Wind’Direction’ - University Corporation for … 40 80 120 160 200 240 280 320 360 6000 6500...

12
Weather Observing Systems MTR 2410 Professor Scott Landolt Spring 2013 Wind Direction May 7 th , 2013

Transcript of Wind’Direction’ - University Corporation for … 40 80 120 160 200 240 280 320 360 6000 6500...

Weather  Observing  Systems  -­‐  MTR  2410  

Professor  Scott  Landolt  

Spring  2013  

 

 

 

 

 

 

 

 

 

 

 

Wind  Direction  

May  7th,  2013  

 

 

 

Introduction:  

Instrumentation  is  at  the  core  of  modern  meteorological  science.  It  is  the  basis  for  how  we  approach  our  study  

of  the  atmosphere,  attempt  to  understand  it,  and  form  an  explanation  for  what  is  occurring  in  the  world.    

Beginning  with  data  observations  at  the  surface  and  extending  to  nearly  all  levels  of  the  troposphere,  it  is  

possible  to  form  a  3-­‐dimensional  model  of  the  natural  processes  occurring  in  the  atmosphere.  From  there,  

data  can  then  be  applied  using  a  variety  of  models,  conceptual  solutions,  and  derived  scientific  parameters.  

The  result  is  the  modern  process  of  forecasting  weather  on  earth.    

For  this  study,  two  identical  weather  stations  were  sited  and  installed  at  the  NCAR  Marshall  Study  Site  

(39°56'54.14"N,  105°11'41.81"W)  on  the  evening  of  April  3,  2013.  Instrumentation  on  each  tower  recorded  air  

temperature,  relative  humidity,  atmospheric  pressure,  wind  speed,  wind  direction,  solar  radiation,  and  

precipitation  from  4/3-­‐4/23  –  24hrs/day  on  1-­‐minute  intervals.    

The  Marshall  Study  Site  is  located  in  Boulder  County  in  Northeastern  Colorado,  and  is  dedicated  primarily  to  

weather  instrument  testing  and  research.  The  site  is  generally  secluded,  free  from  tree  cover,  large  obstacles  

(such  as  buildings),  and  exists  on  a  predominantly  flat  orographic  profile.  The  elevation  of  the  site  is  ~5630’.    

The  analysis  contained  here  within  focuses  on  recorded  wind  data  –  specifically,  wind  direction  –  from  a  R.M.  

Young  Aerovane  wind  monitor  located  on  station  #1.  This  instrument  was  chosen  for  study  due  to  the  unique  

location  of  the  study  site  and  the  time  of  year  the  study  took  place.  April  in  Northeastern  Colorado  can  be  a  

very  interesting  time  to  study  weather  phenomenon.  Often  April  is  characterized  by  extremes  in  temperature  

and  precipitation/type.  Although  the  mean  high  temperature  for  Boulder,  CO  is  ~63F  during  the  month  of  

April,  the  month  is  also  the  second  snowiest  of  the  year.  During  this  time  of  year,  the  region  is  still  susceptible  

to  cold  large-­‐scale  weather  systems  associated  with  the  PFJ,  despite  warming  diurnal  cycles.  As  a  result,  rapid  

changes  in  temperature,  wind,  and  the  threat  for  heavy  snowfall  can  be  common  in  April.  Wind  direction  in  

Northeast  Colorado  is  essential  for  diagnosing  sensible  weather,  and  is  one  of  the  main  dynamic  forces    

leading  to  measurable  precipitation.      

During  the  20-­‐day  monitoring,  a  period  of  ~40hrs  (April  8-­‐9)  was  selected  as  a  “case  study,”  a  particularly  

interesting  interval  for  weather  in  Northeastern  Colorado.  The  study  period  presents  a  classic  case  of  early  

spring  weather  in  Northeastern  Colorado,  and  a  dramatic  transition  from  warm/dry  conditions  to  cold/snowy.    

Using  the  wind  data  collected  in  conjunction  with  data  from  the  other  (7)  instruments,  this  report  will  attempt  

to  diagnose  what  occurred  during  the  period.  However,  in  order  to  accurately  diagnose  weather  phenomena,  

we  must  question  and  compare  the  data  provided  for  validity.    

