FCIQMC, (Un)linked Stochastic Coupled Cluster Theory and Other

117
FCIQMC, (Un)linked Stochastic Coupled Cluster Theory and Other Animals Alex Thom Department of Chemistry, University of Cambridge ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $ Alex Thom Stochastic Coupled Cluster Theory

Transcript of FCIQMC, (Un)linked Stochastic Coupled Cluster Theory and Other

FCIQMC,(Un)linked Stochastic Coupled Cluster Theory

and Other Animals

Alex Thom

Department of Chemistry, University of Cambridge

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Electronic Structure Theory: Scaling

100 101 102 103

# Water molecules

10-6

10-4

10-2

100

102

104

106

108

1010

1012

1014Calculation Time / s

minute

hour

day

week

yeardecade

centurymillennium

239Pu half life

aeon

age of universe

force-field

poor SCF

good SCF

MP2

CCSD

CCSD(T)FCI

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Electronic Structure Theory: Accuracy

HF DFT:GGADFT:Hybrid MP2 CCSD CCSD(T) CCSDT CCSDT(Q)Method

−80

−60

−40

−20

0

20

40

60

80

Devia

tion f

rom

experi

ment

/ kJ

/mol

Helgaker T. et al., Molecular Electronic Structure TheoryCurtiss L.A., Raghavachari K., Redfern P.C., Pople, J.A. J. Chem. Phys. 106, 1063 (1997)Klopper W., Helgaker T. J. Phys. B 32, R103 (1999)Klopper W., Ruscic B., Tew D., Bischoff F., Wolfsegger S. Chem. Phys. 356, 14 (2009)Klopper W., Bachorz R., Hattig C., Tew D. Theor. Chem. Acc. 126. 289 (2010)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Determinant Space

Hartree-Fock Triple excitation

I For an N -electron system, N spin-orbitals are chosen out of2M spin-orbitals {φ1, φ2, ..., φ2M} to form a SlaterDeterminant,|Di〉.

I Complete space of determinants is finite, but exponentiallygrowing in N and M as

(2MN

)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Determinant Space

Hartree-Fock Triple excitation

I For an N -electron system, N spin-orbitals are chosen out of2M spin-orbitals {φ1, φ2, ..., φ2M} to form a SlaterDeterminant,|Di〉.

I Complete space of determinants is finite, but exponentiallygrowing in N and M as

(2MN

)ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Full Configuration Interaction

I We can project the many-electron Hamiltonian into the spaceof Slater Determinants and solve in this space.Hij = 〈Di|H|Dj〉.

I Solve H|ΨCI〉 = E|ΨCI〉 as |ΨCI〉 =∑

i ci|Di〉.I Iterative diagonalization of the sparse Hamiltonian in this

space gives the “Full Configuration Interation” (FCI) solution.

I As H contains at most 2-electron operators, matrix elementsbetween determinants are a simple combination of one- andtwo-electron Hamiltonian integrals.

I Energy is variationally minimized — all of the basis setcorrelation energy captured.

I Exponentially scaling with system size (N or M)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Full Configuration Interaction

I We can project the many-electron Hamiltonian into the spaceof Slater Determinants and solve in this space.Hij = 〈Di|H|Dj〉.

I Solve H|ΨCI〉 = E|ΨCI〉 as |ΨCI〉 =∑

i ci|Di〉.I Iterative diagonalization of the sparse Hamiltonian in this

space gives the “Full Configuration Interation” (FCI) solution.

I As H contains at most 2-electron operators, matrix elementsbetween determinants are a simple combination of one- andtwo-electron Hamiltonian integrals.

I Energy is variationally minimized — all of the basis setcorrelation energy captured.

I Exponentially scaling with system size (N or M)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Full Configuration Interaction

I We can project the many-electron Hamiltonian into the spaceof Slater Determinants and solve in this space.Hij = 〈Di|H|Dj〉.

I Solve H|ΨCI〉 = E|ΨCI〉 as |ΨCI〉 =∑

i ci|Di〉.I Iterative diagonalization of the sparse Hamiltonian in this

space gives the “Full Configuration Interation” (FCI) solution.

I As H contains at most 2-electron operators, matrix elementsbetween determinants are a simple combination of one- andtwo-electron Hamiltonian integrals.

I Energy is variationally minimized — all of the basis setcorrelation energy captured.

I Exponentially scaling with system size (N or M)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

FCI Quantum Monte Carlo

I Solutions to H|Ψ〉 = E|Ψ〉 also solve e−τH |Ψ〉 = e−τE |Ψ〉.

I Propagate ∂|Ψ〉∂τ = −H|Ψ〉.

I Lowest energy eigenfunction |ΨCI〉 becomes dominant.

I Let |ΨCI〉 =∑

i ci|Di〉

∂ci∂τ

= −∑j

Hijcj.

I Represent ci as populations of signed psips (walkers)propagating through space.

