•ffl-[5(I)+9]1/2 - Lower Moreland Township School ... 4.3 The Chain Rule Thus, q2 = 7500. P'(q) =...

12
Section 4.3 The Chain Rule Thus, q2 = 7500. P'(q) = 8000 - 2q2 = 8000 - 2(7500) = 8000 - 15,000 = -7000 When the price is $5000, the marginal profit is -$7000. 59. P{x) = 2x2 + 1; x = f(a) = 3a + 2 P[/(a)]=2(3a +2)2 + l = 2(9a2 + 12a + 4) + 1 = 18a2 + 24a +9 60. (a) A(r) = irr2 r(t) = t2 A[r(t)]=*[t2)2 = *{tA) = nt4 This function represents the area of the oil slick as a function of time t after the beginning of the leak. (b) DtA[r(t)} = 4?rt3 DtA[r{l00)\ = 4tt(100)3 = 4,000,000tt At 100 minutes the area of the spill is changing at the rate of 4,000,000tt ft2/min. 61. (a) r(t) = 2t; A(r) = 7rr2 A[r(t)}=n(2t)2 = 4irt2 A= Airt2 gives the area of the pollution in terms of the time since the pollutants were first emitted. (b) DtA[r(t)} = 8irt DtA[r(A)] = 8tt(4) = 32tt At 12 P.M., the area of pollution is changing at the rate of 32tt mi2/hr. 62. N(t) = 2t{5t + 9)l/2+12 N'(t) = (2t) i(5t + 9)"1/2(5) + 2(5* + 9)1'2 +0 = 5*(5* + 9)-1/2 + 2(5i + 9)1/2 = (5i+ 9)"1/2[5< + 2(5/, + 9)] = (5< + 9)"l/2(15«+ 18) 15* + 18 " (5i + 9)!/2 (a) jV(U]- [5{0)+9]1/2 18 91/2 = 6 (b) N •ffl- 15 (I)+ 18 [5(I)+9]1/2 21+8 (7 + 9)V2 39 (16)1/2 !-• 15(8) +18 [5(8) + 9]!/2 120 + 18 (49)!/2 = H? « 19.71 7 63. C(t) = i(2i + 1)-1/2 C"(t) = i(-i)(2i + l)-3/2(2) = -i(2f+l)-3/2 (a) C"(0) = -i[2(0) + l]"3/2 __1 2 = -0.5 (b) C"(4) = -i[2(4) + l]"3/2 =-^(9)"3/2 -1 1 =f=9.75 4 (c) JV'(8) = 2 (v/9)3 _ _J_ ~~54 « -0.02 (c) C"(7.5) = -i[2(7.5) + l]"3/2 2V(v^6)3J 1 128 -0.008 263

Transcript of •ffl-[5(I)+9]1/2 - Lower Moreland Township School ... 4.3 The Chain Rule Thus, q2 = 7500. P'(q) =...

Section 4.3 The Chain Rule

Thus, q2 = 7500.

P'(q) = 8000 - 2q2= 8000 - 2(7500)= 8000 - 15,000

= -7000

When the price is $5000, the marginal profit is-$7000.

59. P{x) = 2x2 + 1; x = f(a) = 3a + 2

P[/(a)]=2(3a +2)2 + l= 2(9a2 + 12a + 4) + 1= 18a2 + 24a + 9

60. (a) A(r) = irr2r(t) = t2

A[r(t)]=*[t2)2= *{tA)= nt4

This function represents the area of the oil slickas a function of time t after the beginning of theleak.

(b) DtA[r(t)} = 4?rt3DtA[r{l00)\ = 4tt(100)3

= 4,000,000tt

At 100 minutes the area of the spill is changing atthe rate of 4,000,000tt ft2/min.

61. (a) r(t) = 2t; A(r) = 7rr2

A[r(t)}=n(2t)2= 4irt2

A = Airt2 gives the area of the pollution in termsof the time since the pollutants were first emitted.

(b) DtA[r(t)} = 8irtDtA[r(A)] = 8tt(4) = 32tt

At 12 P.M., the area of pollution is changing atthe rate of 32tt mi2/hr.

