Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T...

38
section F1 | 214 Factoring Factoring Factoring is the reverse process of multiplication. Factoring polynomials in algebra has similar role as factoring numbers in arithmetic. Any number can be expressed as a product of prime numbers. For example, 6 2 โˆ™ 3. Similarly, any polynomial can be expressed as a product of prime polynomials, which are polynomials that cannot be factored any further. For example, 2 5 6 2 3 . Just as factoring numbers helps in simplifying or adding fractions, factoring polynomials is very useful in simplifying or adding algebraic fractions. In addition, it helps identify zeros of polynomials, which in turn allows for solving higher degree polynomial equations. In this chapter, we will examine the most commonly used factoring strategies with particular attention to special factoring. Then, we will apply these strategies in solving polynomial equations. F.1 Greatest Common Factor and Factoring by Grouping Prime Factors When working with integers, we are often interested in their factors, particularly prime factors. Likewise, we might be interested in factors of polynomials. Definition 1.1 To factor a polynomial means to write the polynomial as a product of โ€˜simplerโ€™ polynomials. For example, 5 10 5 2 , or 2 โˆ’ 9 3 โˆ’ 3. In the above definition, โ€˜simplerโ€™ means polynomials of lower degrees or polynomials with coefficients that do not contain common factors other than 1 or โˆ’1. If possible, we would like to see the polynomial factors, other than monomials, having integral coefficients and a positive leading term. When is a polynomial factorization complete? In the case of natural numbers, the complete factorization means a factorization into prime numbers, which are numbers divisible only by their own selves and 1. We would expect that similar situation is possible for polynomials. So, which polynomials should we consider as prime? Observe that a polynomial such as โˆ’4 12 can be written as a product in many different ways, for instance โˆ’ 4 12 , 2 โˆ’2 6 , 4 โˆ’ 3 , โˆ’4 โˆ’ 3 , โˆ’12 ๏ฟฝ 1 3 1๏ฟฝ, etc. Since the terms of 4 12 and โˆ’2 6 still contain common factors different than 1 or โˆ’1, these polynomials are not considered to be factored completely, which means that they should not be called prime. The next two factorizations, 4 โˆ’ 3 and โˆ’4 โˆ’ 3 are both complete, so both polynomials โˆ’ 3 and โˆ’ 3 should be considered as prime. But what about the last factorization, โˆ’12 ๏ฟฝ 1 3 1๏ฟฝ? Since the remaining binomial 1 3 1 does not have integral coefficients, such a factorization is not always desirable.

Transcript of Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T...

Page 1: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 214

Factoring

Factoring

Factoring is the reverse process of multiplication. Factoring polynomials in algebra has similar role as factoring numbers in arithmetic. Any number can be expressed as a product of prime numbers. For example, 6 = 2 โˆ™ 3. Similarly, any polynomial can be expressed as a product of prime polynomials, which are polynomials that cannot be factored any further. For example, ๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ + 6 = (๐‘ฅ๐‘ฅ + 2)(๐‘ฅ๐‘ฅ + 3). Just as factoring numbers helps in simplifying or adding fractions, factoring polynomials is very useful in

simplifying or adding algebraic fractions. In addition, it helps identify zeros of polynomials, which in turn allows for solving higher degree polynomial equations.

In this chapter, we will examine the most commonly used factoring strategies with particular attention to special factoring. Then, we will apply these strategies in solving polynomial equations.

F.1 Greatest Common Factor and Factoring by Grouping

Prime Factors

When working with integers, we are often interested in their factors, particularly prime factors. Likewise, we might be interested in factors of polynomials.

Definition 1.1 To factor a polynomial means to write the polynomial as a product of โ€˜simplerโ€™ polynomials. For example,

5๐‘ฅ๐‘ฅ + 10 = 5(๐‘ฅ๐‘ฅ + 2), or ๐‘ฅ๐‘ฅ2 โˆ’ 9 = (๐‘ฅ๐‘ฅ + 3)(๐‘ฅ๐‘ฅ โˆ’ 3).

In the above definition, โ€˜simplerโ€™ means polynomials of lower degrees or polynomials with coefficients that do not contain common factors other than 1 or โˆ’1. If possible, we would like to see the polynomial factors, other than monomials, having integral coefficients and a positive leading term.

When is a polynomial factorization complete?

In the case of natural numbers, the complete factorization means a factorization into prime numbers, which are numbers divisible only by their own selves and 1. We would expect that similar situation is possible for polynomials. So, which polynomials should we consider as prime?

Observe that a polynomial such as โˆ’4๐‘ฅ๐‘ฅ + 12 can be written as a product in many different ways, for instance

โˆ’(4๐‘ฅ๐‘ฅ + 12), 2(โˆ’2๐‘ฅ๐‘ฅ + 6), 4(โˆ’๐‘ฅ๐‘ฅ + 3), โˆ’4(๐‘ฅ๐‘ฅ โˆ’ 3), โˆ’12 ๏ฟฝ13๐‘ฅ๐‘ฅ + 1๏ฟฝ, etc.

