find

    1) displacement of node 2;

    2) stress in each bar.

    Solution:

    This simple structure is usedhere to demonstrate the assembly

    and solution process using the bar element in 2-D space.

    In local coordinate systems, we have

    k k 1 2

    1 1

    1 1

    ' '=  −

     = EA

     L

    These two matrices cannot be assembled together, because they

    are in different coordinate systems. We need to convert them to

    global coordinate system OXY.

     Element 1:

    θ

     = = =45

    2

    2

    o

    l m,

    Using formula (32) or (33), we obtain the stiffness matrix in the

    global system

    Y 1

    2

    45o

    45o

    3

    2

    1

    1

    2

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    45/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 45

    u v u v

     EA

     L

    1 1 2 2

    1 1 1 12

    1 1 1 1

    1 1 1 1

    1 1 1 1

    1 1 1 1

    k T k T= =

    − −

    − −

    − −

    − −

    '

     Element 2:

    θ = = − =1352

    2

    2

    2

    o l m, ,

    We have,

    u v u v

     EA

     L

    2 2 3 3

    2 2 2 22

    1 1 1 1

    1 1 1 1

    1 1 1 1

    1 1 1 1

    k T k T= =

    − −

    − −

    − −

    − −

    '

    Assemble the structure FE equation,

    u v u v u v

     EA

     L

    u

    v

    u

    v

    u

    v

     F 

     F 

     F 

     F 

     F 

     F 

     X 

     X 

     X 

    1 1 2 2 3 3

    1

    1

    2

    2

    3

    3

    1

    1

    2

    2

    3

    3

    2

    1 1 1 1 0 0

    1 1 1 1 0 0

    1 1 2 0 1 1

    1 1 0 2 1 1

    0 0 1 1 1 1

    0 0 1 1 1 1

    − −

    − −

    − − −− − −

    − −

    − −

    =

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    46/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 46

    Load and boundary conditions (BC):

    u v u v F P F P   X Y 1 1 3 3 2 1 2 2

    0= = = = = =, ,

    Condensed FE equation,

     EA

     L

    u

    v

     P 

     P 2

    2 0

    0 2

    2

    2

    1

    2

    Solving this, we obtain the displacement of node 2,

    u

    v

     L

     EA

     P 

     P 

    2

    2

    1

    2

    Using formula (35), we calculate the stresses in the two bars,

    [ ]   ( )σ11

    2

    1 2

    2

    21 1 1 1

    0

    0 2

    2= − −

    = + E 

     L

     L

     EA  P 

     P 

     A P P 

    [ ]   ( )σ2

    1

    2

    1 2

    2

    21 1 1 1

    0

    0

    2

    2= − −

    = − E 

     L

     L

     EA

     P 

     P 

     A P P 

    Check the results :

    Look for the equilibrium conditions, symmetry,

    antisymmetry, etc.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    47/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 47

    Example 2.4   ( Multipoint Constraint )

    For the plane truss shown above,

     P L m E GPa

     A m

     A m

    = = =

    = ×

    = ×

    1000 1 210

    6 0 10

    6 2 10

    4 2

    4 2

     kN,

    for elements 1 and 2,

    for element 3.

    , ,

    .

    Determine the displacements and reaction forces.

    Solution:

    We have an inclined roller at node 3, which needs special

    attention in the FE solution. We first assemble the global FE

    equation for the truss.

     Element 1:

    θ = = =90 0 1o l m, ,

    45o

    3

    2

    1

    3

    2

    1

    ’ 

    ’ 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    48/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 48

    u v u v1 1 2 2

    1

    9 4210 10 6 0 10

    1

    0 0 0 0

    0 1 0 1

    0 0 0 0

    0 1 0 1

    k   =

      × ×   −

    −( )( . )( ) N / m

     Element 2:

    θ = = =0 1 0o l m, ,

    u v u v2 2 3 3

    2

    9 4210 10 6 0 10

    1

    1 0 1 0

    0 0 0 0

    1 0 1 0

    0 0 0 0

    k    =  × ×

    −( )( . )( ) N / m

     Element 3:

    θ = = =451

    2

    1

    2

    o l m, ,

    u v u v1 1 3 3

    3

    9 4210 10 6 2 10

    2

    05 0 5 05 05

    05 0 5 05 05

    0 5 05 0 5 0 5

    0 5 05 0 5 0 5

    k    =  × ×

    − −

    − −

    − −− −

    −( )( )

    . . . .

