fem beams.pdf

download fem beams.pdf

of 23

Transcript of fem beams.pdf

  • 8/22/2019 fem beams.pdf

    1/23

    1

    CHAP 4 FINITE ELEMENT ANALYSIS OF

    BEAMS AND FRAMES

    2

    INTRODUCTION

    We learned Direct Stiffness Method in Chapter 2

    Limited to simple elements such as 1D bars

    we will learn Energy Method to build beam finite element

    Structure is in equilibrium when the potential energy is minimum

    Potential energy: Sum of strain energy and potential of

    applied loads

    Interpolation scheme:

    ( ) ( ) { }v x x N q

    Beam

    deflection

    Interpolation

    function

    Nodal

    DOF

    Potential of

    applied loadsStrain energy

    U V3

  • 8/22/2019 fem beams.pdf

    2/23

    3

    BEAM THEORY

    Euler-Bernoulli Beam Theory

    can carry the transverse load

    slope can change along the span (x-axis)

    Cross-section is symmetric w.r.t. xy-plane

    The y-axis passes through the centroid Loads are applied in xy-plane (plane of loading)

    L F

    x

    y

    F

    Plane of loading

    y

    z

    Neutral axis

    A

    4

    BEAM THEORY cont.

    Euler-Bernoulli Beam Theory cont. Plane sections normal to the beam axis remain plane and normal to

    the axis after deformation (no shear stress)

    Transverse deflection (deflection curve) is function of x only: v(x)

    Displacement in x-dir is function of x and y: u(x, y)

    y

    y(dv/dx)

    T= dv/dx

    v(x)L

    F

    x

    y

    Neutral axis

    0( , ) ( )dv

    u x y u x ydx

    2

    0

    2xx

    duu d vy

    x dx dxHw w

    dv

    dxT

  • 8/22/2019 fem beams.pdf

    3/23

    5

    BEAM THEORY cont.

    Euler-Bernoulli Beam Theory cont.

    Strain along the beam axis:

    Strain Hxxvaries linearly w.r.t. y; Strain Hyy = 0

    Curvature:

    Can assume plane stress in z-dir basically uniaxial status

    Axial force resultant and bending moment

    2

    0

    2xx

    duu d vy

    x dx dxHw w0 0 /du dxH

    2 2/d v dx

    2

    0 2xx xx

    d vE E Ey

    dxV H H

    2

    0 2

    22

    0 2

    xx

    A A A

    xxA A A

    d vP dA E dA E ydA

    dx

    d v

    M y dA E ydA E y dAdx

    V H

    V H

    Moment of inertia I(x)

    0

    2

    2

    P EA

    d vM EI

    dx

    H

    EA: axial rigidity

    EI: flexural rigidity

    6

    BEAM THEORY cont.

    Beam constitutive relation We assume P= 0 (We will consider non-zero P in the frame element)

    Moment-curvature relation:

    Sign convention

    Positive directions for applied loads

    2

    2

    d vM EI

    dx Moment and curvature is linearly dependent

    +P +P

    +M+M+Vy

    +Vy

    y

    x

    p(x)

    F1 F2 F3

    C1 C2 C3

    y

    x

  • 8/22/2019 fem beams.pdf

    4/23

    7

    GOVERNING EQUATIONS

    Beam equilibrium equations

    Combining three equations together:

    Fourth-order differential equation

    y

    y

    dVV dx

    dx

    dMM dxdxy

    VM

    dx

    p

    0 ( ) 0y

    y y y

    dVf p x dx V dx V

    dx

    ( )y

    dVp x

    dx

    02

    ydM dxM M dx pdx V dxdx

    4

    4( )

    d vEI p x

    dx

    ydMVdx

    8

    STRESS AND STRAIN

    Bending stress

    This is only non-zero stress component for Euler-Bernoulli beam

    Transverse shear strain

    Euler beam predicts zero shear strain (approximation)

    Traditional beam theory says the transverse shear stress is

    However, this shear stress is in general small compared to

    the bending stress

    2

    2xx

    d vEy

    dxV

    2

    2

    d vM EI

    dx

    ( )( , )xx

    M x yx y

    IV

    0xyu v v v

    y x x xJw w w w w w w w 0

    ( , ) ( )dv

    u x y u x ydx

    Bending stress

    xy

    VQ

    IbW

  • 8/22/2019 fem beams.pdf

    5/23

    9

    POTENTIAL ENERGY

    Potential energy

    Strain energy

    Strain energy density

    Strain energy per unit length

    Strain energy

    U V3

    2 22 2

    2 2

    0 2 2

    1 1 1 1( )