62. N(t) = 2t{5t + 9)l/2+12

N'(t) = (2t) i(5t +9)"1/2(5)

+ 2(5* + 9)1'2 + 0= 5*(5* + 9)-1/2 + 2(5i+ 9)1/2= (5i + 9)"1/2[5< + 2(5/, + 9)]= (5< + 9)"l/2(15«+ 18)

15* + 18

" (5i + 9)!/2

(a) jV(U]- [5{0)+9]1/218

91/2= 6

(b) N•ffl-15 (I)+ 18

[5(I)+9]1/221+8

(7 + 9)V2

39

(16)1/2

!-•15(8) +18

[5(8) + 9]!/2

120 + 18

(49)!/2

= H? « 19.717

63. C(t) = i(2i +1)-1/2

C"(t) =i(-i)(2i+l)-3/2(2)=-i(2f+l)-3/2

(a) C"(0) =-i[2(0) +l]"3/2__1

2

= -0.5

(b) C"(4) =-i[2(4) +l]"3/2

=-^(9)"3/2-1 1

=f=9.754

(c) JV'(8) =

2 (v/9)3_ _J_~~54

« -0.02

(c) C"(7.5) =-i[2(7.5) +l]"3/2

2V(v^6)3J1

128

-0.008

263

264

(d) C is always decreasing because

C" = -£(2f+l)-3/2

is always negative for t > 0.(The amount of calcium in the bloodstream willcontinue to decrease over time.)

64. (a) R(Q)=q(c-^J

R'(Q) = Q

0 , (c Q\'2e(c-f)'/2 +̂ 3^

+

(b) #(Q) = - Q

If Q = 87 and C = 59, then

R'(Q)87\

59 -t)1/2

87

**(c-f)

87

6(59-f)1/2

= (30)1/2 _

= 5.48

6(30)1/2

87

1/2

1/2

32.88

= 5.48 - 2.65

= 2.83.

(c) Because R'{Q) is positive, the patient's sensitivity to the drug is increasing.

65. V(r) =^Trr3, S(r) =4irr2,r(t) =6- ^t

(a) r(t) = 0 when 6 - — t = 0;

t =iM=34mln.

Chapter 4 CALCULATING THE DERIVATIVE

... dV A 2 dS dr 3(b)-=4.r2,-=8.r,- = --

dV dV dr 12

dt dr ' di 17 ™

•H-b)dS dS dr 24

dt ~ dr ' dt ~ 177rr

24 (r 3/\"it'^-itVWhcii t = 17,

dV

dt

12

= -17"6-|(17)

108 ,, .= ——-TV mitr/imn

17 '

dS

dt

24

= -17* 8-£(17)^72

= —-7r mm2/min17

At t = 17 minutes, the volume is decreasing by•^~7r mm3 per minute and the surface area is decreasing by y=;7r mm2 per minute.

4.4 Derivatives of ExponentialFunctions

1. y = e4cLet g(x) = 4x,with g'(x) = 4.

dt/

d.r= 4e4;i:

2. t/ = e_2xLet g(x) = -2.T,

with g'(x) = -2.

^ = -2e"2*dx

3. y = -8e3;r

dydx

= -8(3e3x) = -24e3a

4. t/ = 1.2e5;r

dy

dx= 1.2(5e5x) = 6e5a

Section 4.4 Derivatives of Exponential Functions

5. y = -16e2x+1g(x) = 2x + 1g'{x) = 2

dydx

= -16(2e2x+1) = -32e2x+1

-0.3a:y = -4e

g =-4(-0.3e—)= 1.2e-°-3x

7. y = exg(x) = x2

g'(x) = 2x

* = 2xe**dx

8. y = e-*2g{x) = -x2

g'(x) = -2x

* = -2ze-*'dx

9.

10.

y = 3e2xg(x) = 2x2

g'{x) = 4x

dy

dx= 3(4xe2x >

= 12.Te2a;2

y = -5e4xg(x) = 4x3

g'(x) = Ylx2

dydx

= (-5)(12x2)e

= -60x2e4x3

4xJ

11. y = 4e2x2-4g{x) = 2x2 - 4

g'{x) = 4x

rfj/ =4[(4ar)crfx

2a.-'-41

= 16a:e2a:2-4

12. y = -3e3x2+5#(x) = 3x2 + 5

tf'(x) = 6xy' = (-3)(6x)e3x2+5

= -18xe3x2+5

13. y = xex

Use the product rule.

dy-j- = xex + ex • 1dx

= ex(x + l)

14. y = x2e 2x

17.

18.

19.

Use the product rule

dy

dx̂=x2(-2e~2x) +2xe-2x

= -2x2e~2x + 2xe~2x= 2x(l-x)e~2x

15. y = (x + 3)2e4x

Use the product rule.