Since the terms of 4๐‘ฅ๐‘ฅ + 12 and โˆ’2๐‘ฅ๐‘ฅ + 6 still contain common factors different than 1 or โˆ’1, these polynomials are not considered to be factored completely, which means that they should not be called prime. The next two factorizations, 4(โˆ’๐‘ฅ๐‘ฅ + 3) and โˆ’4(๐‘ฅ๐‘ฅ โˆ’ 3) are both complete, so both polynomials โˆ’๐‘ฅ๐‘ฅ + 3 and ๐‘ฅ๐‘ฅ โˆ’ 3 should be considered as prime. But what about the last factorization, โˆ’12 ๏ฟฝ1

3๐‘ฅ๐‘ฅ + 1๏ฟฝ? Since the remaining binomial 1

3๐‘ฅ๐‘ฅ + 1

does not have integral coefficients, such a factorization is not always desirable.

Page 2: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 215

Greatest Common Factor and Factoring by Grouping

Here are some examples of prime polynomials:

any monomials such as โˆ’2๐‘ฅ๐‘ฅ2, ๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ2, or 13๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ;

any linear polynomials with integral coefficients that have no common factors other than 1 or โˆ’1, such as ๐‘ฅ๐‘ฅ โˆ’ 1 or 2๐‘ฅ๐‘ฅ + 5;

some quadratic polynomials with integral coefficients that cannot be factored into any lower degree polynomials with integral coefficients, such as ๐‘ฅ๐‘ฅ2 + 1 or ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + 1.

For the purposes of this course, we will assume the following definition of a prime polynomial.

Definition 1.2 A polynomial with integral coefficients is called prime if one of the following conditions is true

- it is a monomial, or - the only common factors of its terms are ๐Ÿ๐Ÿ or โˆ’๐Ÿ๐Ÿ and it cannot be factored into any

lower degree polynomials with integral coefficients.

Definition 1.3 A factorization of a polynomial with integral coefficients is complete if all of its factors are prime.

Here is an example of a polynomial factored completely:

โˆ’6๐‘ฅ๐‘ฅ3 โˆ’ 10๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ = โˆ’2๐‘ฅ๐‘ฅ(3๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ + 2)

In the next few sections, we will study several factoring strategies that will be helpful in finding complete factorizations of various polynomials.

Greatest Common Factor

The first strategy of factoring is to factor out the greatest common factor (GCF).

Definition 1.4 The greatest common factor (GCF) of two or more terms is the largest expression that is a factor of all these terms.

In the above definition, the โ€œlargest expressionโ€ refers to the expression with the most factors, disregarding their signs.

To find the greatest common factor, we take the product of the least powers of each type of common factor out of all the terms. For example, suppose we wish to find the GCF of the terms

6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ3, โˆ’18๐‘ฅ๐‘ฅ5๐‘ฅ๐‘ฅ, and 24๐‘ฅ๐‘ฅ4๐‘ฅ๐‘ฅ2.

First, we look for the GCF of 6, 18, and 24, which is 6. Then, we take the lowest power out of ๐‘ฅ๐‘ฅ2, ๐‘ฅ๐‘ฅ5, and ๐‘ฅ๐‘ฅ4, which is ๐‘ฅ๐‘ฅ2. Finally, we take the lowest power out of ๐‘ฅ๐‘ฅ3, ๐‘ฅ๐‘ฅ, and ๐‘ฅ๐‘ฅ2, which is ๐‘ฅ๐‘ฅ. Therefore,

GCF(6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ3 , โˆ’ 18๐‘ฅ๐‘ฅ5๐‘ฅ๐‘ฅ, 24๐‘ฅ๐‘ฅ4๐‘ฅ๐‘ฅ2) = 6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ

This GCF can be used to factor the polynomial 6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ3 โˆ’ 18๐‘ฅ๐‘ฅ5๐‘ฅ๐‘ฅ + 24๐‘ฅ๐‘ฅ4๐‘ฅ๐‘ฅ2 by first seeing it as

6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ™ ๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ™ 3๐‘ฅ๐‘ฅ3 + 6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ™ 4๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ,

Page 3: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 216

Factoring

and then, using the reverse distributing property, โ€˜pullingโ€™ the 6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ out of the bracket to obtain

6๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ3 + 4๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ).

Note 1: Notice that since 1 and โˆ’1 are factors of any expression, the GCF is defined up to the sign. Usually, we choose the positive GCF, but sometimes it may be convenient to choose the negative GCF. For example, we can claim that

GCF(โˆ’2๐‘ฅ๐‘ฅ,โˆ’4๐‘ฅ๐‘ฅ) = 2 or GCF(โˆ’2๐‘ฅ๐‘ฅ,โˆ’4๐‘ฅ๐‘ฅ) = โˆ’2,

depending on what expression we wish to leave after factoring the GCF out:

โˆ’2๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ = 2โŸ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐บ๐บ๐บ๐บ๐บ๐บ

(โˆ’๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฅ๐‘ฅ)๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘›๐‘›๐‘๐‘๐‘›๐‘›๐‘›๐‘›๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘™๐‘™๐‘๐‘๐‘›๐‘›๐‘™๐‘™๐‘๐‘๐‘›๐‘›๐‘›๐‘›๐‘๐‘๐‘๐‘๐‘ก๐‘ก๐‘ก๐‘ก

or โˆ’2๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ = โˆ’2๏ฟฝ๐‘›๐‘›๐‘๐‘๐‘›๐‘›๐‘›๐‘›๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐บ๐บ๐บ๐บ๐บ๐บ

(๐‘ฅ๐‘ฅ + 2๐‘ฅ๐‘ฅ)๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘™๐‘™๐‘๐‘๐‘›๐‘›๐‘™๐‘™๐‘๐‘๐‘›๐‘›๐‘›๐‘›๐‘๐‘๐‘๐‘๐‘ก๐‘ก๐‘ก๐‘ก

Note 2: If the GCF of the terms of a polynomial is equal to 1, we often say that these terms do not have any common factors. What we actually mean is that the terms do not have a common factor other than 1, as factoring 1 out does not help in breaking the original polynomial into a product of simpler polynomials. See Definition 1.1.