George H. Booth, AJWT, and Ali Alavi, J. Chem. Phys. 131, 054106 (2009)

James B. Anderson, J. Chem. Phys. 63, 1499 (1975)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

FCI Quantum Monte Carlo

I Solutions to H|Ψ〉 = E|Ψ〉 also solve e−τH |Ψ〉 = e−τE |Ψ〉.I Propagate ∂|Ψ〉

∂τ = −H|Ψ〉.I Lowest energy eigenfunction |ΨCI〉 becomes dominant.

I Let |ΨCI〉 =∑

i ci|Di〉

∂ci∂τ

= −∑j

Hijcj.

I Represent ci as populations of signed psips (walkers)propagating through space.

George H. Booth, AJWT, and Ali Alavi, J. Chem. Phys. 131, 054106 (2009)

James B. Anderson, J. Chem. Phys. 63, 1499 (1975)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

FCI Quantum Monte Carlo

I Solutions to H|Ψ〉 = E|Ψ〉 also solve e−τH |Ψ〉 = e−τE |Ψ〉.I Propagate ∂|Ψ〉

∂τ = −H|Ψ〉.I Lowest energy eigenfunction |ΨCI〉 becomes dominant.

I Let |ΨCI〉 =∑

i ci|Di〉

∂ci∂τ

= −∑j

Hijcj.

I Represent ci as populations of signed psips (walkers)propagating through space.

George H. Booth, AJWT, and Ali Alavi, J. Chem. Phys. 131, 054106 (2009)

James B. Anderson, J. Chem. Phys. 63, 1499 (1975)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

FCI Quantum Monte Carlo

I Solutions to H|Ψ〉 = E|Ψ〉 also solve e−τH |Ψ〉 = e−τE |Ψ〉.I Propagate ∂|Ψ〉

∂τ = −H|Ψ〉.I Lowest energy eigenfunction |ΨCI〉 becomes dominant.

I Let |ΨCI〉 =∑

i ci|Di〉

∂ci∂τ

= −∑j

Hijcj.

I Represent ci as populations of signed psips (walkers)propagating through space.

George H. Booth, AJWT, and Ali Alavi, J. Chem. Phys. 131, 054106 (2009)

James B. Anderson, J. Chem. Phys. 63, 1499 (1975)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= −Hiici −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= −Hiici −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= −Hiici −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= −Hiici −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτHii.

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= −Hiici −∑j→i

Hijcj. X

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτHii.

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= −Hiici −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτHii.

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= − [Hii − S]ci −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτ(Hii − s). Usually S < EHF .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= − [Hii − S]ci −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτ(Hii − s). Usually S < EHF .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= − [Hii − S]ci −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτ(Hii − s). Usually S < EHF .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= − [Hii − S]ci −∑j→i

Hijcj.XXXX

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτ(Hii − s). Usually S < EHF .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Dynamics

∂ci∂τ

= − [Hii − S]ci −∑j→i

Hijcj.

I At time τ , given a psip at j, at time τ + δτ spawn a new oneat randomly chosen i based on −δτHij. This samples

∑j.

I Psips at i die based on δτ(Hii − s). Usually S < EHF .

I Start S = EHF . Once enough psips created change S inresponse to population. e.g. for growth, make S morenegative, so more death.

I Opposite-signed psips at the same determinant annihilate.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

X

X

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

X

X

X

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

XX

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Example

I Initialconfiguration

I Spawning

I Death

I Annihilation

I Spawning

I Death

I Annihilation

I Many stepslater

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Performance

I With a system-dependent critical number of psips, FCIQMCreproduces CI energy essentially exactly.

I Critical psip number, Nc, needed to allow the correct signstructure of the wavefunction to develop.

I Below this, energy is wrong. Plateau shows what Nc is.

0 10000 20000 30000 40000 50000iteration

100

101

102

103

104

105

106

107

# psips

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Performance

I With a system-dependent critical number of psips, FCIQMCreproduces CI energy essentially exactly.

I Critical psip number, Nc, needed to allow the correct signstructure of the wavefunction to develop.

I Below this, energy is wrong. Plateau shows what Nc is.

0 10000 20000 30000 40000 50000iteration

100

101

102

103

104

105

106

107

# psips

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Performance

I With a system-dependent critical number of psips, FCIQMCreproduces CI energy essentially exactly.

I Critical psip number, Nc, needed to allow the correct signstructure of the wavefunction to develop.

I Below this, energy is wrong. Plateau shows what Nc is.

0 10000 20000 30000 40000 50000iteration

100

101

102

103

104

105

106

107

# psips

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Performance

I With a system-dependent critical number of psips, FCIQMCreproduces CI energy essentially exactly.

I Critical psip number, Nc, needed to allow the correct signstructure of the wavefunction to develop.

I Below this, energy is wrong. Plateau shows what Nc is.