•£ =(x +3)2(4)e4x +e4x •2{x +3)= 4{x + 3)2e4x + 2(x + 3)e4x= 2(x+ 3)e4x[2(x + 3) + l]= 2(x + 3)(2x + 7)e4x

16. y = (3.t3 - 4x)e"5x

Use the product rule.

~ = (3.T3 - 4.-r)(-5e-5x) + e-5x(9a;2 - 4)= (-15.-U3 + 20x)e-5x + (9a;2 - 4)e_5x= (-15a;3 + 9x2 + 2Qx - 4)e_5x

x2ex

Use the quotient rule.

dy ex(2x) - x2ex

y =y 2x +1dy _ ex(2x + l)-(2)(ex)dx (2x + l)2

_ e*(2x + 1-2)(2x + 1)2

_ ex(2x - 1)(2a:+ 1)2

dx (e*)2

=

xex{2-x)e2x

=

x{2 - x)ex

ex

ex + e-xy =

dy _ x(ex - e~x) - (ex+ e~x)dx

265

266

20. y =ex — e x

dy _ x(ex - (-l)e-T) - (ex- e~x)(l)dx

xex + xe x — ex + e~x

_ ex(x-l) + e-x(x + 1)

21. p =10,000

9 + 4e~0-2'

dp _ (9+ 4e-°2f) •0-10,000(0 + 4(-0.2)e-°-2t]dt (9 + 4e-°-2<)2

8000e"0-2'

22. p =

(9 + 4e-°-2')2

500

12 + 5e-°-5'

dp = (12+5e-°5<)-0-500[0+5(-0.5)e-°5tldt ~ (12 + 5e-°-5<)2

1250e-°-5/

~ (12 + 5e-°-5t)2

23. f{z) = {2z + e-*2?f'(z) = 2{2z + e~^)1(2 - 2ze~z2)

= 4{2z + e-z2)(l-ze-22)

24. y = 73x+1

Let g(x) = 3x + 1, with g'(x) = 3. Then

dydx

= (ln 7)(73x+1)-3

= 3(ln 7)73x+1

25. y = 4"5x+2

Let g(x) = -5x + 2, with g'{x) = -5. Then

dydx

= (ln4)(4-5x+2)-(-5)

= -5(ln4)4-5x+2

26. y = 3-4x2+2

Let g{x) = x2 + 2, with g'(x) = 2x. Then

dydx

= 3(ln 4)4X +2 •2x

= 6x(ln 4)4xJ+2

27. v = -103x' -4

Let g(x) = 3a;2 - 4, with g'(x) = 6x.

^ =-(lnl0)103x2-4-6xdx

= -6x(103x "4)ln 10

Chapter 4 CALCULATING THE DERIVATIVE

28. s = 2-3^

Let g(t) = y/i, with g'(t) = —T. Then2yt

1

V75-»0»^-O(In 3)3^

~ v^

29. s = 5 • 2v/rr2

Let ff(0 = *- 2, with <?'(0 = 5^. Then

^ =5(ln2)(2v/7^).^L=

_^5Jn_2j2_^!2v/r=l

"•-SriUse the quotient rule and product rule.

dy = (e2( + l)(te' +e'-l)- (tel + 2)(2e2')dt (e2t + l)2

(e2< + l)(te'+e')-(fef+2)(2e2')(e2' + l)2

_ fe3' + e3t + te' + el - 2te3t - 4e2t(e2t + l)2

-te31 + e3t + te* + e' - 4e2'

(e2' + 1)2

_ (l-Qe3(-4e2* + (l+Qc'{e2t + l)2

t2e2t31. y =

3t£ + e

Use the quotient rule and product rule.

dy _(t + e3t)(2te2t + t2 •2e21) - t2e2t(l + 3e3/)dt ~ (t + e3')2

_ (< + e3t)(2te2t + 2/2c2') - <2e2'(l + 3e3')(t + e3')2

_ (2£2e2' + 2*3e2< + 2te™ + 2<2e5') - (*2e2' + 3t2e(t + e3t)2

_ t2e2t + 2t3e2t + 2fe5t - /-V"(* + e3')2

(2/,3 + t2)e2t + (2t - t2)e5t(t + c3t)2

2a5t'

Section 4.4 Derivatives of Exponential Functions

32. f(x) = ex^3x+2Let g(x) = x\/3x + 2.