Finding the Greatest Common Factor

Find the Greatest Common Factor for the given expressions.

a. 6๐‘ฅ๐‘ฅ4(๐‘ฅ๐‘ฅ + 1)3, 3๐‘ฅ๐‘ฅ3(๐‘ฅ๐‘ฅ + 1), 9๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1)2 b. 4๐œ‹๐œ‹(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ), 8๐œ‹๐œ‹(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ) c. ๐‘Ž๐‘Ž๐‘๐‘2, ๐‘Ž๐‘Ž2๐‘๐‘, ๐‘๐‘, ๐‘Ž๐‘Ž d. 3๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’3, ๐‘ฅ๐‘ฅโˆ’2๐‘ฅ๐‘ฅโˆ’2๐‘ง๐‘ง

a. Since GCF(6, 3, 9) = 3, the lowest power out of ๐‘ฅ๐‘ฅ4, ๐‘ฅ๐‘ฅ3, and ๐‘ฅ๐‘ฅ is ๐‘ฅ๐‘ฅ, and the lowest power out of (๐‘ฅ๐‘ฅ + 1)3, (๐‘ฅ๐‘ฅ + 1), and (๐‘ฅ๐‘ฅ + 1)2 is (๐‘ฅ๐‘ฅ + 1), then

GCF(6๐‘ฅ๐‘ฅ4(๐‘ฅ๐‘ฅ + 1)3, 3๐‘ฅ๐‘ฅ3(๐‘ฅ๐‘ฅ + 1), 9๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1)2) = ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘(๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)

b. Since ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ is opposite to ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ, then ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ can be written as โˆ’(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ). So 4, ๐œ‹๐œ‹, and (๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ) is common for both expressions. Thus,

GCF๏ฟฝ4๐œ‹๐œ‹(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ), 8๐œ‹๐œ‹(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ)๏ฟฝ = ๐Ÿ’๐Ÿ’๐Ÿ’๐Ÿ’(๐Ÿ‘๐Ÿ‘ โˆ’ ๐’š๐’š)

Note: The Greatest Common Factor is unique up to the sign. Notice that in the above example, we could write ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ as โˆ’(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ) and choose the GCF to be 4๐œ‹๐œ‹(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ).

c. The terms ๐‘Ž๐‘Ž๐‘๐‘2, ๐‘Ž๐‘Ž2๐‘๐‘, ๐‘๐‘, and ๐‘Ž๐‘Ž have no common factor other than 1, so

GCF(๐‘Ž๐‘Ž๐‘๐‘2, ๐‘Ž๐‘Ž2๐‘๐‘, ๐‘๐‘, ๐‘Ž๐‘Ž) = ๐Ÿ๐Ÿ

Solution

Page 4: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 217

Greatest Common Factor and Factoring by Grouping

d. The lowest power out of ๐‘ฅ๐‘ฅโˆ’1 and ๐‘ฅ๐‘ฅโˆ’2 is ๐‘ฅ๐‘ฅโˆ’2, and the lowest power out of ๐‘ฅ๐‘ฅโˆ’3 and ๐‘ฅ๐‘ฅโˆ’2 is ๐‘ฅ๐‘ฅโˆ’3. Therefore,

GCF(3๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’3, ๐‘ฅ๐‘ฅโˆ’2๐‘ฅ๐‘ฅโˆ’2๐‘ง๐‘ง) = ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ๐Ÿ๐’š๐’šโˆ’๐Ÿ‘๐Ÿ‘

Factoring out the Greatest Common Factor Factor each expression by taking the greatest common factor out. Simplify the factors, if possible.

a. 54๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2 + 60๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 b. ๐‘Ž๐‘Ž๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž2๐‘๐‘(๐‘Ž๐‘Ž โˆ’ 1)

c. โˆ’๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 5) + ๐‘ฅ๐‘ฅ2(5 โˆ’ ๐‘ฅ๐‘ฅ) โˆ’ (๐‘ฅ๐‘ฅ โˆ’ 5)2 d. ๐‘ฅ๐‘ฅโˆ’1 + 2๐‘ฅ๐‘ฅโˆ’2 โˆ’ ๐‘ฅ๐‘ฅโˆ’3 a. To find the greatest common factor of 54 and 60, we can use the method of dividing

by any common factor, as presented below.

2 54, 603 27, 30 9, 10

So, GCF(54, 60) = 2 โˆ™ 3 = 6.

Since GCF(54๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2, 60๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3) = 6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2, we factor the 6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 out by dividing each term of the polynomial 54๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2 + 60๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 by 6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2, as below.

54๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2 + 60๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

= ๐Ÿ”๐Ÿ”๐Ÿ‘๐Ÿ‘๐’š๐’š๐Ÿ๐Ÿ(๐Ÿ—๐Ÿ—๐Ÿ‘๐Ÿ‘+ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’š๐’š) Note: Since factoring is the reverse process of multiplication, it can be checked by finding the product of the factors. If the product gives us the original polynomial, the factorization is correct.

b. First, notice that the polynomial has two terms, ๐‘Ž๐‘Ž๐‘๐‘ and โˆ’๐‘Ž๐‘Ž2๐‘๐‘(๐‘Ž๐‘Ž โˆ’ 1). The greatest common factor for these two terms is ๐‘Ž๐‘Ž๐‘๐‘, so we have

๐‘Ž๐‘Ž๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž2๐‘๐‘(๐‘Ž๐‘Ž โˆ’ 1) = ๐‘Ž๐‘Ž๐‘๐‘๏ฟฝ๐Ÿ๐Ÿ โˆ’ ๐‘Ž๐‘Ž(๐‘Ž๐‘Ž โˆ’ 1)๏ฟฝ

= ๐‘Ž๐‘Ž๐‘๐‘(1 โˆ’ ๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž) = ๐‘Ž๐‘Ž๐‘๐‘(โˆ’๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž + 1)

= โˆ’๐’‚๐’‚๐’‚๐’‚๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ

Solution

no more common factors

for 9 and 10

all common factors are listed in this column

54๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2

6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2= 9๐‘ฅ๐‘ฅ

60๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3

6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2= 10๐‘ฅ๐‘ฅ

remember to leave 1 for the first term

simplify and arrange in decreasing powers

take the โ€œโˆ’โ€œ out

Page 5: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 218

Factoring

Note: Both factorizations, ๐‘Ž๐‘Ž๐‘๐‘(โˆ’๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž + 1) and โˆ’๐‘Ž๐‘Ž๐‘๐‘(๐‘Ž๐‘Ž2 โˆ’ ๐‘Ž๐‘Ž โˆ’ 1) are correct. However, we customarily leave the polynomial in the bracket with a positive leading coefficient.

c. Observe that if we write the middle term ๐‘ฅ๐‘ฅ2(5 โˆ’ ๐‘ฅ๐‘ฅ) as โˆ’๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ โˆ’ 5) by factoring the

negative out of the (5 โˆ’ ๐‘ฅ๐‘ฅ), then (5 โˆ’ ๐‘ฅ๐‘ฅ) is the common factor of all the terms of the equivalent polynomial

โˆ’๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 5) โˆ’ ๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ โˆ’ 5) โˆ’ (๐‘ฅ๐‘ฅ โˆ’ 5)2.

Then notice that if we take โˆ’(๐‘ฅ๐‘ฅ โˆ’ 5) as the GCF, then the leading term of the remaining polynomial will be positive. So, we factor

โˆ’๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 5) + ๐‘ฅ๐‘ฅ2(5โˆ’ ๐‘ฅ๐‘ฅ) โˆ’ (๐‘ฅ๐‘ฅ โˆ’ 5)2

= โˆ’๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 5) โˆ’ ๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ โˆ’ 5) โˆ’ (๐‘ฅ๐‘ฅ โˆ’ 5)2

= โˆ’(๐‘ฅ๐‘ฅ โˆ’ 5)๏ฟฝ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ2 + (๐‘ฅ๐‘ฅ โˆ’ 5)๏ฟฝ

= โˆ’(๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ“)๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ“๐Ÿ“๏ฟฝ

d. The GCF(๐‘ฅ๐‘ฅโˆ’1, 2๐‘ฅ๐‘ฅโˆ’2, โˆ’๐‘ฅ๐‘ฅโˆ’3) = ๐‘ฅ๐‘ฅโˆ’3, as โˆ’3 is the lowest exponent of the common factor ๐‘ฅ๐‘ฅ. So, we factor out ๐‘ฅ๐‘ฅโˆ’3 as below.

๐‘ฅ๐‘ฅโˆ’1 + 2๐‘ฅ๐‘ฅโˆ’2 โˆ’ ๐‘ฅ๐‘ฅโˆ’3

= ๐Ÿ‘๐Ÿ‘โˆ’๐Ÿ‘๐Ÿ‘ ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ

To check if the factorization is correct, we multiply

๐‘ฅ๐‘ฅโˆ’3 (๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ โˆ’ 1)

= ๐‘ฅ๐‘ฅโˆ’3๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅโˆ’3๐‘ฅ๐‘ฅ โˆ’ 1๐‘ฅ๐‘ฅโˆ’3

= ๐‘ฅ๐‘ฅโˆ’1 + 2๐‘ฅ๐‘ฅโˆ’2 โˆ’ ๐‘ฅ๐‘ฅโˆ’3

Since the product gives us the original polynomial, the factorization is correct.

Factoring by Grouping

Consider the polynomial ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ. It consists of four terms that do not have any common factors. Yet, it can still be factored if we group the first two and the last two terms. The first group of two terms contains the common factor of ๐‘ฅ๐‘ฅ and the second group of two terms contains the common factor of ๐‘ฅ๐‘ฅ. Observe what happens when we factor each group.

๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ๏ฟฝ

+ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ๏ฟฝ

= ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1) + ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1)

= (๐‘ฅ๐‘ฅ + 1)(๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ)

When referring to a common factor, we

have in mind a common factor other

than 1.

the exponent 2 is found by subtracting โˆ’3 from โˆ’1

the exponent 1 is found by subtracting โˆ’3 from โˆ’2

add exponents

now (๐‘ฅ๐‘ฅ + 1) is the

common factor of the entire polynomial

simplify and arrange in decreasing powers

Page 6: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 219

Greatest Common Factor and Factoring by Grouping

This method is called factoring by grouping, in particular, two-by-two grouping.