Tower  1  /  Tower  2  wind  direction  –  comparison  and  correlation    

[Figure  1]  shown  below  plots  Tower  #1  wind  direction  data  vs.  the  same  data  from  Tower  #2.  Despite  the  

missing  data  from  Tower  2  at  the  beginning  of  the  plot,  what  follows  is  (2)  sets  of  recorded  data  from  (2)  

different  stations  that  match  up  very  well.  As  wind  direction  changes,  the  trend  from  each  station  follows  a  

very  similar  path.  Thus,  we  can  conclude  both  sensors  were  sited  and  installed  correctly  using  the  same  

criteria,  and  both  sensors  were  most  likely  from  the  same  location  (which  they  were).      

[Figure  1]  Wind  direction  data  Tower  1  and  Tower  2  vs  time  

0  

40  

80  

120  

160  

200  

240  

280  

320  

360  

4/3   4/5   4/7   4/9   4/11   4/13   4/15   4/17   4/19   4/21   4/23  

DirecOon  (deg)  

(month/day)  

Tower  1  

Tower  2  

y  =  0.7829x  +  35.721  R  =  0.786922  

0  

40  

80  

120  

160  

200  

240  

280  

320  

360  

0   40   80   120   160   200   240   280   320   360  

DirecOon  (deg)  

   

DirecOon  (deg)    

To  look  further  into  how  data  from  the  (2)  stations  matches  up,  correlation  analysis  is  necessary.  [Figure  2]  

below  shows  a  correlation  from  Tower  1  and  Tower  2  for  the  entire  period  of  observation.  With  the  exception  

of  a  few  data  pairs,  the  two  sets  of  data  line  up  very  well.  Discrepancies  occur  mainly  during  northerly  winds,  

and  are  most  likely  the  result  of  challenges  in  plotting  wind  direction  using  a  360  degree  system.    

The  “R”  value  is  0.786922  for  the  correlation,  slightly  lower  than  what  we  would  like  to  see.  However  it  is  

important  to  recognize  the  variability  that  might  occur  when  pairing  wind  direction  data.  Discrepancies  are  

likely  to  occur  as  the  instrument  measures  wind  direction  down  to  0.1  degrees.  Small  variabilities  like  these  

would  be  expected  due  to  the  response  limitations  of  the  instrument,  slight  calibration  errors  (human  error),  

and  the  fact  that  the  (2)  sensors  are  ~40ft  away  from  each  other.  Therefore,  I  do  not  believe  the  relatively  

“low”  R  value  is  cause  for  concern  or  the  result  of  bias  error.  

 

 

 

 

 

 

 

[Figure  2]  Tower  1/Tower  2  correlation  plot  

Concerning  other  sources  of  error  visible  in  the  (2)  figures  above,  static  errors  such  as  noise  raises  an  

interesting  question.  Although  we  can  see  noise  in  [Figure  3]  below  (and  also  in  [Figure  4]),  I  do  not  believe  it  is  

an  indication  of  error.  Noise  may  very  well  be  the  nature  of  wind  observations.  Even  when  sensible  weather  

observations  report  a  consistent  wind  direction,  that  wind  is  still  changing  constantly,  although  by  a  very  small  

amount.  The  sensitivity  of  the  instrument  (down  to  0.1  degrees)  is  the  primary  cause.  Wind  direction  is  often  

simplified  into  directions  such  as  “north,  east,  south  or  west.”  However  it’s  important  to  recognize  a  “north”  

wind  is  anywhere  between  ~338-­‐360,  0-­‐22  degrees.  A  northerly  wind  may  be  reported  slightly  differently  by  

two  different  sensors  due  to  minor  changes  in  topography  or  upstream  components.  This  would  be  a  form  of  

exposure  error,  but  I  think  this  would  always  be  present  in  wind  direction  data.    

Further  sources  of  error  are  not  visible,  however.  A  strong  correlation  suggests  the  absence  of  dynamic  errors  

like  hysteresis,  and  visible  analysis  of  the  figures  confirms  this.  Drift  is  not  evident  in  the  data,  and  could  not  be  

accurately  diagnosed  as  the  time  sample  is  too  short  of  a  period.    

Analysis  

Throughout  the  ~40hr  case  study  period,  Tower  1  experienced  wind  from  nearly  all  directions  [Figure  3].  