    2 2 2 2xx xx xx

    d v d vU E E y Ey

    dx dx

    V H H

    2 22 2

    2 2

    0 2 2

    1 1( ) ( , , )

    2 2L

    A A A

    d v d vU x U x y z dA Ey dA E y dA

    dx dx

    Moment of

    inertia

    22

    2

    1( )

    2L

    d vU x EI

    dx

    22

    20 0

    1( )

    2

    L L

    L

    d vU U x dx EI dx

    dx

    10

    POTENTIAL ENERGY cont.

    Potential energy of applied loads

    Potential energy

    Potential energy is a function ofv(x) and slope

    The beam is in equilibrium when 3 has its minimum value

    01 1

    ( )( ) ( ) ( )

    CF NNLi

    i i i

    i i

    dv xV p x v x dx F v x C

    dx

    22

    20 01 1

    ( )1( ) ( ) ( )

    2

    CF NNL Li

    i i i

    i i

    dv xd vU V EI dx p x v x dx F v x C

    dx dx

    3

    3

    vv*

    0v

    w3w

  • 8/22/2019 fem beams.pdf

    6/23

    11

    RAYLEIGH-RITZ METHOD

    1. Assume a deflection shape

    Unknown coefficients ciand known function fi(x)

    Deflection curve v(x) must satisfy displacement boundary conditions2. Obtain potential energy as function of coefficients

    3. Apply the principle of minimum potential energy to determine

    the coefficients

    1 1 2 2( ) ( ) ( )..... ( )n nv x c f x c f x c f x

    1 2( , ,... )nc c c U V 3

    12

    EXAMPLE SIMPLY SUPPORTED BEAM

    Assumed deflection curve

    Strain energy

    Potential energy of applied loads (no reaction forces)

    Potential energy

    PMPE:

    p0

    E,I,L

    ( ) sinx

    v x CL

    S

    22 2 4

    2 30

    1

    2 4

    L d v C EI U EI dx

    dx L

    S

    00

    0 0

    2( ) ( ) sin

    L Lp Lx

    V p x v x dx p C dx C L

    S

    S

    42 0

    3

    2

    4

    p LEIU V C C

    L

    S

    S3

    44

    0 0

    3 5

    2 40

    2

    p L p Ld EIC C

    dC L EI

    S

    S S

    3

  • 8/22/2019 fem beams.pdf

    7/23

    13

    EXAMPLE SIMPLY SUPPORTED BEAM cont.

    Exact vs. approximate solutions

    Approximate bending moment and shear force

    Exact solutions

    4 4

    0 0approx exact

    76.5 76.8

    p L p LC C

    EI EI

    22 2

    0

    2 2 3

    3 3

    0

    3 3 2

    4( ) sin sin

    4( ) cos cos

    y

    p Ld v x xM x EI EIC

    dx L L L

    p Ld v x xV x EI EIC

    dx L L L

    S S S

    S

    S S S

    S

    33 40 0 0

    20 0

    00

    1( )

    24 12 24

    ( )2 2

    ( )2

    y

    p L p L pv x x x x

    EI

    p L pM x x x

    p LV x p x

    14

    EXAMPLE SIMPLY SUPPORTED BEAM cont.

    Deflection

    Bending

    moment

    Shear force

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 0.2 0.4 0.6 0.8 1x

    v(x)/v_

    ma

    v-exact

    v-approx.

    -0.14

    -0.12

    -0.10

    -0.08

    -0.06

    -0.04

    -0.02

    0.00

    0 0.2 0.4 0.6 0.8 1

    x

    BendingM

    omentM(x)

    M_exact

    M_approx

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0 0.2 0.4 0.6 0.8 1x

    ShearForceV(x)

    V_exact

    V_approx

    Errorinc

    reases

  • 8/22/2019 fem beams.pdf

    8/23

    15

    EXAMPLE CANTILEVERED BEAM

    Assumed deflection

    Need to satisfy BC

    Strain energy

    Potential of loads

    F

    C

    p0

    E,I,L2 3

    1 2( )v x a bx c x c x

    (0) 0, (0) / 0v dv dx 2 3

    1 2( )v x c x c x

    2

    1 2

    0

    2 62

    LEI

    U c c x dx

    1 2 00

    3 42 3 20 0

    1 2

    , ( ) ( ) ( )

    2 33 4

    Ldv

    V c c p v x dx Fv L C Ldx

    p L p Lc FL CL c FL CL

    16

    EXAMPLE CANTILEVERED BEAM cont.