0 10000 20000 30000 40000 50000iteration

100

101

102

103

104

105

106

107

# psips

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Initiator Approximation

I Only allow psips on determinants with a significant population(e.g. 3+) to spawn to unoccupied determinants.

I Vastly reduces Nc. Introduces systematic, but controllableerror.

I Scaling exponential with increasing system size — even withinitiators.

I Able to calculate energies for previously insoluble systems(larger by many orders of magnitude).

Deidre Cleland, George H. Booth, and Ali Alavi, J. Chem. Phys. 132, 041103 (2010)

George H. Booth, and Ali Alavi, J. Chem. Phys. 132, 174104 (2010)

Deidre Cleland, George Booth, and Ali Alavi, J. Chem. Phys. 134, 024112 (2011)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Initiator Approximation

I Only allow psips on determinants with a significant population(e.g. 3+) to spawn to unoccupied determinants.

I Vastly reduces Nc. Introduces systematic, but controllableerror.

I Scaling exponential with increasing system size — even withinitiators.

I Able to calculate energies for previously insoluble systems(larger by many orders of magnitude).

Deidre Cleland, George H. Booth, and Ali Alavi, J. Chem. Phys. 132, 041103 (2010)

George H. Booth, and Ali Alavi, J. Chem. Phys. 132, 174104 (2010)

Deidre Cleland, George Booth, and Ali Alavi, J. Chem. Phys. 134, 024112 (2011)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Excitors

|D0〉

aai |D0〉

|D0〉

abcjk|D0〉

|D0〉

aai abcjk|D0〉 = aabcijk |D0〉

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Excitors

|D0〉

aai |D0〉 |D0〉

abcjk|D0〉

|D0〉

aai abcjk|D0〉 = aabcijk |D0〉

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Excitors

|D0〉

aai |D0〉 |D0〉

abcjk|D0〉

|D0〉

aai abcjk|D0〉 = aabcijk |D0〉

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The exponential Ansatz

I Coupled Cluster Theory uses a cluster operator T =∑

i tiai

I which can be split into excitation levels (and truncated)T = T 1 + T 2 + T 3 + . . .

T 1 =∑ia

tai aai T 2 =

∑i<ja<b

tabij aabij · · ·

I Use an exponential to generate the wavefunction

|ΨCC〉 = eT |D0〉I Exponential generates products of excitors

eT = 1 + T 1 + T 2 + · · ·+ 12 T

21 + 1

2 T 1T 2 + · · ·

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The exponential Ansatz

I Coupled Cluster Theory uses a cluster operator T =∑

i tiaiI which can be split into excitation levels (and truncated)T = T 1 + T 2 + T 3 + . . .

T 1 =∑ia

tai aai T 2 =

∑i<ja<b

tabij aabij · · ·

I Use an exponential to generate the wavefunction

|ΨCC〉 = eT |D0〉I Exponential generates products of excitors

eT = 1 + T 1 + T 2 + · · ·+ 12 T

21 + 1

2 T 1T 2 + · · ·

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The exponential Ansatz

I Coupled Cluster Theory uses a cluster operator T =∑

i tiaiI which can be split into excitation levels (and truncated)T = T 1 + T 2 + T 3 + . . .

T 1 =∑ia

tai aai T 2 =

∑i<ja<b

tabij aabij · · ·

I Use an exponential to generate the wavefunction

|ΨCC〉 = eT |D0〉I Exponential generates products of excitors

eT = 1 + T 1 + T 2 + · · ·+ 12 T

21 + 1

2 T 1T 2 + · · ·

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

I Consider a single atom.

I Excitation aabij is present in both CISD and CCSD.

I Consider two separated non-interacting atoms: X and Y.

I Simultaneous excitation aaXbXaY bYiXjX iY jYneeded for same level of

description of each atom.

I Present in CCSD in 12 T

22 product aaXbXiXjX

aaY bYiY jY.

I Only present in CISDTQ level and beyond.

I As number of electrons increases, truncated CI rapidlyworsens.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

I Consider a single atom.

I Excitation aabij is present in both CISD and CCSD.

I Consider two separated non-interacting atoms: X and Y.

I Simultaneous excitation aaXbXaY bYiXjX iY jYneeded for same level of

description of each atom.

I Present in CCSD in 12 T

22 product aaXbXiXjX

aaY bYiY jY.

I Only present in CISDTQ level and beyond.

I As number of electrons increases, truncated CI rapidlyworsens.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

I Consider a single atom.

I Excitation aabij is present in both CISD and CCSD.

I Consider two separated non-interacting atoms: X and Y.

I Simultaneous excitation aaXbXaY bYiXjX iY jYneeded for same level of

description of each atom.

I Present in CCSD in 12 T

22 product aaXbXiXjX

aaY bYiY jY.

I Only present in CISDTQ level and beyond.

I As number of electrons increases, truncated CI rapidlyworsens.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

I Consider a single atom.

I Excitation aabij is present in both CISD and CCSD.