However,  beginning  around  6500  minutes,  winds  turned  NW/N/NE  for  the  remainder  of  the  period.    Between  

late  fall  and  early  spring  in  Northeastern  Colorado,  a  wind  shift  like  this  would  be  indicative  of  a  cold  front  

passage.  Typically,  surface  winds  blow  parallel  to  the  advancing  cold  front  before  the  FROPA.  A  Canadian  or  

Pacific  system  dropping  south  into  Northeastern  Colorado  (or  backing  in  as  they  often  do)  would  produce  

W/SW  prefrontal  winds.  This  is  visible  in  [Figure  3]  from  6200-­‐6500  minutes.  Winds  continue  to  veer  up  until  

the  FROPA  which  occurs  around  6600  hours  –  although,  we’ll  analyze  the  time  of  the  FROPA  later  on.    

Post  cold-­‐frontal  winds  in  Northeastern  Colorado  generally  blow  perpendicular  to  the  front  and  are  usually  of  

the  Northerly  variety.  They  are  a  good  indication  of  cold  air  advection  (isotachs  crossing  isotherms  at/near  a  

right-­‐angle)  as  a  cold  air-­‐mass  filters  into  the  region.  For  the  period  following  6500  minutes,  north  winds  turn  

predominantly  northeast  for  the  remainder  of  the  period.  Therefore,  we  can  consider  the  period  from  6200-­‐

6500  “prefrontal,”  and  the  remaining  period  “postfrontal.”  Next,  data  from  the  other  (7)  sensors  over  the  

same  time  period  will  be  used  to  support  this  hypothesis.  

 

0  

40  

80  

120  

160  

200  

240  

280  

320  

360  

6000   6500   7000   7500   8000   8500  

DirecOon    (deg)  

minutes  since  first  observaOon    

Tower  1  

 

 

 

 

 

 

 

 

 

[Figure  3]  Tower  1  wind  direction  (case  study  period)  

[Figure  4]  below  displays  wind  speed  and  max  gusts  from  the  case  study  period.  In  general,  speed  and  gusts  

are  below  6m/s  for  most  of  the  period.  However  during  a  particular  period  of  interest  (~7000-­‐7200  minutes),  

winds  increase  dramatically  nearing  14m/s.  The  highest  reported  speed  is  13.82m/s  at  7070  minutes,  and  the  

highest  reported  gust  is  15.24m/s  at  the  same  time.  After  this  period  winds  decrease,  however,  and  do  not  

return  to  the  lower  values  seen  before  their  maximums.    

Typically  with  cold  fronts,  winds  slowly  build  in  speed  in  advance  of  the  front.  Often,  the  greatest  speeds  are  

observed  during  the  FROPA  as  one  air-­‐mass  is  displaced  by  another.  Following  the  frontal  passage,  winds  

decrease  but  often  remain  strong  until  the  core  of  the  air-­‐mass  reaches  the  area.  [Figure  4]  below  is  consistent  

with  this  analysis.  Wind  speed  for  the  remainder  of  the  period  rises  and  falls  regularly,  but  generally  remain  

above  3m/s.    

 

 

0  

2  

4  

6  

8  

10  

12  

14  

6000   6500   7000   7500   8000   8500  

speed  (m/s)  

minutes  since  first  observaOon  

Wind  Speed  

Wind  Speed  Max  

 

 

 

 

 

 

 

 

[Figure  4]  Tower  1  wind  speed/gusts  (case  study  period)  

[Figure  5]  below  displays  ambient  temperature  and  dewpoint  for  the  case  study  period.  During  the  40-­‐hour  

period,  temperature  was  highest  at  6933  minutes  (16.17C)  and  lowest  at  8491  minutes  (-­‐10.18C)    -­‐  a  range  of  

more  than  26C.  Similar  to  previous  figures,  a  significant  change  occurred  just  before  7000  minutes.  From  

there,  ambient  temperature  is  shown  to  fall  dramatically  throughout  the  rest  of  the  period  –  with  the  

exception  of  a  slight  increase  near  8100  minutes  (an  explanation  for  this  to  follow).    