    Derivatives ofU:

    PMPE:

    Solve for c1 and c2:

    Deflection curve:

    Exact solution:

    2

    1 2 1 2

    1 0

    2 3

    1 2 1 2

    2 0

    2 2 6 4 6

    6 2 6 6 12

    L

    L

    U EI c c x dx EI Lc L cc

    UEI c c x xdx EI L c L c

    c

    w w

    w w

    1

    2

    0

    0

    c

    c

    w3w

    w3w

    32 20

    1 2

    42 3 3 20

    1 2

    4 6 23

    6 12 34

    p LEI Lc L c FL CL

    p L

    EI L c L c FL CL

    3 3

    1 223.75 10 , 8.417 10c c u u

    3 2 3( ) 10 23.75 8.417v x x x

    2 3 41

    ( ) 5400 800 30024

    v x x x xEI

  • 8/22/2019 fem beams.pdf

    9/23

    17

    EXAMPLE CANTILEVERED BEAM cont.

    Deflection

    Bending

    moment

    Shear force

    Errorincreases

    0.0

    0.0

    0.0

    0.0

    0.0

    0 0.2 0.4 0.6 0.8 1x

    v(x)/v_

    ma

    v-exact

    v-approx.

    -100.00

    0.00

    100.00

    200.00

    300.00

    400.00

    500.00

    0 0.2 0.4 0.6 0.8 1x

    BendingMomentM(x) M_exact

    M_approx

    200.0

    300.0

    400.0

    500.0

    600.0

    0 0.2 0.4 0.6 0.8 1x

    ShearForce

    V(x)

    V_exact

    V_approx

    18

    FINITE ELEMENT INTERPOLATION

    Rayleigh-Ritz method approximate solution in the entire beam Difficult to find approx solution that satisfies displacement BC

    Finite element approximates solution in an element

    Make it easy to satisfy displacement BC using interpolation technique

    Beam element

    Divide the beam using a set of elements

    Elements are connected to other elements at nodes

    Concentrated forces and couples can only be applied at nodes Consider two-node bean element

    Positive directions for forces and couples

    Constant or linearly

    distributed load

    F1 F2

    C2C1

    p(x)

    x

  • 8/22/2019 fem beams.pdf

    10/23

    19

    FINITE ELEMENT INTERPOLATION cont.

    Nodal DOF of beam element

    Each node has deflection vand slope T

    Positive directions of DOFs

    Vector of nodal DOFs

    Scaling parameter s Length L of the beam is scaled to 1 using scaling parameters

    Will write deflection curve v(s) in terms ofs

    v1 v2

    T2T1

    Lx1

    s = 0

    x2

    s = 1

    x

    1 1 2 2{ } { }Tv vT Tq

    1 1, ,

    1,

    x xs ds dx

    L L

    dsdx Lds

    dx L

    20

    FINITE ELEMENT INTERPOLATION cont.

    Deflection interpolation Interpolate the deflection v(s) in terms of four nodal DOFs

    Use cubic function:

    Relation to the slope:

    Apply four conditions:

    Express four coefficients in terms of nodal DOFs

    2 3

    0 1 2 3( )v s a a s a s a s

    2

    1 2 3

    1( 2 3 )

    dv dv dsa a s a s

    dx ds dx LT

    1 1 2 2

    (0) (1)(0) (1)

    dv dvv v v v

    dx dxT T

    1 0

    1 1

    2 0 1 2 3

    2 1 2 3

    (0)

    1(0)

    (1)

    1(1) ( 2 3 )

    v v a

    dva

    dx L

    v v a a a a

    dva a a

    dx L

    T

    T

    0 1

    1 1

    2 1 1 2 2

    3 1 1 2 2

    3 2 3

    2 2

    a v

    a L

    a v L v L

    a v L v L

    T

    T T

    T T

  • 8/22/2019 fem beams.pdf

    11/23

    21

    FINITE ELEMENT INTERPOLATION cont.