Warning: After factoring each group, make sure to write the โ€œ+โ€ or โ€œโˆ’โ€œ between the terms. Failing to write these signs leads to the false impression that the polynomial is already factored. For example, if in the second line of the above calculations we would fail to write the middle โ€œ+โ€, the expression would look like a product ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1) ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1), which is not the case. Also, since the expression ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1) + ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ + 1) is a sum, not a product, we should not stop at this step. We need to factor out the common bracket (๐‘ฅ๐‘ฅ + 1) to leave it as a product.

A two-by-two grouping leads to a factorization only if the binomials, after factoring out the common factors in each group, are the same. Sometimes a rearrangement of terms is necessary to achieve this goal. For example, the attempt to factor ๐‘ฅ๐‘ฅ3 โˆ’ 15 + 5๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ by grouping the first and the last two terms,

๐‘ฅ๐‘ฅ3 โˆ’ 15๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

+ 5๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

= (๐‘ฅ๐‘ฅ3 โˆ’ 15) + ๐‘ฅ๐‘ฅ(5๐‘ฅ๐‘ฅ โˆ’ 3)

does not lead us to a common binomial that could be factored out.

However, rearranging terms allows us to factor the original polynomial in the following ways:

๐‘ฅ๐‘ฅ3 โˆ’ 15 + 5๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ or ๐‘ฅ๐‘ฅ3 โˆ’ 15 + 5๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ

= ๐‘ฅ๐‘ฅ3 + 5๐‘ฅ๐‘ฅ2๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

+ โˆ’3๐‘ฅ๐‘ฅ โˆ’ 15๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

= ๐‘ฅ๐‘ฅ3 โˆ’ 3๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

+ 5๐‘ฅ๐‘ฅ2 โˆ’ 15๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

= ๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ + 5) โˆ’ 3(๐‘ฅ๐‘ฅ + 5) = ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ2 โˆ’ 3) + 5(๐‘ฅ๐‘ฅ2 โˆ’ 3)

= (๐‘ฅ๐‘ฅ + 5)(๐‘ฅ๐‘ฅ2 โˆ’ 3) = (๐‘ฅ๐‘ฅ2 โˆ’ 3)(๐‘ฅ๐‘ฅ + 5) Factoring by grouping applies to polynomials with more than three terms. However, not all such polynomials can be factored by grouping. For example, if we attempt to factor ๐‘ฅ๐‘ฅ3 +๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ โˆ’ 2 by grouping, we obtain

๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

+ 2๐‘ฅ๐‘ฅ โˆ’ 2๏ฟฝ๏ฟฝ๏ฟฝ

= ๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ + 1) + 2(๐‘ฅ๐‘ฅ โˆ’ 1).

Unfortunately, the expressions ๐‘ฅ๐‘ฅ + 1 and ๐‘ฅ๐‘ฅ โˆ’ 1 are not the same, so there is no common factor to factor out. One can also check that no other rearrangments of terms allows us for factoring out a common binomial. So, this polynomial cannot be factored by grouping.

Factoring by Grouping

Factor each polynomial by grouping, if possible. Remember to check for the GCF first.

Page 7: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 220

Factoring

a. 2๐‘ฅ๐‘ฅ3 โˆ’ 6๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 3 b. 5๐‘ฅ๐‘ฅ โˆ’ 5๐‘ฅ๐‘ฅ โˆ’ ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ c. 2๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ’ 8 โˆ’ 2๐‘ฅ๐‘ฅ2 + 8๐‘ฅ๐‘ฅ d. ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ + 1 a. Since there is no common factor for all four terms, we will attempt the two-by-two

grouping method. 2๐‘ฅ๐‘ฅ3 โˆ’ 6๐‘ฅ๐‘ฅ2๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

+ ๐‘ฅ๐‘ฅ โˆ’ 3๏ฟฝ๏ฟฝ๏ฟฝ

= 2๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ โˆ’ 3) + 1(๐‘ฅ๐‘ฅ โˆ’ 3)

= (๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘)๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ

b. As before, there is no common factor for all four terms. The two-by-two grouping method works only if the remaining binomials after factoring each group are exactly the same. We can achieve this goal by factoring โ€“๐‘Ž๐‘Ž , rather than ๐‘Ž๐‘Ž, out of the last two terms. So,

5๐‘ฅ๐‘ฅ โˆ’ 5๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

โˆ’๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

= 5(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ) โˆ’ ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ)

= (๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘)๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ

c. Notice that 2 is the GCF of all terms, so we factor it out first.

2๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ’ 8 โˆ’ 2๐‘ฅ๐‘ฅ2 + 8๐‘ฅ๐‘ฅ

= 2(๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ’ 4 โˆ’ ๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ)

Then, observe that grouping the first and last two terms of the remaining polynomial does not help, as the two groups do not have any common factors. However, exchanging for example the second with the fourth term will help, as shown below.

= 2(๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ

โˆ’๐‘ฅ๐‘ฅ2 โˆ’ 4๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ)

= 2[๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ2 + 4) โˆ’ (๐‘ฅ๐‘ฅ2 + 4)]

= ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ’๐Ÿ’๏ฟฝ(๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)

d. The polynomial ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ + 1 does not have any common factors for all four terms. Also, only the first two terms have a common factor. Unfortunately, when attempting to factor using the two-by-two grouping method, we obtain

๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ + 1

= ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 1) + (๐‘ฅ๐‘ฅ + 1),

which cannot be factored, as the expressions ๐‘ฅ๐‘ฅ โˆ’ 1 and ๐‘ฅ๐‘ฅ + 1 are different.