Secondarily,  the  dewpoint  experiences  a  similar  cycle  throughout  the  period,  which  is  expected  as  the  two  

values  are  related.  However  the  most  notable  change  is  what  occurs  near  7200  minutes.  Following  this  period,  

the  ambient  temperature  and  dewpoint  lines  are  very  close,  indicating  a  low  dewpoint  depression  –  and  thus  

–  the  air  is  nearing  saturation.  The  lines  are  parallel  and  stay  close  throughout  the  period,  slowly  moving  away  

from  each  other.  There  is  quite  a  bit  of  noise  (static  error)  visible  in  both  sensors  directly  preceding  the  frontal  

passage,  likely  due  to  building  and  variable  winds  shaking  the  towers,  which  [Figure  4]  supports.  

Once  again,  [Figure  5]  is  an  indication  of  a  cold  frontal  passage.  The  sharp  decrease  in  temperature  and  

increasing  moisture  levels  are  a  perfect  representation  of  a  cold  front,  and  perhaps  falling  precipitation  (more  

-­‐14  

-­‐10  

-­‐6  

-­‐2  

2  

6  

10  

14  

18  

6000   6500   7000   7500   8000   8500  

Degrees  (C)  

minutes  since  first  observaOon  

Ambient  Temperature  (C  )  

Dewpoint  (C  )  

on  this  later).  Additionally,  a  temperature  swing  of  more  than  26C  over  less  than  40hrs  points  to  a  strong  cold  

front,  especially  for  April  in  Northeastern  Colorado.    

 

 

 

 

 

 

 

 

[Figure  5]  Tower  1  ambient  temperature/dewpoint  (case  study  period)  

[Figure  6]  below  represents  radiation  and  relative  humidity  values  for  Tower  1  during  the  case  study  period.  

Since  radiation  is  a  measure  of  solar  energy  (W/m2),  it  is  important  to  consider  daytime  vs.  nighttime  periods  

during  analysis.  However  due  to  an  error  in  the  data  provided  (*inconsistent  time/missing  ~8hrs),  these  

daytime/nighttime  periods  cannot  necessarily  be  trusted.  Since  radiation  is  the  only  measurement  that  is  a  

primary  result  of  solar  energy,  analysis  can  continue  despite  this  error.  Additionally,  there  are  a  few  things  the  

radiation  data  can  tell  us.    

Following  the  hypothesized  frontal  passage  (near  7000  min),  radiation  values  drop  to  0  W/m2  for  an  extended  

period  (through  ~7800).  This  would  be  consistent  with  cloud  cover  following  a  FROPA.  Additionally,  falling  

radiation  values  proceeding  this  time  are  also  consistent  with  a  building  cloud  deck.  Following  7800min,  

radiation  values  begin  a  steady  climb,  with  a  notable  sharp  increase  beginning  at  ~8100min.  Similarly,  ambient  

temperature  experienced  an  increase  during  the  same  time.  Thus,  it  is  logical  to  conclude  simply  that  the  sun  

0  

25  

50  

75  

100  

0  

100  

200  

300  

400  

500  

600  

700  

6000   6500   7000   7500   8000   8500  

RH  (%)  

RadiaOon    (w/m2)  

minutes  since  first  observaOon    

Radiamon  (W/m2)  RH  (%)  

came  out  –  warming  the  air  and  increasing  radiation  values.  This  is  common  following  a  cold  front  passage  in  

Northeastern  Colorado,  as  clouds/precipitation  are  often  short-­‐lived.    

Relative  humidity  data  ranges  from  ~30-­‐95%  throughout  the  whole  period.  Minimum  values  can  be  found  near  

~7000min  and  maximums  near  ~7300min.  This  data  is  once  again  consistent  with  the  hypothesis  of  a  FROPA.  

Following  ~6900min,  RH  increases  dramatically,  and  maintains  a  high  level  (>  75%)  throughout  the  remainder  

of  the  period.  This  would  likely  be  the  case  following  a  cold  front  –  as  upsloping  winds  lift  the  air,  condense  

into  clouds,  and  perhaps  even  produce  precipitation.  If  precipitation  occurred,  RH  values  would  likely  remain  

high  through  the  period  and  even  after  precipitation  stopped.  [Figure  6]  is  consistent  with  this  analysis.    

 

 

 

 

 

 

 

 

 

[Figure  6]  Tower  1  radiation/RH(case  study  period)  

[Figure  7]  below  represents  the  final  (2)  measurements  taken,  atmospheric  pressure  and  precipitation  during  

the  case  study  period.  Pressure  readings  range  from  784.93mb  at  6980min  to  803.84mb  at  8531min.  Pressure  

trend  is  decreasing  before  6980min,  and  increasing  throughout  the  rest  of  the  period.  Additionally,  the  highest  

rates  of  increase  and  decrease  can  be  found  on  either  side  of  6980min,  which  is  consistent  with  the  hypothesis  

presented.    