g'{x) = 1•v^x + 2+ x (—===== Jv ' \2s/3TT2J

= x/3x + 2 +3x

2y/3x + 2

2(3x + 2) 3x2V3X + 2 2v'3x + 2

9x + 4

2v/3x+"2

33. /(x) = ex2/(x3+2>

Let g(x) =

9'{x) =

x3 + 2

(x3 + 2)(2x)-x2(3x2)(x3 + 2)2

2x4 + 4x - 3x4

(x3 + 2)2

4x —x4

(x3 + 2)2

x(4 - x3)(x3 + 2)2

fix) = e*2/(x3+2> x(4 - x3)(x3 + 2)2

x(4 - x3)ex2/(x3+2)(x3 + 2)2

— *, akt34. y = y0e

ft =Jt[y°ekt] =Vokekt =k{V°ekt) =̂35. Graph

y =

,x+0.0001-e"

0.0001

on a graphing calculator. A good choice for theviewing window is [—1,4] by [-1,16] with Xscl =1, Yscl = 2.

267

If we graph y = ex on the same screen, we see thatthe two graphs coincide. They are close enough to

being identical that they are indistinguishable.By the definition of the derivative, if f(x) = ex,

nx) =lim /(*+*)-/(«>. lim ^-^J v ' /i-»o h h-o h

and h = 0.0001 is very close to 0.

Comparing the two graphs provides graphical evidence that

/'(x)=ex.

36. Graph the function y = ex

I I I I I2 4

Sketch the lines tangent to the graph at x = —1,0, 1, 2.

Estimate the slopes of the tangent lines at thesepoints.

At x = —1 the slope is a little steeper than ^ orapproximately 0.3.

At x = 0 the slope is 1.Ata; = 1the slope isa littlesteeper than | or 2.5.At x = 2 the slope is a little steeper than 7^ or7.3.

Note that e~l « 0.36787944, e° = 1,c1 = e « 2.7182812, and e2 « 7.3890561. Thevalues are close enough to the slopes of the tangentlines to convince us that ^- = ex.

268

37. S(t) = 100- 90e-°-3'S'(t) = -90(-0.3)e-°-3t

= 27e-03t

(a) 5/(l) = 27e-°-3(1)= 27e-°-3

w20

(b) S"(5) = 27e-°-3<5)= 27e"15

«6

(c) As time goes on, the rate of change of sales isdecreasing.

(d) S'(t) = 27e-°-3£ ^ 0, but

lim S'(t) = lira 27e-°-3' = 0.

Although the rate of change of sales never equalszero, it gets closer and closer to zero as t increases.

38. C{x) = v/900-800-1.1-^

C{x) = [900- 800(1.1-*)]1/2

= i[900-800(l.l-iC)]-1/2• [-800(ln l.l)(l.l-x)(-l)]

(400 In 1.1)(1.1-T)C'{x) =

x/900 - 800(1.1"T)

vTooThe marginal cost is $3.81.

W V ' ^900-800(1.1-2°)The marginal cost is $.20.

(c) As x becomes larger and larger, C'{x) approaches zero.

39. A(t) = 10t2 2~lA'(t) = 10t2(\n 2)2-'(-l) + 20* 2~lA'(t) = 10t2-l(-t In 2 + 2)

(a) A'{2) = 10(2)(2"2)(-2 In 2 + 2)«3.07

(b) A'(4) = 10(4)(2"4)(-4 In 2 + 2)« -1.93

(c) Public awareness increased at first and thendecreased.

Chapter 4 CALCULATING THE DERIVATIVE

40. /(/,) = 0.028(3.824)'-2001/'(/,) = 0.028(ln3.824)(3.824)<-2001(l)

= 0.028(ln3.824) (3.824)'"2001

(a) /'(2002) = 0.028(ln3.824)(3.824)2002-2001« 0.144

The instantaneous rate of change in 2002 is 0.144million or 144,000 subscribers per year.

(b) /'(2006) =0.028(ln3.824)(3.824)200C-2001«30.7

The instantaneous rate of change in 2006 is 30.7million or 30,700,000 subscribers per year.

41. y = I00e-O03015t

(a) For t = 0,

(b) For t = 2,

(c) For t = 4,

y = I00e-O03045(°>= 100e°

= 100%.

y = l00e-°-O3O45(2>= lOOe"00609

« 94%.

y = lOOe-0-03045^« 89%.

(d) For t = 6,

// = lOOe"0-03045*6)« 83%.

(e) y' = 100(-0.03045)e-003045'= -3.045e-°03045'

For /, = 0,

y' = -3.045e-°03O45(°)= -3.045.

(f) For t = 2,

y' = -3.045e-°03045(2)« -2.865.

(g) The percent of these cars on the road is decreasing, but at a slower rate as they age.