    Deflection interpolation cont.

    Shape functions

    Hermite polynomials

    Interpolation property

    2 3 2 3 2 3 2 3

    1 1 2 2( ) (1 3 2 ) ( 2 ) (3 2 ) ( )v s s s v L s s s s s v L s sT T

    2 3

    1

    2 3

    2

    2 3

    3

    2 34

    ( ) 1 3 2

    ( ) ( 2 )

    ( ) 3 2

    ( ) ( )

    N s s s

    N s L s s s

    N s s s

    N s L s s

    1

    1

    1 2 3 4

    2

    2

    ( ) [ ( ) ( ) ( ) ( )]

    v

    v s N s N s N s N s v

    T

    T

    -

    ( ) { }v s N q

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0 0.2 0.4 0.6 0.8 1.0

    N1 N3

    N2/L

    N4/L

    22

    FINITE ELEMENT INTERPOLATION cont.

    Properties of interpolation Deflection is a cubic polynomial (discuss accuracy and limitation)

    Interpolation is valid within an element, not outside of the element

    Adjacent elements have continuous deflection and slope

    Approximation of curvature

    Curvature is second derivative and related to strain and stress

    B is linear function ofs and, thus, the strain and stress

    Alternative expression:

    If the given problem is linearly varying curvature, the approximation is

    accurate; if higher-order variation of curvature, then it is approximate

    1

    2 21

    2 2 2 2

    2

    2

    1 1[ 6 12 , ( 4 6 ), 6 12 , ( 2 6 )]

    v

    d v d vs L s s L s

    vdx L ds L

    T

    T

    -

    2

    2 24 11 4

    1{ }

    d v

    dx L uu B q B: strain-displacement vector

    2

    2 24 11 4

    1{ }T T

    d v

    dx L uu Bq

  • 8/22/2019 fem beams.pdf

    12/23

    23

    FINITE ELEMENT INTERPOLATION cont.

    Approximation of bending moment and shear force

    Stress is proportional to M(s); M(s) is linear; stress is linear, too

    Maximum stress always occurs at the node

    Bending moment and shear force are not continuous between adjacent

    elements

    2

    2 2( ) { }

    d v EI M s EI

    dx L B q

    3

    3 3

    [ 12 6 12 6 ]{ }y

    dM d v EI V EI L L

    dx dx L q

    Linear

    Constant

    24

    EXAMPLE INTERPOLATION

    Cantilevered beam Given nodal DOFs

    Deflection and slope at x = 0.5L

    Parameter s = 0.5 at x = 0.5L

    Shape functions:

    Deflection at s = 0.5:

    Slope at s = 0.5:

    { } {0, 0, 0.1, 0.2}T qL

    v1

    v2

    T2T1

    1 1 1 11 2 3 42 2 2 2

    1 1( ) , ( ) , ( ) , ( )

    2 8 2 8

    L LN N N N

    1 1 1 1 11 1 2 1 3 2 4 22 2 2 2 2

    2 22 2

    ( ) ( ) ( ) ( ) ( )

    1 10 0 0.025

    2 8 2 8 2 8

    v N v N N v N

    L L v Lv

    T T

    TT

    u u u u

    31 2 41 1 2 2

    2 2 2 2

    1 1 2 2

    1 1

    1 1

    ( 6 6 ) 1 4 3 (6 6 ) 2 3 0.1

    dNdv dv dN dN dN v v

    dx L ds L ds ds ds ds

    v s s s s v s s s sL L

    T T

    T T

  • 8/22/2019 fem beams.pdf

    13/23

    25

    EXAMPLE

    A beam finite element with length L

    Calculate v(s)

    Bending moment

    3 2

    1 1 2 20, 0, ,

    3 2

    L Lv v

    EI EIT T

    1 1 2 1 3 2 4 2( ) ( ) ( ) ( ) ( )v s N s v N s N s v N sT T

    2 3 2 3

    2 2( ) (3 2 ) ( )v s s s v L s s T

    > @2 2

    2 22 2 2 2

    3 2

    2

    ( ) (6 12 ) ( 2 6 )