Proceeding  a  cold  front  passage,  pressure  is  expected  to  fall  –  and  most  rapidly  just  before  the  FROPA.  

Following  the  FROPA,  pressure  typically  increases  rapidly  initially,  and  then  continues  to  climb  steadily.  This  is  

because  a  frontal  zone  is  an  area  of  low  pressure.  Following  the  FROPA,  high  pressure  begins  to  work  into  the  

region,  and  in  this  case,  a  cold  air-­‐mass  from  the  north.  Because  pressure,  temperature,  and  volume  are  all  a  

function  of  one  another  (ideal  gas  law),  it  is  likely  that  pressure  data  could  be  influenced  by  a  variety  of  

factors.  This  appears  to  be  the  case  as  we  can  see  quite  a  bit  of  noise  and  perhaps  static  deterministic  errors  

throughout  the  plot.  It  is  worth  noting,  however,  the  general  pressure  trend  is  clear.    

The  only  measurable  precipitation  during  the  case  study  period  occurred  at  7213min.  0.252mm  of  water  was  

recorded  from  the  station’s  tipping  bucket  gauge.  Although  7213min  is  our  best  guess  at  when  the  

accumulation  occurred,  it’s  not  entirely  clear  when  it  began/ended  precipitating.  This  is  due  to  the  nature  of  

tipping  bucket  gauges  which  do  not  record  (or  “tip”)  until  they  sense  a  certain  amount  of  precipitation.  In  this  

case,  we  are  at  the  limitations  of  the  instrument’s  sensitivity.    

Lastly,  the  measured  precipitation  does  confirm  the  hypothesis  of  what  occurred  during  the  case  study  period.  

7213min  is  slightly  after  the  projected  FROPA  from  the  other  7  instruments.  This  is  consistent  however.  

Typically  following  a  cold  front  passage  in  Northeastern  Colorado,  we  must  “build”  a  cloud  deck  and  then  cool  

the  lower  levels  of  the  atmosphere  through  evaporative  cooling  before  precipitation  can  occur.  The  case-­‐study  

period  was  not  a  heavy  precipitation  event,  but  it  was  measureable  nevertheless.    

 

 

 

 

 

0  

0.1  

0.2  

0.3  

783  

788  

793  

798  

803  

6000   6500   7000   7500   8000   8500  

(mm/hr)  Pressure  (mb)  

minutes  since  first  observaOon    

Pressure  

Precipitamon    

   

 

 

 

 

 

 

 

 

 

[Figure  7]  Tower  1  pressure/precipitation  (case  study  period)  

Supplemental  Analysis  /  Final  Results  

[Figures  8  &  9]  below  are  windroses  comprised  of  Tower  1  wind  speed  and  direction  data  from  the  case  study  

period,  superimposed  onto  an  image  of  Marshall  Study  Site  (courtesy  of  Google  Earth).  The  use  of  a  windrose  is  an  

excellent  way  to  conceptualize  these  two  measurements.  Different  colors  represent  respective  wind  speed  

values,  while  their  vector  represents  the  direction  the  speed  came  from.  Additionally,  the  thicker  the  color  

block,  the  more  (higher  percentage  as  a  whole)  the  wind  speed  came  from  that  direction.  It  is  useful  in  

determining  prevailing  winds,  trends,  and  what  direction  the  highest/lowest  winds  came  from.  

 The  windrose  matches  previous  data  and  the  analysis  above  well,  as  we  see  our  highest  wind  speeds  out  of  

the  N/NW  –  most  likely  when  the  FROPA  occurred.  Additionally,  [Figure  9]  provides  a  nice  aerial  view  of  the  

site,  and  enables  visualization  of  what  occurred  during  the  case  study.  Topography  of  the  foothills  is  also  

visible.  With  this  particular  storm  system,  upslope  winds  were  primarily  northerly,  without  a  strong  easterly  

component.  This  could  be  a  good  indication  of  why  heavy  precipitation  did  not  occur  in  Boulder  County.    

 

0.252mm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Figure  8]  Tower  1  windrose  (case  study  period)