One can also check that no other arrangement of terms allows for factoring of this polynomial by grouping. So, this polynomial cannot be factored by grouping.

Solution

write the 1 for the second term

reverse signs when โ€˜pullingโ€™ a โ€œโˆ’โ€œ out

reverse signs when โ€˜pullingโ€™ a โ€œโˆ’โ€ out

the square bracket is

essential here because of the factor of 2

now, there is no need for the square bracket as multiplication is associative

Page 8: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 221

Greatest Common Factor and Factoring by Grouping

Factoring in Solving Formulas

Solve ๐‘Ž๐‘Ž๐‘๐‘ = 3๐‘Ž๐‘Ž + 5 for ๐‘Ž๐‘Ž.

First, we move the terms containing the variable ๐‘Ž๐‘Ž to one side of the equation,

๐‘Ž๐‘Ž๐‘๐‘ = 3๐‘Ž๐‘Ž + 5 ๐‘Ž๐‘Ž๐‘๐‘ โˆ’ 3๐‘Ž๐‘Ž = 5,

and then factor ๐‘Ž๐‘Ž out ๐‘Ž๐‘Ž(๐‘๐‘ โˆ’ 3) = 5.

So, after dividing by ๐‘๐‘ โˆ’ 3, we obtain ๐’‚๐’‚ = ๐Ÿ“๐Ÿ“๐’‚๐’‚โˆ’๐Ÿ‘๐Ÿ‘

.

F.1 Exercises

Vocabulary Check Complete each blank with the most appropriate term or phrase from the given list: common factor, distributive, grouping, prime, product.

1. To factor a polynomial means to write it as a ____________ of simpler polynomials.

2. The greatest ______________ _____________ of two or more terms is the product of the least powers of each type of common factor out of all the terms.

3. To factor out the GCF, we reverse the ______________ property of multiplication.

4. A polynomial with four terms having no common factors can be still factored by _____________ its terms.

5. A ___________ polynomial, other than a monomial, cannot be factored into two polynomials, both different that 1 or โˆ’1.

Concept Check True or false.

6. The polynomial 6๐‘ฅ๐‘ฅ + 8๐‘ฅ๐‘ฅ is prime.

7. The factorization 12๐‘ฅ๐‘ฅ โˆ’ 3

4๐‘ฅ๐‘ฅ = 1

4(2๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ) is essential to be complete.

8. The GCF of the terms of the polynomial 3(๐‘ฅ๐‘ฅ โˆ’ 2) + ๐‘ฅ๐‘ฅ(2 โˆ’ ๐‘ฅ๐‘ฅ) is (๐‘ฅ๐‘ฅ โˆ’ 2)(2 โˆ’ ๐‘ฅ๐‘ฅ). Concept Check Find the GCF with a positive coefficient for the given expressions.

9. 8๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ, 10๐‘ฅ๐‘ฅ๐‘ง๐‘ง, โˆ’14๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 10. 21๐‘Ž๐‘Ž3๐‘๐‘6, โˆ’35๐‘Ž๐‘Ž7๐‘๐‘5, 28๐‘Ž๐‘Ž5๐‘๐‘8

11. 4๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 1), 3๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ โˆ’ 1) 12. โˆ’๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 3)2, ๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ โˆ’ 3)(๐‘ฅ๐‘ฅ + 2)

13. 9(๐‘Ž๐‘Ž โˆ’ 5), 12(5โˆ’ ๐‘Ž๐‘Ž) 14. (๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅ โˆ’ 1), (2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅ + 1)

Solution

Page 9: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 222

Factoring

15. โˆ’3๐‘ฅ๐‘ฅโˆ’2๐‘ฅ๐‘ฅโˆ’3, 6๐‘ฅ๐‘ฅโˆ’3๐‘ฅ๐‘ฅโˆ’5 16. ๐‘ฅ๐‘ฅโˆ’2(๐‘ฅ๐‘ฅ + 2)โˆ’2, โˆ’๐‘ฅ๐‘ฅโˆ’4(๐‘ฅ๐‘ฅ + 2)โˆ’1 Factor out the greatest common factor. Leave the remaining polynomial with a positive leading coeficient. Simplify the factors, if possible.

17. 9๐‘ฅ๐‘ฅ2 โˆ’ 81๐‘ฅ๐‘ฅ 18. 8๐‘˜๐‘˜3 + 24๐‘˜๐‘˜ 19. 6๐‘๐‘3 โˆ’ 3๐‘๐‘2 โˆ’ 9๐‘๐‘4

20. 6๐‘Ž๐‘Ž3 โˆ’ 36๐‘Ž๐‘Ž4 + 18๐‘Ž๐‘Ž2 21. โˆ’10๐‘Ÿ๐‘Ÿ2๐‘ ๐‘ 2 + 15๐‘Ÿ๐‘Ÿ4๐‘ ๐‘ 2 22. 5๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ3 โˆ’ 10๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ2

23. ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ โˆ’ 2) + ๐‘๐‘(๐‘ฅ๐‘ฅ โˆ’ 2) 24. ๐‘Ž๐‘Ž(๐‘ฅ๐‘ฅ2 โˆ’ 3) โˆ’ 2(๐‘ฅ๐‘ฅ2 โˆ’ 3)

25. (๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 3) + (๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 5) 26. (๐‘›๐‘› โˆ’ 2)(๐‘›๐‘› + 3) + (๐‘›๐‘› โˆ’ 2)(๐‘›๐‘› โˆ’ 3)

27. ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 1) + 5(1 โˆ’ ๐‘ฅ๐‘ฅ) 28. (4๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ) โˆ’ 4๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ)

29. 4(3 โˆ’ ๐‘ฅ๐‘ฅ)2 โˆ’ (3 โˆ’ ๐‘ฅ๐‘ฅ)3 + 3(3 โˆ’ ๐‘ฅ๐‘ฅ) 30. 2(๐‘๐‘ โˆ’ 3) + 4(๐‘๐‘ โˆ’ 3)2 โˆ’ (๐‘๐‘ โˆ’ 3)3 Factor out the least power of each variable.