    (6 12 ) ( 2 6 )3 2

    (1 ) ( )

    d v EI d v EI M s EI s v L s

    dx L ds L

    EI L Ls L sL EI EI

    L s L x

    T

    LF

    Bending moment cause by unit force at the tip

    26

    FINITE ELEMENT EQUATION FOR BEAM

    Finite element equation using PMPE A beam is divided by NEL elements with constant sections

    Strain energy

    Sum of each elements strain energy

    Strain energy of element (e)

    p(x)

    F1 F2 F3

    C1 C2 C3

    y

    x

    F4 F5

    C4 C5

    1 2 3 45

    1

    1x1 2

    2 1x x2

    1

    2 3

    2 1x x3

    1

    3 4

    2 1x x4

    1

    4

    2x

    2

    10 1 1

    ( ) ( )e

    T

    e

    NEL NELL x e

    L Lx

    e e

    U U x dx U x dx U

    2

    1

    2 22 21

    2 3 20

    1 1

    2 2

    e

    e

    xe

    x

    d v EI d vU EI dx ds

    dx L ds

  • 8/22/2019 fem beams.pdf

    14/23

    27

    FE EQUATION FOR BEAM cont.

    Strain energy cont.

    Approximate curvature in terms of nodal DOFs

    Approximate element strain energy in terms of nodal DOFs

    Stiffness matrix of a beam element

    22 2 2

    2 2 21 4 4 14 1 1 4

    { } { }T Te ed v d v d v

    ds ds ds u uu u

    q B B q

    1( )3 0

    1 1{ } { } { } [ ]{ }

    2 2

    eTe e e e ee T TEIU ds

    L

    q B B q q k q

    > @1

    30

    6 12

    ( 4 6 )[ ] 6 12 ( 4 6 ) 6 12 ( 2 6 )

    6 12( 2 6 )

    e

    s

    L sEIs L s s L s ds

    sLL s

    k

    28

    FE EQUATION FOR BEAM cont.

    Stiffness matrix of a beam element

    Strain energy cont.

    Assembly

    2 2

    3

    2 2

    12 6 12 6

    6 4 6 2[ ]

    12 6 12 6

    6 2 6 4

    e

    L L

    L L L LEI

    L LL

    L L L L

    k

    Symmetric, positive semi-definite

    Proportional to EI

    Inversely proportional to L

    ( )

    1 1

    1{ } [ ]{ }

    2

    NEL NELe e ee T

    e e

    U U

    q k q

    1{ } [ ]{ }

    2

    T

    s s sU Q K Q

  • 8/22/2019 fem beams.pdf

    15/23

    29

    EXAMPLE ASSEMBLY

    Two elements

    Global DOFs

    F3F2

    y

    x

    1 23

    2EI EI

    2L L 1 1 2 2 3 3{ } { }T

    s v v vT T TQ

    1 1 2 2

    1

    2 2

    1 1

    3

    2

    2 2

    2

    3 3 3 3

    3 4 3 2[ ]

    3 3 3 3

    3 2 3 4

    v v

    L L v

    L L L LEI

    L LL v

    L L L L

    T T

    T

    T

    k

    2 2 3 3

    2

    2 2

    2 2

    3

    3

    2 2

    3

    12 6 12 6

    6 4 6 2[ ]

    12 6 12 6

    6 2 6 4

    v v

    L L v

    L L L LEI

    L LL v

    L L L L

    T T

    T

    T

    k

    2 2

    2 2 23

    2 2

    3 3 3 3 0 0

    3 4 3 2 0 0

    3 3 15 3 12 6[ ]3 2 3 8 6 2

    0 0 12 6 12 6

    0 0 6 2 6 4

    s

    L L

    L L L L

    L L LEIL L L L L LL

    L L

    L L L L

    K

    30

    FE EQUATION FOR BEAM cont.