    . . . .

    . . . .

    . . . .

    ( ) N / m

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    49/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 49

    The global FE equation is,

    1260 10

    0 5 05 0 0 05 05

    15 0 1 05 05

    1 0 1 0

    1 0 0

    15 05

    05

    5

    1

    1

    2

    2

    3

    3

    1

    1

    2

    2

    3

    3

    ×

    − −

    − − −

    =

    . . . .

    . . .

    . .

    .Sym.

    u

    v

    u

    v

    u

    v

     F 

     F 

     F 

     F 

     F 

     F 

     X 

     X 

     X 

    Load and boundary conditions (BC):

    u v v v

     F P F  X x

    1 1 2 3

    2 3

    0 0

    0

    = = = =

    = =

    , ,

    , .

    '

    '

    and

    From the transformation relation and the BC, we have

    vu

    vu v

    3

    3

    3

    3 3

    2

    2

    2

    2

    2

    20' ( ) ,= −

    = − + =

    that is,

    u v3 3

    0− =

    This is a multipoint constraint  (MPC).

    Similarly, we have a relation for the force at node 3,

     F  F 

     F  F F 

     x

     X 

     X Y 3

    3

    3

    3 3

    2

    2

    2

    2

    2

    20

    '( ) ,=

     

    = + =

    that is,

     F F  X Y 3 3

    0+ =

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    50/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 50

    Applying the load and BC’s in the structure FE equation by

    ‘deleting’ 1st, 2nd and 4th rows and columns, we have

    1260 10

    1 1 0

    1 15 05

    0 05 05

    5

    2

    3

    3

    3

    3

    ×

    =

    . .

    . .

    u

    u

    v

     P 

     F 

     F 

     X 

    Further, from the MPC and the force relation at node 3, the

    equation becomes,

    1260 10

    1 1 0

    1 15 05

    0 05 05

    5

    2

    3

    3

    3

    3

    ×

    =−

    . .

    . .

    u

    u

    u

     P 

     F 

     F 

     X 

     X 

    which is

    1260 10

    1 1

    1 2

    0 1

    5 2

    3

    3

    3

    ×

    =

    u

    u

     P 

     F 

     F 

     X 

     X 

    The 3rd equation yields,

     F u X 3

    5

    31260 10= − ×

    Substituting this into the 2nd equation and rearranging, we have

    1260 101 1

    1 3 05 2

      −

    =

     

    u

    u

     P 

    Solving this, we obtain the displacements,

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    51/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 51

    u

    u

     P 

     P 

    2

    3

    5

    1

    2520 10

    3 0 01191

    0 003968

    .

    .( )m

    From the global FE equation, we can calculate the reactionforces,

     F 

     F 

     F 

     F 

     F 

    u

    u

    v

     X 

     X 

    1

    1

    2

    3

    3

    5

    2

    3

    3

    1260 10

    0 0 5 05

    0 0 5 05

    0 0 0

    1 15 05

    0 05 05

    500

    500

    0 0

    500

    500

    = ×

    − −

    − −

    =

    . .

    . .

    . .

    . .

    . ( )kN

    Check the results! 

    A general multipoint constraint  (MPC) can be described as,

     A u j j

     j

    =∑ 0

    where A j’s are constants and u j’s are nodal displacement

    components. In the FE software, such as MSC/NASTRAN ,

    users only need to specify this relation to the software. The

    software will take care of the solution.

    Penalty Approach for Handli ng BC’ s and MPC’ s 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    52/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 52

    3-D Case 

    Local Global  

     x, y, z X, Y, Z 

    u v wi i i' ' ', , u v wi i i, ,

    1 dof at node 3 dof’s at node

    Element stiffness matrices are calculated in the localcoordinate systems and then transformed into the global

    coordinate system ( X, Y, Z ) where they are assembled.

    FEA software packages will do this transformation

    automatically.