I Consider two separated non-interacting atoms: X and Y.

I Simultaneous excitation aaXbXaY bYiXjX iY jYneeded for same level of

description of each atom.

I Present in CCSD in 12 T

22 product aaXbXiXjX

aaY bYiY jY.

I Only present in CISDTQ level and beyond.

I As number of electrons increases, truncated CI rapidlyworsens.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

1 2 3 4 5 6Truncation Level

10-3

10-2

10-1

100

101

102

103

Error in Energy per atom / kJ/mol

CC1 kcal/mol

1 kcal/mol = 10 meVˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

1 2 3 4 5 6Truncation Level

10-3

10-2

10-1

100

101

102

103

Error in Energy per atom / kJ/mol

CC1 kcal/molNe1 CI

1 kcal/mol = 10 meVˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

1 2 3 4 5 6Truncation Level

10-3

10-2

10-1

100

101

102

103

Error in Energy per atom / kJ/mol

CC1 kcal/molNe1 CI

Ne2 CI

1 kcal/mol = 10 meVˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Size Consistency

1 2 3 4 5 6Truncation Level

10-3

10-2

10-1

100

101

102

103

Error in Energy per atom / kJ/mol

CC1 kcal/molNe1 CI

Ne2 CI

Ne3 CI

1 kcal/mol = 10 meVˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Naıve Coupled Cluster Theory

I Solve H|ΨCC〉 = E|ΨCC〉.

I Could solve projected equations like

〈D0|H − E|eTD0〉 = 0

〈Dai |H − E|eTD0〉 = 0

〈Dabij |H − E|eTD0〉 = 0, etc.

I Complicated and non-linear, so solve iteratively.

I Not variational.

I Full CI and Full CC are equivalent. C = eT .

I Normally easier to solve 〈Di|e−T (H − E)eT |D0〉 = 0 (moreon this later).

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Naıve Coupled Cluster Theory

I Solve H|ΨCC〉 = E|ΨCC〉.I Could solve projected equations like

〈D0|H − E|eTD0〉 = 0

〈Dai |H − E|eTD0〉 = 0

〈Dabij |H − E|eTD0〉 = 0, etc.

I Complicated and non-linear, so solve iteratively.

I Not variational.

I Full CI and Full CC are equivalent. C = eT .

I Normally easier to solve 〈Di|e−T (H − E)eT |D0〉 = 0 (moreon this later).

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Naıve Coupled Cluster Theory

I Solve H|ΨCC〉 = E|ΨCC〉.I Could solve projected equations like

〈D0|H − E|eTD0〉 = 0

〈Dai |H − E|eTD0〉 = 0

〈Dabij |H − E|eTD0〉 = 0, etc.

I Complicated and non-linear, so solve iteratively.

I Not variational.

I Full CI and Full CC are equivalent. C = eT .

I Normally easier to solve 〈Di|e−T (H − E)eT |D0〉 = 0 (moreon this later).

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCI〉 = 0

〈Di|1− δτ(H − E)|〉 = 〈Di|〉

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCI〉 = 0

〈Di|1− δτ(H − E)|ΨCI〉 = 〈Di|ΨCI〉

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCI〉 = 0

〈Di|1− δτ(H − E)|ΨCI〉 = 〈Di|ΨCI〉∑j

〈Di|1− δτ(H − E)|cjDj〉 = ci

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCI〉 = 0

〈Di|1− δτ(H − E)|ΨCI〉 = 〈Di|ΨCI〉∑j

〈Di|1− δτ(H − E)|cjDj〉 = ci

ci − δτ∑j

(Hij − Eδij)cj = ci

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCI〉 = 0

〈Di|1− δτ(H − E)|ΨCI〉 = 〈Di|ΨCI〉∑j

〈Di|1− δτ(H − E)|cjDj〉 = ci

ci − δτ∑j

(Hij − Eδij)cj = ci

ci(τ)− δτ∑j

(Hij − Eδij)cj(τ) = ci(τ + δτ)

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCC〉 = 0

〈Di|1− δτ(H − E)|ΨCI〉 = 〈Di|ΨCI〉∑j

〈Di|1− δτ(H − E)|cjDj〉 = ci

ci − δτ∑j

(Hij − Eδij)cj = ci

ci(τ)− δτ∑j

(Hij − Eδij)cj(τ) = ci(τ + δτ)

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCC〉 = 0

〈Di|1− δτ(H − E)|ΨCC〉 = 〈Di|ΨCC〉∑j

〈Di|1− δτ(H − E)|cjDj〉 = ci

ci − δτ∑j

(Hij − Eδij)cj = ci

ci(τ)− δτ∑j

(Hij − Eδij)cj(τ) = ci(τ + δτ)