    Potential energy of applied loads Concentrated forces and couples

    Distributed load (Work-equivalent nodal forces)

    1

    ND

    i i i i

    i

    V F v C T

    1

    1

    1 1 2 2...... { } { }T

    ND s s

    ND

    F

    C

    V v v F

    C

    T T

    -

    Q F

    2

    1

    ( )

    1 1

    ( ) ( )e

    e

    NEL NELxe

    xe e

    V p x v x dx V

    2

    1

    1

    ( ) ( )

    0

    ( ) ( ) ( ) ( )e

    e

    xe e

    xV p x v x dx L p s v s ds

    1

    ( ) ( )

    1 1 1 2 2 3 2 4

    0

    1 1 1 1

    ( ) ( ) ( ) ( )

    1 1 1 2 2 3 2 4

    0 0 0 0

    ( ) ( ) ( ) ( )

    1 1 1 1 2 2 2 2

    ( )

    ( ) ( ) ( ) ( )

    e e

    e e e e

    e e e e

    V L p s v N N v N N ds

    v L p s N ds L p s N ds v L p s N ds L p s N ds

    v F C v F C

    T T

    T T

    T T

  • 8/22/2019 fem beams.pdf

    16/23

    31

    EXAMPLE WORK-EQUIVALENT NODAL FORCES

    Uniformly distributed load

    pL/2 pL/2

    pL2/12 pL2/12

    p

    Equivalent

    1 12 3

    1 10 0

    ( ) (1 3 2 )2

    pLF pL N s ds pL s s ds

    21 1

    2 2 3

    1 20 0

    ( ) ( 2 )

    12

    pLC pL N s ds pL s s s ds

    1 12 3

    2 30 0

    ( ) (3 2 )2

    pLF pL N s ds pL s s ds

    21 1

    2 2 3

    2 40 0

    ( ) ( )12

    pLC pL N s ds pL s s ds

    2 2

    { }2 12 2 12

    T pL pL pL pL-

    F

    32

    FE EQUATION FOR BEAM cont.

    Finite element equation for beam

    One beam element has four variables

    When there is no distributed load, p = 0

    Applying boundary conditions is identical to truss element

    At each DOF, either displacement (vorT) or force (ForC) must be

    known, not both

    Use standard procedure for assembly, BC, and solution

    1 1

    2 2 2

    1 1

    3

    2 2

    2 2 2

    2 2

    12 6 12 6 / 2

    6 4 6 2 /12

    12 6 12 6 / 2

    6 2 6 4 /12

    v FL L pL

    CL L L L pLEI

    v FL L pLL

    CL L L L pL

    T

    T

    - - -

  • 8/22/2019 fem beams.pdf

    17/23

    33

    PRINCIPLE OF MINIMUM POTENTIAL ENERGY

    Potential energy (quadratic form)

    PMPE

    Potential energy has its minimum when

    Applying BC

    The same procedure with truss elements (striking-the-rows and

    striking-he-columns)

    Solve for unknown nodal DOFs {Q}

    1{ } [ ]{ } { } { }

    2

    T T

    s s s s sU V3 Q K Q Q F

    [ ]{ } { }s s sK Q F

    [ ]{ } { }K Q F

    [Ks] is symmetric & PSD

    [K] is symmetric & PD

    34

    BENDING MOMENT & SHEAR FORCE

    Bending moment

    Linearly varying along the beam span

    Shear force

    Constant

    When true moment is not linear and true shear is not constant, many

    elements should be used to approximate it

    Bending stress

    Shear stress for rectangular section

    2 2

    2 2 2 2( ) { }

    d v EI d v EI M s EI

    dx L ds L B q

    1

    3 31

    3 3 3 3

    2

    2

    ( ) [ 12 6 12 6 ]y

    v

    dM d v EI d v EI V s EI L L

    vdx dx L ds L

    T

    T

    -

    x

    My

    IV

    2

    2

    1.5 4( ) 1

    y

    xy

    V yy

    bh hW

  • 8/22/2019 fem beams.pdf

    18/23

    35

    EXAMPLE CLAMPED-CLAMPED BEAM

    Determine deflection &

    slope at x = 0.5, 1.0, 1.5 m

    Element stiffness matrices

    F2 = 240 N

    y

    x

    1 2

    1 m

    3

    1 m

    1 1 2 2

    1

    1(1)

    2

    2

    12 6 12 6

    6 4 6 2[ ] 1000

    12 6 12 6

    6 2 6 4

    v v

    v

    v

    T T

    T

    T

    k

    2 2 3 3

    2

    2(2 )

    3

    3

    12 6 12 6

    6 4 6 2[ ] 1000

    12 6 12 6

    6 2 6 4

    v vv

    v

    T T

    T

    T

    k

    11

    11

    2

    2

    33

    33

    12 6 12 6 0 0

    6 4 6 2 0 0

    24012 6 24 0 12 6100006 2 0 8 6 2

    0 0 12 6 12 6

    0 0 6 2 6 4

    Fv

    C

    v

    Fv

    C

    T

    T

    T

    - -

    36

    EXAMPLE CLAMPED-CLAMPED BEAM cont.