     Input data for bar elements:

    • ( X, Y, Z ) for each node

    •  E  and A for each element

    i

     Z 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    53/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 53

    I I I . Beam Element 

    Simple Plane Beam Element 

     L  length

     I   moment of inertia of the cross-sectional area

     E   elastic modulus

    v v x= ( ) deflection (lateral displacement) of theneutral axis

    θ =dv

    dx  rotation about the z-axis

     F F x= ( ) shear force

     M M x= ( ) moment about z-axis

     Elementary Beam Theory:

     EI d v

    dx M x

    2

    2 = ( ) (36)

    σ = − My

     I (37)

    i

    v j , F  j

     ,I θi , M i   θ j , M  j

    vi , F i

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    54/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 54

    Di rect Method 

    Using the results from elementary beam theory to compute

    each column of the stiffness matrix.

    (Fig. 2.3-1. on Page 21 of Cook’s Book)

     Element stiffness equation (local node: i, j or 1, 2):

    v v

     EI 

     L

     L L

     L L L L

     L L

     L L L L

    v

    v

     F 

     M 

     F 

     M 

    i i j j

    i

    i

     j

     j

    i

    i

     j

     j

    θ θ

    θ

    θ

    3

    2 2

    2 2

    12 6 12 6

    6 4 6 2

    12 6 12 6

    6 2 6 4

    −−

    − − −

    =

    (38)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    55/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 55

    Formal Approach 

    Apply the formula,

    k B B= ∫  T  L

     EI dx

    0

    (39)

    To derive this, we introduce the shape functions,

     N x x L x L

     N x x x L x L

     N x x L x L

     N x x L x L

    1

    2 2 3 3

    2

    2 3 2

    3

    2 2 3 3

    4

    2 3 2

    1 3 2

    2

    3 2

    ( ) / /

    ( ) / /

    ( ) / /

    ( ) / /

    = − +

    = − +

    = −

    = − +

    (40)

    Then, we can represent the deflection as,

    [ ]

    v x

     N x N x N x N x

    v

    v

    i

    i

     j

     j

    ( )

    ( ) ( ) ( ) ( )

    =

    =

    Nu

    1 2 3 4

    θ

    θ

    (41)

    which is a cubic function. Notice that,

     N N 

     N N L N x

    1 3

    2 3 4

    1+ =+ + =

    which implies that the rigid body motion is represented by the

    assumed deformed shape of the beam.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    56/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 56

    Curvature of the beam is,

    d v

    dx

    dx

    2

    2

    2

    2= =Nu Bu (42)

    where the strain-displacement matrix B is given by,

    [ ]B N= =

    = − + − + − − +

    dx N x N x N x N x

     L

     x

     L L

     x

     L L

     x

     L L

     x

     L

    2

    2 1 2 3 4

    2 3 2 2 3 2

    6 12 4 6 6 12 2 6

    " " " "( ) ( ) ( ) ( )

    (43)

    Strain energy stored in the beam element is

    (   )   (   )

    U dV  My

     I E 

     My

     I dAdx

     M 

     EI 

     Mdxd v

    dx

     EI d v

    dx

    dx

     EI dx

     EI dx

    V A

     L T 

     L T  L

     L

    T T 

     L

    = = −     

         −  

         

    = =   

     

       

     

        

     

       

     

     

    =

     

     

       

    ∫ ∫ ∫ 

    ∫ ∫ ∫ 

    ∫ 

    1

    2

    1

    2

    1

    1

    2

    1 1

    2

    1

    2

    1

    2

    0

    0

    2

    2

    2

    2

    0

    0

    0

    σ ε

    Bu Bu

    u B B u

    We conclude that the stiffness matrix for the simple beam

    element is

    k B B= ∫  T  L

     EI dx

    0

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    57/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 57

    Applying the result in (43) and carrying out the integration, we

    arrive at the same stiffness matrix as given in (38).