31. 3๐‘ฅ๐‘ฅโˆ’3 + ๐‘ฅ๐‘ฅโˆ’2 32. ๐‘˜๐‘˜โˆ’2 + 2๐‘˜๐‘˜โˆ’4 33. ๐‘ฅ๐‘ฅโˆ’4 โˆ’ 2๐‘ฅ๐‘ฅโˆ’3 + 7๐‘ฅ๐‘ฅโˆ’2

34. 3๐‘๐‘โˆ’5 + ๐‘๐‘โˆ’3 โˆ’ 2๐‘๐‘โˆ’2 35. 3๐‘ฅ๐‘ฅโˆ’3๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅโˆ’2๐‘ฅ๐‘ฅ2 36. โˆ’5๐‘ฅ๐‘ฅโˆ’2๐‘ฅ๐‘ฅโˆ’3 + 2๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’2 Factor by grouping, if possible.

37. 20 + 5๐‘ฅ๐‘ฅ + 12๐‘ฅ๐‘ฅ + 3๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 38. 2๐‘Ž๐‘Ž3 + ๐‘Ž๐‘Ž2 โˆ’ 14๐‘Ž๐‘Ž โˆ’ 7 39. ๐‘Ž๐‘Ž๐‘Ž๐‘Ž โˆ’ ๐‘Ž๐‘Ž๐‘Ž๐‘Ž + ๐‘๐‘๐‘Ž๐‘Ž โˆ’ ๐‘๐‘๐‘Ž๐‘Ž

40. 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ + 6 โˆ’ 3๐‘ฅ๐‘ฅ 41. 3๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 8๐‘ฅ๐‘ฅ2 42. ๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ

43. 3๐‘๐‘2 + 9๐‘๐‘๐‘๐‘ โˆ’ ๐‘๐‘๐‘๐‘ โˆ’ 3๐‘๐‘2 44. 3๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ๐‘ง๐‘ง2 + 3๐‘ง๐‘ง2 45. 2๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ โˆ’ 2

46. ๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2 + ๐‘Ž๐‘Ž๐‘๐‘ โˆ’ ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 โˆ’ ๐‘๐‘๐‘ฅ๐‘ฅ2 47. ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ 48. ๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ

49. ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 6๐‘ฅ๐‘ฅ + 3๐‘ฅ๐‘ฅ โˆ’ 18 50. ๐‘ฅ๐‘ฅ๐‘›๐‘›๐‘ฅ๐‘ฅ โˆ’ 3๐‘ฅ๐‘ฅ๐‘›๐‘› + ๐‘ฅ๐‘ฅ โˆ’ 5 51. ๐‘Ž๐‘Ž๐‘›๐‘›๐‘ฅ๐‘ฅ๐‘›๐‘› + 2๐‘Ž๐‘Ž๐‘›๐‘› + ๐‘ฅ๐‘ฅ๐‘›๐‘› + 2

Factor completely. Remember to check for the GCF first.

52. 5๐‘ฅ๐‘ฅ โˆ’ 5๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + 5๐‘Ž๐‘Ž๐‘๐‘๐‘Ž๐‘Ž โˆ’ 5๐‘๐‘๐‘Ž๐‘Ž 53. 6๐‘Ÿ๐‘Ÿ๐‘ ๐‘  โˆ’ 14๐‘ ๐‘  + 6๐‘Ÿ๐‘Ÿ โˆ’ 14

54. ๐‘ฅ๐‘ฅ4(๐‘ฅ๐‘ฅ โˆ’ 1) + ๐‘ฅ๐‘ฅ3(๐‘ฅ๐‘ฅ โˆ’ 1) โˆ’ ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ 55. ๐‘ฅ๐‘ฅ3(๐‘ฅ๐‘ฅ โˆ’ 2)2 + 2๐‘ฅ๐‘ฅ2(๐‘ฅ๐‘ฅ โˆ’ 2) โˆ’ (๐‘ฅ๐‘ฅ + 2)(๐‘ฅ๐‘ฅ โˆ’ 2) Discussion Point

56. One of possible factorizations of the polynomial 4๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ5 โˆ’ 8๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 is 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3(2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 โˆ’ 4). Is this a complete factorization?

Use factoring the GCF strategy to solve each formula for the indicated variable.

57. ๐ด๐ด = ๐‘ท๐‘ท + ๐‘ท๐‘ท๐‘Ÿ๐‘Ÿ, for ๐‘ท๐‘ท 58. ๐‘€๐‘€ = 12๐’‘๐’‘๐‘๐‘ + 1

2๐’‘๐’‘๐‘Ÿ๐‘Ÿ, for ๐’‘๐’‘

59. 2๐’•๐’• + ๐‘Ž๐‘Ž = ๐‘˜๐‘˜๐’•๐’•, for ๐’•๐’• 60. ๐‘ค๐‘ค๐’š๐’š = 3๐’š๐’š โˆ’ ๐‘ฅ๐‘ฅ, for ๐’š๐’š

Page 10: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F1 | 223

Greatest Common Factor and Factoring by Grouping

Analytic Skills Write the area of each shaded region in factored form. 61. 62.