    Applying BC

    At x = 0.5 s = 0.5 and use element 1

    At x = 1.0 either s = 1 (element 1) or s = 0 (element 2)

    2

    2

    24 0 2401000

    0 8 0

    v

    T

    - -

    2

    2

    0.01

    0.0

    v

    T

    12

    1 1 1 1 1 11 1 1 2 2 3 2 4 32 2 2 2 2 2

    3122 (1)

    ( ) ( ) ( ) ( ) ( ) 0.01 ( ) 0.005m

    1( ) 0.015rads

    v v N N v N N N

    dNvL ds

    T T

    T

    u

    2 3 3

    32(1)

    1

    (1) (1) 0.01 (1) 0.01m

    1(1) 0.0 rad

    s

    v v N N

    dNv

    L dsT

    u

    2 1 1

    12(2 )

    0

    (0) (0) 0.01 (0) 0.01m

    1(0) 0.0 rad

    s

    v v N N

    dNv

    L dsT

    u

    Will this solution be accurate or approximate?

  • 8/22/2019 fem beams.pdf

    19/23

    37

    EXAMPLE CANTILEVERED BEAM

    One beam element

    No assembly required

    Element stiffness

    Work-equivalent nodal forces

    C=50 N-m

    p0 = 120 N/m

    EI= 1000 N-m2

    1

    1

    2

    2

    12 6 12 6

    6 4 6 2[ ] 1000

    12 6 12 6

    6 2 6 4

    s

    v

    v

    T

    T

    K

    2 31

    2 311

    0 02 302

    2 32

    1/ 2 601 3 2

    /12 10( 2 )

    1/ 2 603 2

    /12 10( )

    e

    e

    e

    e

    F s s

    C Ls s s Lp L ds p L

    F s s

    C Ls s L

    - - - -

    L = 1m

    38

    EXAMPLE CANTILEVERED BEAM cont.

    FE matrix equation

    Applying BC

    Deflection curve:

    Exact solution:

    1 1

    1 1

    2

    2

    12 6 12 6 60

    6 4 6 2 101000

    12 6 12 6 60

    6 2 6 4 10 50

    v F

    C

    v

    T

    T

    - -

    2

    2

    12 6 6010006 4 60

    vT - -

    2

    2

    0.010.03

    vT

    m

    rad

    3

    3 4( ) 0.01 ( ) 0.03 ( ) 0.01v s N s N s s 4 3 2( ) 0.005( 4 )v x x x x

  • 8/22/2019 fem beams.pdf

    20/23

    39

    EXAMPLE CANTILEVERED BEAM cont.

    Support reaction (From assembled matrix equation)

    Bending moment

    Shear force

    2 2 1

    2 2 1

    1000 12 6 60

    1000 6 2 10

    v F

    v C

    T

    T

    1

    1

    120N

    10N m

    F

    C

    > @

    2

    1 1 2 22

    ( ) { }

    ( 6 12 ) ( 4 6 ) (6 12 ) ( 2 6 )

    1000[ 0.01(6 12 ) 0.03( 2 6 )]

    60 N m

    EIM sL

    EIs v L s s v L s

    L

    s s

    s

    T T

    B q

    > @1 1 2 23 12 6 12 6

    1000[ 12 ( 0.01) 6( 0.03)]

    60 N

    y EIV v L v LL

    T T

    u

    40

    EXAMPLE CANTILEVERED BEAM cont.