    Combining the axial stiffness (bar element), we obtain the

    stiffness matrix of a general 2-D beam element ,

    u v u v

     EA

     L

     EA

     L EI 

     L

     EI 

     L

     EI 

     L

     EI 

     L EI 

     L

     EI 

     L

     EI 

     L

     EI 

     L EA

     L

     EA

     L EI 

     L

     EI 

     L

     EI 

     L

     EI 

     L

     EI  L

     EI  L

     EI  L

     EI  L

    i i i j j jθ θ

    k  =

    − − −

    0 0 0 0

    012 6

    012 6

    06 4

    06 2

    0 0 0 0

    012 6

    012 6

    0 6 2 0 6 4

    3 2 3 2

    2 2

    3 2 3 2

    2 2

    3-D Beam Element 

    The element stiffness matrix is formed in the local (2-D)

    coordinate system first and then transformed into the global (3-D) coordinate system to be assembled.

    (Fig. 2.3-2. On Page 24)

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    58/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 58

    Example 2.5 

    Given: The beam shown above is clamped at the two ends and

    acted upon by the force P  and moment M  in the mid-span.

     Find : The deflection and rotation at the center node and the

    reaction forces and moments at the two ends.

    Solution: Element stiffness matrices are,

    v v

     EI 

     L

     L L

     L L L L

     L L

     L L L L

    1 1 2 2

    1 3

    2 2

    2 2

    12 6 12 6

    6 4 6 2

    12 6 12 6

    6 2 6 4

    θ θ

    k    =

    − − −

    v v

     EI 

     L

     L L

     L L L L

     L L

     L L L L

    2 2 3 3

    2 3

    2 2

    2 2

    12 6 12 6

    6 4 6 2

    12 6 12 6

    6 2 6 4

    θ θ

    k    =

    −−

    − − −

    1 2 ,I 

    3

    1 2

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    59/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 59

    Global FE equation is,

    v v v

     EI 

     L

     L L L L L L

     L L

     L L L L L

     L L

     L L L L

    v

    v

    v

     F  M 

     F 

     M 

     F 

     M 

    1 1 2 2 3 3

    3

    2 2

    2 2 2

    2 2

    1

    1

    2

    2

    3

    3

    1

    1

    2

    2

    3

    3

    12 6 12 6 0 06 4 6 2 0 0

    12 6 24 0 12 6

    6 2 0 8 6 2

    0 0 12 6 12 6

    0 0 6 2 6 4

    θ θ θ

    θ

    θ

    θ

    − − −

    − − −

    =

    Loads and constraints (BC’s) are,

     F P M M 

    v v

    Y 2 2

    1 3 1 30

    = − =

    = = = =

    , ,

    θ θ

    Reduced FE equation,

     EI 

     L  L

    v P 

     M 3 22

    2

    24 0

    0 8

    =

      −

    θ

    Solving this we obtain,

    v  L

     EI 

     PL

     M 

    2

    2

    2

    24 3θ

    =  −

    From global FE equation, we obtain the reaction forces andmoments,

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    60/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 60

     F 

     M 

     F 

     M 

     EI 

     L

     L

     L L

     L

     L L

    v

     P M L

     PL M 

     P M L

     PL M 

    1

    1

    3

    3

    3

    2

    2

    2

    2

    12 6

    6 2

    12 6

    6 2

    1

    4

    2 3

    2 3

    =

    − −

    =

    +

    +

    − +

    θ

    /

    /

    Stresses in the beam at the two ends can be calculated using the

    formula,

    σ σ= = − x My

     I 

     Note that the FE solution is exact according to the simple beamtheory, since no distributed load is present between the nodes.

    Recall that,

     EI d v

    dx M x

    2

    2  = ( )

    and

    dM 

    dxV V 

    dV 

    dxq q

    =

    =

    (

    (

    - shear force in the beam)

      - distributed load on the beam)

    Thus,

     EI d v

    dxq x

    4

    4  = ( )

    If q( x)=0, then exact solution for the deflection v is a cubic

    function of x, which is what described by our shape functions.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    61/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 61

    Equivalent Nodal L oads of Distr ibuted Transverse Load 

    This can be verified by considering the work done by the

    distributed load q.

    i

    q

    qL/2

    i

    qL/2

    qL2 /12qL2 /12

    q

    qL qL/2

    qL2 /12

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    62/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 62

    Example 2.6 

    Given: A cantilever beam with distributed lateral load p as

    shown above.

     Find : The deflection and rotation at the right end, the

    reaction force and moment at the left end.