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCC〉 = 0

〈Di|1− δτ(H − E)|ΨCC〉 = 〈Di|ΨCC〉∑j

〈Di|1− δτ(H − E)|Dj〉〈Dj|ΨCC〉 = 〈Di|ΨCC〉

ci − δτ∑j

(Hij − Eδij)cj = ci

ci(τ)− δτ∑j

(Hij − Eδij)cj(τ) = ci(τ + δτ)

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCC〉 = 0

〈Di|1− δτ(H − E)|ΨCC〉 = 〈Di|ΨCC〉∑j

〈Di|1− δτ(H − E)|Dj〉〈Dj|ΨCC〉 = 〈Di|ΨCC〉

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉

ci(τ)− δτ∑j

(Hij − Eδij)cj(τ) = ci(τ + δτ)

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCC〉 = 0

〈Di|1− δτ(H − E)|ΨCC〉 = 〈Di|ΨCC〉∑j

〈Di|1− δτ(H − E)|Dj〉〈Dj|ΨCC〉 = 〈Di|ΨCC〉

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉

ci(τ)− δτ∑j

(Hij − Eδij)cj(τ) = ci(τ + δτ)

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

CI vs. CC Theory

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉+ 1

〈Di|(H − E)|ΨCC〉 = 0

〈Di|1− δτ(H − E)|ΨCC〉 = 〈Di|ΨCC〉∑j

〈Di|1− δτ(H − E)|Dj〉〈Dj|ΨCC〉 = 〈Di|ΨCC〉

〈Di|ΨCC〉 − δτ∑j

(Hij − Eδij)〈Dj|ΨCC〉 = 〈Di|ΨCC〉

ti(τ)− δτ∑j

(Hij − Eδij)〈Dj|ΨCC(τ)〉 = ti(τ + δτ)

e.g. Di = Dabij . 〈Di|ΨCC〉 = tabij + tai t

bj − tbi taj = ti+O[T 2].

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Sampling the CC equations

ti(τ)− δτ∑j

(Hij − Eδij)〈Dj|ΨCC(τ)〉 = ti(τ + δτ)

.I ∀i, ∀j, calculate 〈Dj|ΨCC(τ)〉 and update ti.

I ∀j, calculate 〈Dj|ΨCC(τ)〉. Now randomly pick i, and updateti.

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

.I Pick a random term in eT and work out j and 〈Dj|ΨCC(τ)〉

from just this term. Now randomly pick i, and update ti.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Sampling the CC equations

ti(τ)− δτ∑j

(Hij − Eδij)〈Dj|ΨCC(τ)〉 = ti(τ + δτ)

.I ∀i, ∀j, calculate 〈Dj|ΨCC(τ)〉 and update ti.I ∀j, calculate 〈Dj|ΨCC(τ)〉. Now randomly pick i, and updateti.

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

.I Pick a random term in eT and work out j and 〈Dj|ΨCC(τ)〉

from just this term. Now randomly pick i, and update ti.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Sampling the CC equations

ti(τ)− δτ∑j

(Hij − Eδij)〈Dj|ΨCC(τ)〉 = ti(τ + δτ)

.I ∀i, ∀j, calculate 〈Dj|ΨCC(τ)〉 and update ti.I ∀j, calculate 〈Dj|ΨCC(τ)〉. Now randomly pick i, and updateti.

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

.

I Pick a random term in eT and work out j and 〈Dj|ΨCC(τ)〉from just this term. Now randomly pick i, and update ti.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Sampling the CC equations

ti(τ)− δτ∑j

(Hij − Eδij)〈Dj|ΨCC(τ)〉 = ti(τ + δτ)

.I ∀i, ∀j, calculate 〈Dj|ΨCC(τ)〉 and update ti.I ∀j, calculate 〈Dj|ΨCC(τ)〉. Now randomly pick i, and updateti.

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

.I Pick a random term in eT and work out j and 〈Dj|ΨCC(τ)〉

from just this term. Now randomly pick i, and update ti.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

I Represent T =∑

i tiai as a population of excips for eachexcitation.

I Need to sample

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

I From list of excips randomly select a number of them(remembering signs). Need normalized probabilities.

+ai +b

i +bi −aj −bj +c

j +cj +c

j −abij +acik −abcijk

AJWT Phys. Rev. Lett. 105, 263004 (2010)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

I Represent T =∑

i tiai as a population of excips for eachexcitation.

I Need to sample

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

I From list of excips randomly select a number of them(remembering signs). Need normalized probabilities.

+ai +b

i +bi −aj −bj +c

j +cj +c

j −abij +acik −abcijk

AJWT Phys. Rev. Lett. 105, 263004 (2010)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

I Represent T =∑

i tiai as a population of excips for eachexcitation.

I Need to sample

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

I From list of excips randomly select a number of them(remembering signs). Need normalized probabilities.

+ai +b

i +bi −aj −bj +c

j +cj +c

j −abij +acik −abcijk

AJWT Phys. Rev. Lett. 105, 263004 (2010)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

I Represent T =∑

i tiai as a population of excips for eachexcitation.