Section 4.4 Derivatives of Exponential Functions

42. S(t) = SOOOe0-1^0 25t)

Let g(t) = 0.1e025t, withg'{t) = 0.1(e°-25t)(0.25) = 0.025e°-25<

S'(t) = 5000e01(e° 25<)(0.025e°-25')= 125e01(e° 25<)e°-25*

•025t)+0.25t

S'(8) = 125e0A(e°™8)+0-25W= 125e0,(e2)+2«1934

The answer is b.

43. (a) G0 = 0.7, m = 10.3

G{t) = 10-3

G'(5)

1+ (JJ^ _ 1)e-0.03036(10.3)t

10.3

~ 1 + 13.71e-°-3127t

(b) G'{t) = -10.3(1 + 13.71e-°-3127')-2•13.71e-°-3127t(-0.3127)

44.1573051e-°-3127t

~ (1 + 13.71e-°-3127t)21990 when t = 5:

G(5) = 10-31 ' 1+ 13.71e-°-3127(5)

2.66

44.1573051e-°-3127(5>

[1 + 13.71e-°-3127(5)]2

« 0.617

The population in 1990 is 2.66 million and thegrowth rate is 0.617 million per year.

(c) 1995 when t = 10:

10.3G(10) =

1 + 13.71e-°-3127(10)

6.43

44.1573051e-°-3127<10)G'(10) =

G'(15) =

[1 + 13.71e-°-3127(10)]2

« 0.755

The population in 1995 is 6.43 million and thegrowth rate is 0.755 million per year.

(d) 2000 when t = 15:

'15) = 1+ 13.71e-0.3127(15)«9.15

44.1573051e-°-3127(15>

[1 + l3.71e-°-3127(15>]2

« 0.320

269

The population in 2000 is 9.15 million and thegrowth rate is 0.320 million per year.

(e) The rate of growth over time increases for awhile and then gradually decreases to 0.

44. (a) Go = 0.7, m = 13.7

13.7G{t) = 1+ f&J. _ 1)e-0.02352(13.7)t

13.7

1 + 18.57e-°-3222t

(b) G'(t) = -13.7(1 + 18.57e-°3222t)-2•18.57e-°3222t(-0.3222)

_ 81.9705798e-°-3222t~ (1 + 18.57e-°-3222')2

1990 when t = 5:

13.7G(5) =

G'(5) =

1 + 18.57e-°-3222(5)

2.91

81.9705798e-°-3222(5>

[1 + 18.57e-°-3222(5)]2

0.738

The population in 1990 is 2.91 million and thegrowth rate is 0.738 million per year.

(c) 1995 when t = 10:

(10) = 1+ i8.57e-°-3222(10)

G'(10) =

7.87

81.9705798e-°-3222(10>

[1 + 18.57e-°-3222(10)]2

1.079

The population in 1995 is 7.87 million and thegrowth rate is 1.079 million per year.

(d) 2000 when t = 15:

G(15) = —y } 1 + 18.57e-°-3222(15)

G'(15) =

11.94

81.9705798e-°3222(15)

[1 + 18.57e-°-3222(15>]2

w 0.495

The population in 2000 is 11.94 million and thegrowth rate is 0.495 million per year.

(e) The rate of growth over time increases for awhile and then gradually decreases to 0.

270

45. p(t) = 9.865(1.025)'p'(f) = 9.865(lnl.025)(1.025)t

(a) For 1998, t = 18.

p'(18) = 9.865(lnl.025)(1.025)18= 0.380

The instantaneous rate of growth is 380,000peopleper year.

(b) For 2006, t = 26.

p'(26) = 9.865(ln 1.025)(1.025)26= 0.463

The instantaneous rate of growth is 463,000 peopleper year.

46. G{t) =m Go

Go + (m - G0)e-fc"" '

where G0 = 200;m = 10,000; and k = 0.00001.

10,000(200)(a)G(/-) - 200+(10)000_200)e-(oooool)(10'00°)t

G(t) =10,000

1 + 49e-°u

(b) G{t)= 10,000(1+ 49e-°u)-1G'(t) = -10,000(1 +49e-°H)-2(-4.9e-01')

49,000e-olt~ (l+49e-01')2

10,000 ^G(6)-l +49e-o«~359

49 000e-OG

(c) After 3 years, t = 36.

(d) After 7 years, t = 84.

G(84)_l +49e-8-4~J8J149 OOOe-84

(e) It increases for a while and then gradually decreases to 0.