    Solution: The work-equivalent nodal loads are shown below,

    where

     f pL m pL= =/ , /2 122

    Applying the FE equation, we have

    1 2 ,I 

    1 2 ,I 

    m

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    63/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 63

     EI 

     L

     L L

     L L L L

     L L

     L L L L

    v

    v

     F 

     M 

     F 

     M 

    3

    2 2

    2 2

    1

    1

    2

    2

    1

    1

    2

    2

    12 6 12 6

    6 4 6 2

    12 6 12 6

    6 2 6 4

    − − −

    =

    θ

    θ

    Load and constraints (BC’s) are,

     F f M m

    v

    Y 2 2

    1 10

    = − =

    = =

    ,

    θ

    Reduced equation is,

     EI 

     L

     L

     L L

    v f 

    m3 22

    2

    12 6

    6 4

    =  −

    θ

    Solving this, we obtain,

    v  L

     EI 

     L f Lm

     Lf m

     pL EI 

     pL EI 

    2

    2

    2 4

    3

    6

    2 3

    3 6

    8

    =  − +

    − +

    =  −

    /

    /

    (A)

    These nodal values are the same as the exact solution.

     Note that the deflection v( x) (for 0

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    64/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 64

    The errors in (B) will decrease if more elements are used. The

    equivalent moment m is often ignored in the FEM applications.

    The FE solutions still converge as more elements are applied.

    From the FE equation, we can calculate the reaction forceand moment as,

     F 

     M 

     L

     EI 

     L

     L L

    v pL

     pL

    Y 1

    1

    3

    2

    2

    2

    2

    12 6

    6 2

    2

    5 12

    =  −

    θ

    /

    /

    where the result in (A) is used. This force vector gives the total

    effective nodal forces which include the equivalent nodal forcesfor the distributed lateral load p given by,

     pL

     pL

    /

    /

    2

    122

    The correct reaction forces can be obtained as follows,

     F 

     M 

     pL

     pL

     pL

     pL

     pL

     pLY 1

    1

    2 2 2

    2

    5 12

    2

    12 2

    =

     

      −

    =

     

    /

    /

    /

    / /

    Check the results! 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    65/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 65

    Example 2.7 

    Given:  P  = 50 kN, k  = 200 kN/m,  L = 3 m,

     E  = 210 GPa,  I  = 2×10-4 m4.

     Find : Deflections, rotations and reaction forces.

    Solution:

    The beam has a roller (or hinge) support at node 2 and a

    spring support at node 3. We use two beam elements and one

    spring element to solve this problem.

    The spring stiffness matrix is given by,

    v v

    k k 

    k k  s

    3 4

    k    =  −

    Adding this stiffness matrix to the global FE equation (see

     Example 2.5), we have

    12

     ,I 

    3

    1 2

    4

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    66/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 66

     

    v v v v

     EI 

     L

     L L

     L L L

     L

     L L L

    k L

     L

    Symmetry k  

    v

    v

    v

    v

     F 

     M 

     F 

     M 

     F 

     M 

     F 

    1 1 2 2 3 3 4

    3

    2 2

    2 2

    2

    1

    1

    2

    2

    3

    3

    4

    1

    1

    2

    2

    3

    3

    4

    12 6 12 6 0 0

    4 6 2 0 0

    24 0 12 6

    8 6 2

    12 6

    4

    0

    0

    0

    0

    0

    θ θ θ

    θ

    θ

    θ

    + − −

    =

    ' '

    '

    in which

    k  L

     EI k '=

    3

    is used to simply the notation.

    We now apply the boundary conditions,

    v v v M M F P 

    1 1 2 4

    2 3 3

    00

    = = = == = = −θ ,

    ,

    ‘Deleting’ the first three and seventh equations (rows and

    columns), we have the following reduced equation,

     EI 

     L

     L L L

     L k L L L L

    v P 3

    2 2

    2 2

    2

    3

    3

    8 6 2

    6 12 62 6 4

    0

    0

    − + −

    = −

    '

    θ

    θ

    Solving this equation, we obtain the deflection and rotations at

    node 2 and node 3,

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    67/169

     Lecture Notes: Introduction to Finite Element Method Chapter 2. Bar and Beam Elements

    © 1998 Yijun Liu, University of Cincinnati 67

    θ

    θ

    2

    3

    3

    2

    12 7

    3

    7

    9

    v PL

     EI k  L

    = −+

    ( ' )

    The influence of the spring k  is easily seen from this result.