I Need to sample

eT = 1 +∑i

tiai +1

2!

∑i,j

titjaiaj +1

3!

∑i,j,k

titjtkaiajak + . . .

I From list of excips randomly select a number of them(remembering signs). Need normalized probabilities.

+ai +b

i +bi −aj −bj +c

j +cj +c

j −abij +acik −abcijk

AJWT Phys. Rev. Lett. 105, 263004 (2010)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

+acik −bj

→ −aabcijk

I Collapse this into a single excitor and apply to the reference,resulting in a determinant.

−aabcijk |D0〉 = −|Dabcijk 〉

I Spawning: Pick random excitation from |Dabcijk 〉 (e.g. c

i ) and

spawn according to −δτ〈Dci |H|Dabc

ijk 〉. . . . Create new +ci

excip.I Death: Die according to δτ(〈Dabc

ijk |H|Dabcijk 〉 − S). . . . Create

new +abcijk excip.

I Annihilate as in FCIQMC.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

+acik −bj → −aabcijk

I Collapse this into a single excitor and apply to the reference,resulting in a determinant.

−aabcijk |D0〉 = −|Dabcijk 〉

I Spawning: Pick random excitation from |Dabcijk 〉 (e.g. c

i ) and

spawn according to −δτ〈Dci |H|Dabc

ijk 〉. . . . Create new +ci

excip.I Death: Die according to δτ(〈Dabc

ijk |H|Dabcijk 〉 − S). . . . Create

new +abcijk excip.

I Annihilate as in FCIQMC.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

+acik −bj → −aabcijk

I Collapse this into a single excitor and apply to the reference,resulting in a determinant.

−aabcijk |D0〉 = −|Dabcijk 〉

I Spawning: Pick random excitation from |Dabcijk 〉 (e.g. c

i ) and

spawn according to −δτ〈Dci |H|Dabc

ijk 〉.

. . . Create new +ci

excip.I Death: Die according to δτ(〈Dabc

ijk |H|Dabcijk 〉 − S). . . . Create

new +abcijk excip.

I Annihilate as in FCIQMC.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

+acik −bj → −aabcijk

I Collapse this into a single excitor and apply to the reference,resulting in a determinant.

−aabcijk |D0〉 = −|Dabcijk 〉

I Spawning: Pick random excitation from |Dabcijk 〉 (e.g. c

i ) and

spawn according to −δτ〈Dci |H|Dabc

ijk 〉. . . . Create new +ci

excip.

I Death: Die according to δτ(〈Dabcijk |H|Dabc

ijk 〉 − S). . . . Create

new +abcijk excip.

I Annihilate as in FCIQMC.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

+acik −bj → −aabcijk

I Collapse this into a single excitor and apply to the reference,resulting in a determinant.

−aabcijk |D0〉 = −|Dabcijk 〉

I Spawning: Pick random excitation from |Dabcijk 〉 (e.g. c

i ) and

spawn according to −δτ〈Dci |H|Dabc

ijk 〉. . . . Create new +ci

excip.I Death: Die according to δτ(〈Dabc

ijk |H|Dabcijk 〉 − S).

. . . Create

new +abcijk excip.

I Annihilate as in FCIQMC.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

+acik −bj → −aabcijk

I Collapse this into a single excitor and apply to the reference,resulting in a determinant.

−aabcijk |D0〉 = −|Dabcijk 〉

I Spawning: Pick random excitation from |Dabcijk 〉 (e.g. c

i ) and

spawn according to −δτ〈Dci |H|Dabc

ijk 〉. . . . Create new +ci

excip.I Death: Die according to δτ(〈Dabc

ijk |H|Dabcijk 〉 − S). . . . Create

new +abcijk excip.

I Annihilate as in FCIQMC.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Discretization

+acik −bj → −aabcijk

I Collapse this into a single excitor and apply to the reference,resulting in a determinant.

−aabcijk |D0〉 = −|Dabcijk 〉

I Spawning: Pick random excitation from |Dabcijk 〉 (e.g. c

i ) and

spawn according to −δτ〈Dci |H|Dabc

ijk 〉. . . . Create new +ci

excip.I Death: Die according to δτ(〈Dabc

ijk |H|Dabcijk 〉 − S). . . . Create

new +abcijk excip.

I Annihilate as in FCIQMC.ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Coupled Cluster Monte Carlo

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Performance

I Initial excip growth much faster than FCIQMC.

I Critical number of excips required otherwise growth unstable.

I Critical number of excips seems to scale with size of space.e.g. CCSD Nc ∼ N4.

I Able to reproduce large coupled cluster calculations in lesstime.

I Initiator approximation also applicable.

I Cluster is initiator iff all component excips have sufficientamplitude.

I Much fewer excips, so much faster.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Performance

I Initial excip growth much faster than FCIQMC.

I Critical number of excips required otherwise growth unstable.