Chapter 4 CALCULATING THE DERIVATIVE

47-Gw-G„+(,:^..)c-^whereG"=4oo;m = 5200; and k = 0.0001.

(5200)(400)(a) G(t) - 40Q +(520Q _400)e(_0.oooi)(52oo)f

(400)(5200)~ 400 + 4800e-°-52'

_ 5200~ 1 + 12e-°-52'

(b) G(t) = 5200(1 + 12e-°-52')"'G'{t) = -5200(1 + 12e-°-rj2')-2(-6.24e-°-52<)

_ 32,448e-052/~ (1 + 12e-°-52t)2

5200G(l) = ttzz « 039v ' l + 12e-°-52

32,448e-°-52G(1) - (1 +12e-0.52)2 ~ ZJZ

(c) G«)S1+^«M2081

(d) G(io)=1+^..a«48n34 448e-52

(e) It increases for a while and then gradually decreases to 0.

48. P(x) = 0.04e-4x

(a) P(0.5) = 0.04e-4(°-5>= 0.04e-'2

« 0.005

(b) P(l)=0.04e-4(,)= 0.04e"4

» 0.0007

(c) P(2) = 0.04e~4(2)= 0.04e-8« 0.000013

P'(rc) = 0.04(-4)e-4:,:= -0.16e-4:,:

(d) P'(0.5) = -0.16e-4(°5)= -0.16e"2

« -0.022

(e) P'(l) = -0.16e-4<l)= -0.16e"4

« -0.0029

Section 4.4 Derivatives of Exponential Functions

(f) P'(2) = -0.16e-4(2>= -0.16e"8

« -0.000054

49. V{t) = 1100[1023e-°02415t + 1]~4

(a) V(240) = 1100[1023e-002415(24°) + l]"4« 3.857 cm3

4 I'W(b) V= ^Trr3, so r(V) = ? ^~6 V 47r

r(3.857)=:^^2«o.973 cm

(c) V(t) = 1100[1023e-°024154 + l]"4 = 0.5

[1023e -0.02415* I 11—4 _+ I]"4 =1

2200

(1023e-°02415t + l)4 = 2200

1023e-°024l5< + 1 = 22001/''

1023e-°02415( = 22001/4 - 1

2200l'4 - 1,-0.02415t _

1023

/22001/4 - 1-0.02415* = In ' ^^ -V 1023 )

02415 U\ 1023 )

50. P(t) = 0.00239e00957t

(a) P(25) = 0.00239e00957(25>« 0.026%

P(50) = 0.00239e00957(5°)« 0.286%

P(75) = 0.00239e°-0957<75)« 3.130%

(b) P'(t) = 0.00239e00957< (0.0957)= 0.000228723e00957'

P'(25) = 0.000228723e°-0957(25>« 0.0025%/year

P'(50) = 0.000228723e00957(5°)« 0.0274%/year

P'(75) = 0.000228723e°-0957(75>« 0.300%/year

:.,-{51. f/PP=l-U0.96)014(-1 + St;[l-(0

126*+900

(a) When t = 180, URR.« 0.589. The patient hasnot received adequate dialysis.

(b) When t = 240, URR « 0.690. The patienthas received adequate dialysis.

(c) DtURR= - {(ln0.96)(0.96)°-,4t-1(0.14)

•(-ln0.96)(0.96)014,-,(0.14)+126*+ 900

271

g6)0.1«-l]J

t =-0.02415 V 1023

The tumor has been growing for almost 18 years.

(d) As t goes to infinity, e~00241bt goes to zero,and V(t) = 1100[1023e-002415'+l]-4 goes to 1100cm3, which corresponds to a sphere with a radiusof 3j (noo) ^ 64cm jt makeg senge tnafc a tu_mor growing in a person's body reaches a maximum volume of this size.

(e) By the chain rule,

dV— = 1100(-4)[1023e-°024l5t + l]"5

214 months(126t + 900)(8)-8*(126)

(126J+900)2When t = 240, DtURR « 0.001. The URR is increasing instantaneously by 0.001 units per minutewhen t = 240 minutes.

The rate of increase is low, and it will take a significant increase in time on dialysis to increase URRsignificantly.

p(x) =0.001131e01268T

(a) p(25) = 0.001131e01268(25) « 0.027

(b) When p(x) = 1,

0.001131e012G8:c = 1

1

(1023)(,,-0.02415t X-0.02415)= 108,703.98[1023e-°02416f + i]-sc-o.o24i 5t

At t = 240, ~ « 0.282.at

At 240 months old, the tumor is increasing in volumeat the instantaneous rate of0.282 cm3/month.