    Plugging in the given numbers, we can calculate

    θ

    θ

    2

    3

    3

    0 002492

    0 01744

    0 007475

    v

    =

    .

    .

    .

    rad

    m

    rad

    From the global FE equation, we obtain the nodal reaction

    forces as,

     F 

     M 

     F 

     F 

    1

    1

    2

    4

    69 78

    69 78

    1162

    3488

    =

    − ⋅

    .

    .

    .

    .

    kN

    kN m

    kN

    kN

    Checking the results : Draw free body diagram of the beam

    1 2

    50 kN

    3

    3.488 kN116.2 kN

    69.78 kN

    69.78 kN⋅m

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    68/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 75

    Chapter 3. Two-Dimensional Problems 

    I . Review of the Basic Theory 

    In general, the stresses and strains in a structure consist of 

    six components:

    σ σ σ τ τ τ x y z xy yz zx, , , , , for stresses,

    and

    ε ε ε γ γ γ   x y z xy yz zx, , , , , for strains.

    Under contain conditions, the state of stresses and strains

    can be simplified. A general 3-D structure analysis can,

    therefore, be reduced to a 2-D analysis.

     z 

     x

    σ  y

    σ z 

     yz 

     zx

     xy

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    69/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 76

    Plane (2-D) Problems 

    •  Plane stress:

    σ τ τ ε z yz zx z = = = ≠0 0( ) (1)

    A thin planar structure with constant thickness and

    loading within the plane of the structure ( xy-plane).

    •  Plane strain:ε γ γ σ z yz zx z = = = ≠0 0( ) (2)

    A long structure with a uniform cross section and

    transverse loading along its length ( z-direction).

     z 

     z 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    70/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 77

    Stress-Strain-Temperature (Consti tutive) Relations 

    For elastic and isotropic materials, we have,

    εε

    γ 

     ν ν

    σσ

    τ

    εε

    γ 

     x

     y

     xy

     x

     y

     xy

     x

     y

     xy

     E E  E E 

    G

    =−

    +

    1 01 0

    0 0 1

    0

    0

    0

    / // /

    /

    (3)

    or,

    ε σ ε= +−E 1 0

    where ε0  is the initial strain, E  the Young’s modulus,  ν  the

    Poisson’s ratio and G the shear modulus. Note that,

    G E 

    =+2 1( ) ν

    (4)

    which means that there are only two independent materials

    constants for homogeneous and isotropic materials.We can also express stresses in terms of strains by solving

    the above equation,

    σ

    σ

    τ  ν

     ν

     ν

     ν

    ε

    ε

    γ 

    ε

    ε

    γ 

     x

     y

     xy

     x

     y

     xy

     x

     y

     xy

     E 

    =

    −−

     

     

     

     

       1

    1 0

    1 0

    0 0 1 2

    2

    0

    0

    0( ) /

    (5)

    or,

    σ ε σ= +E 0

    where σ ε0 0= −E is the initial stress.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    71/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 78

    The above relations are valid for plane stress case. For 

     plane strain case, we need to replace the material constants in

    the above equations in the following fashion,

     E  E 

    G G

    →−

    →−

    1

    1

    2 ν

     ν  ν

     ν(6)

    For example, the stress is related to strain by

    σ

    σ

    τ  ν ν

     ν ν

     ν ν

     ν

    ε

    ε

    γ 

    ε

    ε

    γ 

     x

     y

     xy

     x

     y

     xy

     x

     y

     xy

     E 

    =+ −

    −−

     

     

     

     

       ( )( ) ( ) /

    1 1 2

    1 0

    1 0

    0 0 1 2 2

    0

    0

    0

    in the plane strain case.