I Critical number of excips seems to scale with size of space.e.g. CCSD Nc ∼ N4.

I Able to reproduce large coupled cluster calculations in lesstime.

I Initiator approximation also applicable.

I Cluster is initiator iff all component excips have sufficientamplitude.

I Much fewer excips, so much faster.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Performance

I Initial excip growth much faster than FCIQMC.

I Critical number of excips required otherwise growth unstable.

I Critical number of excips seems to scale with size of space.e.g. CCSD Nc ∼ N4.

I Able to reproduce large coupled cluster calculations in lesstime.

I Initiator approximation also applicable.

I Cluster is initiator iff all component excips have sufficientamplitude.

I Much fewer excips, so much faster.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

H2O cc-pVDZ

−0.24

−0.22

−0.20

−0.18

−0.16

−0.14

−0.12

Ene

rgy

/Har

trees ECCSDTQ

〈E(τ)〉〈E(τ)〉ma

0 1000 2000 3000 4000 5000Iterations

10−6

10−5

10−4

10−3

10−2

10−1

Ene

rgy

Err

or/H

artre

es

|〈E(τ)〉ma − ECCSDTQ||〈E(τ)〉equil − ECCSDTQ|

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Ne cc-pVQZ initiator

0 20000 40000 60000 80000 100000 120000 140000 160000# excips

−0.3365

−0.3360

−0.3355

−0.3350

−0.3345

−0.3340

−0.3335

−0.3330C

orr

ela

tion E

nerg

y/H

ar

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Scaling

TZ QZ 5Z 6ZBasis

104

105

106

107

108

109

CPU Time / s

minute

day

week

year

decade

millennium

239Pu half life

aeon

age of universe

Full CCSDTQ timeMC CCSDTQ time 105

106

107

108

109

1010

1011

Storage / bytes

Full CCSDTQ memMC CCSDTQ mem

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Parallel Scaling

10 20 30 40 50 60 70 80 90 100Cores

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Speedup rel. to 24

Ideal ScalingCCMC

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

rs = 1

186−1342−1514−11030−14218−1

1/# basis functions

−1.10

−1.05

−1.00

−0.95

−0.90

Corr

ela

tion E

nerg

y/e

lect

ron /

eV n14 iFCIQMC

n = 14 Cutoff 64Ry, M = 4218, triples: 3× 108, full 1034

n = 54 Cutoff 64Ry, M = 4218, triples: 2× 1010, full 10117J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)

J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

rs = 1

186−1342−1514−11030−14218−1

1/# basis functions

−1.10

−1.05

−1.00

−0.95

−0.90

Corr

ela

tion E

nerg

y/e

lect

ron /

eV n14 iFCIQMC

n14 CCSD

n = 14 Cutoff 64Ry, M = 4218, triples: 3× 108, full 1034

n = 54 Cutoff 64Ry, M = 4218, triples: 2× 1010, full 10117J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)

J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

rs = 1

186−1342−1514−11030−14218−1

1/# basis functions

−1.10

−1.05

−1.00

−0.95

−0.90

Corr

ela

tion E

nerg

y/e

lect

ron /

eV n14 iFCIQMC

n14 CCSDn14 iCCSDT

n = 14 Cutoff 64Ry, M = 4218, triples: 3× 108, full 1034

n = 54 Cutoff 64Ry, M = 4218, triples: 2× 1010, full 10117J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)

J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

rs = 1

186−1342−1514−11030−14218−1

1/# basis functions

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6C

orr

ela

tion E

nerg

y/e

lect

ron /

eV DMC

n54 iFCIQMC

n = 14 Cutoff 64Ry, M = 4218, triples: 3× 108, full 1034

n = 54 Cutoff 64Ry, M = 4218, triples: 2× 1010, full 10117J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)

J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

rs = 1

186−1342−1514−11030−14218−1

1/# basis functions

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6C

orr

ela

tion E

nerg

y/e

lect

ron /

eV DMC

n54 iFCIQMCn54 CCSD MC

n = 14 Cutoff 64Ry, M = 4218, triples: 3× 108, full 1034

n = 54 Cutoff 64Ry, M = 4218, triples: 2× 1010, full 10117J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)

J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

rs = 1

186−1342−1514−11030−14218−1

1/# basis functions

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6C

orr

ela

tion E

nerg

y/e

lect

ron /

eV DMC

n54 iFCIQMCn54 CCSD MCn54 iCCSD MC

n = 14 Cutoff 64Ry, M = 4218, triples: 3× 108, full 1034

n = 54 Cutoff 64Ry, M = 4218, triples: 2× 1010, full 10117J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)

J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n14 FCI

J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)