    Comparisons

    -0.010

    -0.008

    -0.006

    -0.004

    -0.002

    0.000

    0 0.2 0.4 0.6 0.8 1x

    v

    FEM

    Exact

    -0.030

    -0.025

    -0.020

    -0.015

    -0.010

    -0.005

    0.000

    0 0.2 0.4 0.6 0.8 1x

    T

    FEM

    Exact

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    0 0.2 0.4 0.6 0.8 1x

    M

    FEM

    Exact

    -120

    -100

    -80

    -60

    -40

    -20

    0

    0 0.2 0.4 0.6 0.8 1x

    Vy

    FEM

    Exact

    Deflection Slope

    Bending moment Shear force

  • 8/22/2019 fem beams.pdf

    21/23

    41

    PLANE FRAME ELEMENT

    Beam

    Vertical deflection and slope. No axial deformation

    Frame structure

    Can carry axial force, transverse shear force, and bending moment

    (Beam + Truss) Assumption

    Axial and bending effects

    are uncoupled

    Reasonable when deformation

    is small

    3 DOFs per node

    Need coordinate transfor-

    mation like plane truss

    F

    p

    1

    2 3

    4

    1u

    2u

    1v 2v

    11

    22

    1u

    2u

    1v

    2v

    11

    22

    1u

    2u

    1v

    2v

    11

    221

    2 3

    { , , }i i iu v T

    42

    PLANE FRAME ELEMENT cont.

    Element-fixed local coordinates Local DOFs Local forces

    Transformation between local and global coord.

    1

    2I

    x

    y

    Local coordinates

    Global coordinates

    xy

    1u

    2u

    1v

    2v

    11

    2

    x y{ , , }u v T { , , }x yf f c

    1 1

    1 1

    1 1

    2 2

    2 2

    2 2

    cos sin 0 0 0 0

    sin cos 0 0 0 0

    0 0 1 0 0 0

    0 0 0 cos sin 0

    0 0 0 sin cos 00 0 0 0 0 1

    x x

    y y

    x x

    y y

    f f

    f f

    c c

    f f

    f fc c

    I I

    I I

    I I

    I I

    - -

    { } [ ]{ }f T f

    { } [ ]{ }q T q

  • 8/22/2019 fem beams.pdf

    22/23

    43

    PLANE FRAME ELEMENT cont.

    Axial deformation (in local coord.)

    Beam bending

    Basically, it is equivalent to overlapping a beam with a bar

    A frame element has 6 DOFs

    11

    22

    1 1

    1 1

    x

    x

    fuEA

    fuL

    - -

    1 1

    2 2

    1 1

    3

    2 2

    2 2

    2 2

    12 6 12 6

    6 4 6 2

    12 6 12 6

    6 2 6 4

    y

    y

    vL L f

    L L L L cEI

    vL LL f

    L L L L c

    T

    T

    - -

    44

    PLANE FRAME ELEMENT cont.

    Element matrix equation (local coord.)

    Element matrix equation (global coord.)

    Same procedure for assembly and applying BC

    1 1 11

    2 2 2 2 11

    2 2

    2 2 2 2 11

    1 1 22

    2 2 2 2 22

    2 2

    2 2 2 2 22

    0 0 0 0

    0 12 6 0 12 6

    0 6 4 0 6 2

    0 0 0 0

    0 12 6 0 12 6

    0 6 2 0 6 4

    x

    y

    x

    y

    a a fu

    a La a La fv

    La L a La L a c

    a a fu

    a La a La fv

    La L a La L a c

    T

    T

    - -

    1

    2 3

    EAa

    L

    EIa

    L

    [ ]{ } { }k fq

    [ ][ ]{ } [ ]{ }k T q T f [ ] [ ][ ]{ } { }T T k T q f [ ]{ } { }k q f

    [ ] [ ] [ ][ ]Tk T k T

  • 8/22/2019 fem beams.pdf

    23/23

    45

    PLANE FRAME ELEMENT cont.

    Calculation of element forces

    Element forces can only be calculated in the local coordinate

    Extract element DOFs {q} from the global DOFs {Qs}

    Transform the element DOFs to the local coordinate

    Then, use 1D bar and beam formulas for element forces

    Axial force

    Bending moment

    Shear force

    Other method:

    { } [ ]{ }q T q

    2 1AE

    P u uL

    2( ) { }

    EIM s

    L B q

    ^ `3

    ( ) [ 12 6 12 6 ]yEI

    V s L LL q

    1 1

    2 2

    1 1

    3

    2 2

    2 2

    2 2

    12 6 12 6

    6 4 6 2

    12 6 12 6

    6 2 6 4

    y

    y

    V vL L

    M L L L LEI

    V vL LL

    M L L L L

    T

    T

    - -