    Initial strains due to temperature change (thermal loading)

    is given by,

    ε

    ε

    γ 

    α

    α

     x

     y

     xy

    0

    0

    00

    =

    ∆∆ (7)

    where α  is the coefficient of thermal expansion, ∆T  the changeof temperature. Note that if the structure is free to deform under 

    thermal loading, there will be no (elastic) stresses in the

    structure.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    72/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 79

    Strain and Displacement Relations 

    For small strains and small rotations, we have,

    ε   ∂∂

    ε   ∂∂

    γ    ∂∂

    ∂∂

     x y xyu x

    v y

    u y

    v x

    = = = +, ,

    In matrix form,

    ε

    ε

    γ 

    ∂ ∂

    ∂ ∂

    ∂ ∂ ∂ ∂

     x

     y

     xy

     x

     y

     y x

    u

    v

    =

    /

    /

    / /

    0

    0 , or ε = Du (8)

    From this relation, we know that the strains (and thus

    stresses) are one order lower than the displacements, if the

    displacements are represented by polynomials.

    Equil ibrium Equations 

    In elasticity theory, the stresses in the structure must satisfy

    the following equilibrium equations,

    ∂σ

    ∂τ

    ∂τ

    ∂σ

     x  xy

     x

     xy y

     y

     x y f 

     x y f 

    + + =

    + + =

    0

    0

    (9)

    where f  x and f  y are body forces (such as gravity forces) per unit

    volume. In FEM, these equilibrium conditions are satisfied in

    an approximate sense.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    73/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 80

    Boundary Conditions 

    The boundary S  of the body can be divided into two parts,

    S u and S t . The boundary conditions (BC’s) are described as,

    u u v v S  

    t t t t S  

    u

     x x y y t 

    = == =

    , ,

    , ,

    on

    on(10)

    in which t  x and t  y are traction forces (stresses on the boundary)

    and the barred quantities are those with known values.

    In FEM, all types of loads (distributed surface loads, bodyforces, concentrated forces and moments, etc.) are converted to

     point forces acting at the nodes.

    Exact Elastici ty Solution 

    The exact solution (displacements, strains and stresses) of a

    given problem must satisfy the equilibrium equations (9), the

    given boundary conditions (10) and compatibility conditions

    (structures should deform in a continuous manner, no cracks and

    overlaps in the obtained displacement fields).

    t  x

    t  y

    S u

    S t 

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    74/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 81

    Example 3.1 

    A plate is supported and loaded with distributed force p as

    shown in the figure. The material constants are E  and ν.

    The exact solution for this simple problem can be found

    easily as follows,

     Displacement:

    u  p

     E  x v  p

     E  y= = −,   ν

    Strain:

    ε ε ν γ   x y xy

     p

     E 

     p

     E = = − =, , 0

    Stress:σ σ τ x y xy p= = =, ,0 0

    Exact (or analytical) solutions for simple problems are

    numbered (suppose there is a hole in the plate!). That is why we

    need FEM!

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    75/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 82

    I I . F ini te Elements for 2-D Problems 

    A General Formula for the Stiff ness Matrix 

    Displacements (u, v) in a plane element are interpolated

    from nodal displacements (ui, vi) using shape functions N i as

    follows,

    uv

     N N  N N 

    u

    v

    u

    v

    =1 2

    1 2

    1

    1

    2

    2

    0 00 0

    L

    L

    M

    or    u Nd (11)

    where N is the shape function matrix, u the displacement vector 

    and d the nodal  displacement vector. Here we have assumed

    that u depends on the nodal values of u only, and v on nodalvalues of v only.

    From strain-displacement relation (Eq.(8)), the strain vector 

    is,

    ε ε= = =Du DNd Bd, or (12)

    where B = DN is the strain-displacement matrix.

  • 8/21/2019 Finite Element Methods Lectures_Lui.pdf

    76/169

     Lecture Notes: Introduction to Finite Element Method Chapter 3. Two-Dimensional Problems

    © 1998 Yijun Liu, University of Cincinnati 83

    Consider the strain energy stored in an element,

    (   )

    (   )

    U dV dV  

    dV dV  

    dV 

     x x y y xy xy

    T T 

    = = + +

    = =

    =

    =

    ∫ ∫ 

    ∫ ∫ 

    ∫ 

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    σ ε σ ε σ ε τ γ  

    ε ε ε εE E

    d B EB d

    d kd

    From this, we obtain the general formula for the element 

     stiffness matrix,

    k B EB= ∫  T V 

    dV  (13)

     Note that unlike the 1-D cases, E here is a matrix which is given by the stress-strain relation (e.g., Eq.(5) for