J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n14 FCI

n14 MP2

J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n14 FCI

n14 MP2n14 CCSD

J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n14 FCI

n14 MP2n14 CCSDn14 CCSDT

J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n14 RPA+SOSEX

n14 FCIn14 MP2n14 CCSDn14 CCSDT

J. J. Shepherd, G. H. Booth and A. Alavi J. Chem. Phys. 136, 244101 (2012)J. J. Shepherd, A. Gruneis, G. H. Booth, G. Kresse, and A. Alavi Phys. Rev. B 86, 035111 (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n54 iCCSD

P. Lopez Rıos, A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs Phys. Rev. E 74, 066701 (2006)J. J. Shepherd, A. Gruneis, G. H. Booth and A. Alavi Phys. Rev. B 85, 081103(R) (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n54 iCCSD

n54 BF DMC

P. Lopez Rıos, A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs Phys. Rev. E 74, 066701 (2006)

J. J. Shepherd, A. Gruneis, G. H. Booth and A. Alavi Phys. Rev. B 85, 081103(R) (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

The Uniform Electron Gas

10-1 100 101

rs / a0

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2C

orr

ela

tion E

nerg

y/e

lect

ron /

eV n54 iCCSD

n54 BF DMCn54 FCIQMC

P. Lopez Rıos, A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs Phys. Rev. E 74, 066701 (2006)J. J. Shepherd, A. Gruneis, G. H. Booth and A. Alavi Phys. Rev. B 85, 081103(R) (2012)

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. Linked

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ] + · · ·

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ]

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ]

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ]

[[H, T ], T ] = HT T − T HT − T HT + T T H

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ]

[[H, T ], T ] = HT T − T HT − T HT + T T H[[H, tαaα], tβ aβ] = tαtβ(Haαaβ − aαHaβ − aβHaα + aαaβH

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ]

[[H, T ], T ] = HT T − T HT − T HT + T T H[[H, tαaα], tβ aβ] = tαtβ(Haαaβ − aαHaβ − aβHaα + aαaβH

〈Di|

tαtβ(hγ aγ aαaβ − aαHaβ − aβHaα + aαaβH|D0〉Pick a single spawning, sampling H.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ]

[[H, T ], T ] = HT T − T HT − T HT + T T H[[H, tαaα], tβ aβ] = tαtβ(Haαaβ − aαHaβ − aβHaα + aαaβH

〈Di|tαtβ(hγ aγ aαaβ − aαHaβ − aβHaα + aαaβH|D0〉Pick a single spawning, sampling H. Determines Di.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

〈Di|(H − E)eT |D0〉 = 0. Unlinked

〈Di|e−T (H − E)eT |D0〉 = 0. LinkedBaker–Campbell–Hausdorff expansion simplifies this significantly.

e−T HeT = H + [H, T ] +1

2![[H, T ], T ] +

1

3![[[H, T ], T ], T ]

+1

4![[[[H, T ], T ], T ], T ]

[[H, T ], T ] = HT T − T HT − T HT + T T H[[H, tαaα], tβ aβ] = tαtβ(Haαaβ − aαHaβ − aβHaα + aαaβH

〈Di|tαtβ(hγ aγ aαaβ − aαhγ aγ aβ − aβhγ aγ aα + aαaβhγ aγ |D0〉Pick a single spawning, sampling H. Determines Di. Use the sameexcitation for H in all terms.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Linked Coupled Cluster Thoery

Pros:

I Exact cancellation should reduce plateaux and thus difficulty.

I Energy (=Shift) is decoupled from excitor population.

I Only need clusters of up to four excitors — should scale muchbetter

Cons:

I Far less simple: Lots of terms to code up.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Conclusions

I Stochastic Coupled Cluster (CCMC) behaves very similar toFCIQMC

I Truncated CC allows polynomial scaling spaces to be used.

I Much simpler to implement than deterministic CC.

I Arbitrary truncation (e.g. CCSDTQ5) uses identical code.

I Required number of excips appears to scale with size of space.

I Initiator approximation very successful at reducing criticalnumber of excips.

I Feasible on workstations, and very parallelizable.

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Directions

I Solids. Complex excips. (Volunteer applications welcomed!)

I Large-scale parallelization.

I f12-CCMC.

I CASCC.

I Excitation Energies.

I Available in MOLPRO (Alavi group’s NECI code).

I New open-source code, HANDE, now available from ImperialCollege.

I Applications...

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Directions

I Solids. Complex excips. (Volunteer applications welcomed!)

I Large-scale parallelization.

I f12-CCMC.

I CASCC.

I Excitation Energies.

I Available in MOLPRO (Alavi group’s NECI code).

I New open-source code, HANDE, now available from ImperialCollege.

I Applications...

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory

Acknowledgements

MAGDALENE COLLEGECAMBRIDGE

I Ali AlaviI George Booth — FCIQMCI Deirdre Cleland — InitiatorsI James Shepherd — FCIQMC UEGI James Spencer — Open Source implementationI Alberto Zoccante — Linked CC

ˆ FCIQMC Coupled Cluster Coupled Cluster Monte Carlo $

Alex ThomStochastic Coupled Cluster Theory