52.

a0.12G8x _

0.001131

10.1268a: = In

0.001131

1 . 1x = In

0.1268 0.001131

54

This represents the year 2024.

272

(c) p'{x) = 0.001131e01268a:(0.1268)= 0.0001434108e01268x

p'(32) = 0.0001434108e01268(32)« 0.008

The marginal increase in the proportion per yearin 2002 is approximately 0.008.

Chapter 4 CALCULATING THE DERIVATIVE

53. M(t) = 3102e"„ -0.022(200-50)

(a) M(200) = 3102e"eor about 3 kilograms.

-0.022(t-5G)

54. L(0 = 589[l-e-0168(t+2G82)]

(a) Over time, the length of the average cutlassfish approaches 589 mm assymptotically.

(b) (0.95)589 = 589[1 - e-o.iG8(H-2.G82)j0.95 = 1 - e-°ir>8('+2-682)

ln(0.05) = -0.168(t + 2.682)t = 15.1497...» 15 years old

(c) L'(t) =589[-e-°-,68('+2-682)](-0.168)_ gg 952e~0168(t+2-682)

L'(4)=98^952e-°-168<4+2(382)w 32.2 mm/year

When a cutlassfish is 4 years old, it is growing inlength at a rate of 32.2 millimeters per year.

(d) *

2974.15 grams,

(b) As t gets very large, -e-°022(t-5G) goes tozero, e-e-° 022(t-r,0) goes to i5 ancj M(t) approaches3102 grams or about 3.1 kilograms.

(c) 80% of 3102 is 2481.6.

-In

In I In

2481.6 = 3102e"c

2481.6

-0.022(<-50)

3102

3102

_ _-0.022(t-5G)= e

(lnJM*L) =-0.022(* - 56)V 2481.6J v

t = - 022 V 2481.670.022

124 days

55.

(d) DtM(t) =3102e--OO22('-5C,A(-e-0O22(t-56))= 3102e-e~ °O22<t"50)(-e-0022('-5G))(-0.022)= 68.244e-e-OO22('"5G,e-0022(t-56)

When *= 200, DtM(t) « 2.75 g/day.

, . 3200(e)

J -0(R:<I-5S)=|A/(0 =3l02e-f

i^OO

Growth is initially rapid, then tapers off.

(0Day Weight Rate

50 991 24.88

100 2122 17.73

150 2734 7.60

200 2974 2.75

250 3059 0.94

300 3088 0.32

V20

Wi(t) = 509.7(1 - O^le"000181')W2(t) = 498.4(1 - O.SSge"000219')1-25

(a) Both W\ and W2 are strictly increasing functions, so they approach their maximum values as* approaches oo.

lim Wl(t) = lim 509.7(1-0.941e-°00,8U)= 509.7(1 - 0) = 509.7

0.1 _ e-0.00181t0.941

1239 «*

0.9(498.4) = 498.4(1 - O^e-000219')1'250.9 = (l-0.889e-000219')1-25

1 - 0.908

0.889

1095 « *

_ e-0.002l9<

lim W2(t) = lim 498.4(1-0.889e-0•002ly,),t—oo t—oo

= 498.4(1 -0),25= 498.4

So, the maximum values of W\ and W2 are 509.7kg and 498.4 kg respectively.

(b) 0.9(509.7) = 509.7(1 - 0.941e-°0018U)0.9 = 1 - 0.941e-°00,8U

,-0.00219t\1.25

Section 4.4 Derivatives of Exponential Functions

Respectively, it will take the average beef cowabout 1239 days or 1095 days to reach 90% ofits maximum.

(c) W[{t) = (509.7)(-0.941)(-0.00181)e-°0018U» 0.868126e-°00181t

W{(750) « 0.868126e-000181(75°)« 0.22 kg/day

Wi(t) = (498.4)(1.25)(1 - 0.889e-°00219t)0-25• (-0.889)(-0.00219)e-°00219'

« 1.21292e-000219t(l - 0.889e-°00219t)0-25W^(750) « 1.12192e-000219(75°)

• (1 - o.889e-°00219(75°))0-25« 0.22 kg/day

Both functions yield a rate of change of about 0.22kg per day.

(d) Looking at the graph, the growth patternsof the two functions are very similar.

^2500

(e) The graphs of the rates of change of thetwo functions are also very similar.

2500

56. R(c) = 3.19(1.006c)

^=3.19(lnl.006)(1.006c)^at at

Uc= 180 and ft = 15, then

^ =3.19(lnl.006)(1.006180)(15)« 0.840

57. (a) Go = 0.00369,m = 1, fc = 3.5

1G(t) =

1 -|- ( 1 1^ *>-3.5(l)t1 ^ V0.00369 L)e W

1

1 + 270e"3-5*

58.

273

(b) G'(t) = -(1 + 270e-3-5')-2 •270e-35t(-3.5)

_ 945e-35'

G(l) =

(1 + 270e"3-5t)2

1

1 + 270e-3-5(D

0.109

945p-3.5(l)

1 ' [l+ 270e-3-5(D]2

« 0.341

The proportion is 0.109 and the rate of growth is0.341 per century.

<C> G(2>=l +27oU<*>« 0.802

Q45e-3.5(2)

1 ; [l+270e"3-5(2)]2

« 0.555

The proportion is 0.802 and the rate of growth is0.555 per century.

<d> G<3>=1+270U(3>» 0.993

945-3.5(2)

y} [1 + 270e-3-5(2)]2« 0.0256

The proportion is 0.993 and the rate of growth is0.0256 per century.

(e) The rate of growth increases for a while andthen gradually decreases to 0.

H(N) = 1000(1 - e~hN), k = 0.1H' = -1000e-°1N(-0.1)

= 100e-0,Ar

(a) #'(10) = lOOe"01^«36.8

(b) //'(100) = lOOe"0-1*100)« .00454

(c) tf'(lOOO) = lOOe"0^1000*«0

(d) 100e~01N is always positive since powers ofe are never negative. This means that repetitionalways makes a habit stronger.

274

59. P(t) = 37.79(1.012)'

(a) P(10) = 37.79(1.021)10 « 46.5

So, the U.S. Latino-American population in 2010was approximately 46,500,000.

(b) P'{t) = 37.79(ln 1.021X1.021)'« 0.7854(1.021)*

P'(10)=0.7854(1.021)10« 0.967

The Latino-American population was increasingat the rate of 0.967 million/year at the end of theyear 2010.

60. A(t) = 500e-°-3"A'\t) =500(-0.31)e-°'31£

= -155e-03U

(a) A'(A) = -155e-°-31(4>= -155c"1-24« —44.9 grams per year

(b) A'{6) = -155e-°-31(6>= -155c"1-86« -24.1 grams per year

(c) A'(10) = -155e-°-31(10>= -155c"3-1« —6.98 grams per year

-0.3U _(d) lim A'(t) = lim -155e 0

As the number of years increases, the rate of changeapproaches zero.

(e) A'(t) will never equal zero, although as t increases, it approaches zero. Powers of e are alwayspositive.

61. Q(t) = CV(1 - e-^RC)

0 _ e-t/RC I _<a)Je =f =CK •(-*)= cv

-tine

(•Hi"- Y-e-t/RC~ R

(b) When G = 10"5 farads, R = 107 ohms,and V = 10 volts, after 200 seconds

r = jo e-20o/(io7io-5) ~ L35 x 10-7 ampsc 10*

Chapter 4 CALCULATING THE DERIVATIVE

62. t(r) = 218 + 31(0.933)'*

(a) i(55)=218 + 31(0.933)55« 218.7 sec

(b) t'(n) = (31 ln0.933)(0.933)"i'(55) = (311n0.933)(0.933)55

» -0.047

The record is decreasing by 0.047 seconds per yearat the end of 2005.

(c) As n -* oo, (0.933)" -> 0 andt(n) -> 218. If the estimate is correct, then thisis the least amount of time that it will ever take

a human to run a mile. At the end of 2005, the

world record stood at. 3:43.13, or 223.13 seconds.

63. T{h) = 80e-00000fi5/l

dT 55/1 (-0.(

-0.0052e-0000065/ldh

dt

l±L =goe-o.ooootis/, (_0.000065^dt \ at)

dhIf h = 1000 and — = 800, then

dt

— = -O.0052e-0-O00065(1000)(800)dt

« -3.90

The temperature is decreasing at 3.90degrees/hr.

4.5 Derivatives of LogarithmicFunctions

1. y = In (8a:)

dy_dx dx

8a:)

d

= &(ln 8 + In x)

8)+£<in x)

X

1

X

y = In (-4a;)

£ =sM-4*)]-;|M+>»<-*>ld , „ d , , v _ , —1 1

= — In 4 + — ln(-x) = 0 + = -dx dx -x x