63. 64.

4๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ

๐‘Ÿ๐‘Ÿ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ

๐‘Ÿ๐‘Ÿ

Page 11: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 224

Factoring

F.2 Factoring Trinomials

In this section, we discuss factoring trinomials. We start with factoring quadratic trinomials of the form ๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž, then quadratic trinomials of the form ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž, where ๐‘Ž๐‘Ž โ‰  1, and finally trinomials reducible to quadratic by means of substitution.

Factorization of Quadratic Trinomials ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ + ๐’„๐’„

Factorization of a quadratic trinomial ๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž is the reverse process of the FOIL method of multiplying two linear binomials. Observe that

(๐‘ฅ๐‘ฅ + ๐‘๐‘)(๐‘ฅ๐‘ฅ + ๐‘๐‘) = ๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘๐‘๐‘ = ๐‘ฅ๐‘ฅ2 + (๐‘๐‘ + ๐‘๐‘)๐‘ฅ๐‘ฅ + ๐‘๐‘๐‘๐‘

So, to reverse this multiplication, we look for two numbers ๐‘๐‘ and ๐‘๐‘, such that the product ๐‘๐‘๐‘๐‘ equals to the free term ๐‘Ž๐‘Ž and the sum ๐‘๐‘ + ๐‘๐‘ equals to the middle coefficient ๐‘๐‘ of the trinomial.

๐‘ฅ๐‘ฅ2 + ๐‘๐‘โŸ(๐’‘๐’‘+๐’’๐’’)

๐‘ฅ๐‘ฅ + ๐‘Ž๐‘ŽโŸ๐’‘๐’‘๐’’๐’’

= (๐‘ฅ๐‘ฅ + ๐‘๐‘)(๐‘ฅ๐‘ฅ + ๐‘๐‘)

For example, to factor ๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ + 6, we think of two integers that multiply to 6 and add to 5. Such integers are 2 and 3, so ๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ + 6 = (๐‘ฅ๐‘ฅ + 2)(๐‘ฅ๐‘ฅ + 3). Since multiplication is commutative, the order of these factors is not important.

This could also be illustrated geometrically, using algebra tiles.

The area of a square with the side length ๐‘ฅ๐‘ฅ is equal to ๐‘ฅ๐‘ฅ2. The area of a rectangle with the dimensions ๐‘ฅ๐‘ฅ by 1 is equal to ๐‘ฅ๐‘ฅ, and the area of a unit square is equal to 1. So, the trinomial ๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ + 6 can be represented as

To factor this trinomial, we would like to rearrange these tiles to fulfill a rectangle.

The area of such rectangle can be represented as the product of its length, (๐‘ฅ๐‘ฅ + 3), and width, (๐‘ฅ๐‘ฅ + 2) which becomes the factorization of the original trinomial. In the trinomial examined above, the signs of the middle and the last terms are both positive. To analyse how different signs of these terms influence the signs used in the factors, observe the next three examples.

๐‘ฅ๐‘ฅ2 ๐‘ฅ๐‘ฅ

1

๐‘ฅ๐‘ฅ2 ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ

1 1 1 1 1 1

๐‘ฅ๐‘ฅ2 ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ ๐‘ฅ๐‘ฅ 1 1

1 1 1 1

๐‘ฅ๐‘ฅ + 3 ๏ฟฝโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏ๏ฟฝ

๏ฟฝโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏโŽฏ๏ฟฝ

๐‘ฅ๐‘ฅ +

2

Page 12: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 225

Factoring Trinomials

To factor ๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ + 6, we look for two integers that multiply to 6 and add to โˆ’5. Such integers are โˆ’2 and โˆ’3, so ๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ + 6 = (๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ โˆ’ 3). To factor ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6, we look for two integers that multiply to โˆ’6 and add to 1. Such integers are โˆ’2 and 3, so ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6 = (๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 3). To factor ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 6, we look for two integers that multiply to โˆ’6 and add to โˆ’1. Such integers are 2 and โˆ’3, so ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 6 = (๐‘ฅ๐‘ฅ + 2)(๐‘ฅ๐‘ฅ โˆ’ 3). Observation: The positive constant ๐’„๐’„ in a trinomial ๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž tells us that the integers ๐‘๐‘ and ๐‘๐‘ in the factorization (๐‘ฅ๐‘ฅ + ๐‘๐‘)(๐‘ฅ๐‘ฅ + ๐‘๐‘) are both of the same sign and their sum is the middle coefficient ๐‘๐‘. In addition, if ๐‘๐‘ is positive, both ๐‘๐‘ and ๐‘๐‘ are positive, and if ๐‘๐‘ is negative, both ๐‘๐‘ and ๐‘๐‘ are negative.

The negative constant ๐’„๐’„ in a trinomial ๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž tells us that the integers ๐‘๐‘ and ๐‘๐‘ in the factorization (๐‘ฅ๐‘ฅ + ๐‘๐‘)(๐‘ฅ๐‘ฅ + ๐‘๐‘) are of different signs and a difference of their absolute values is the middle coefficient ๐‘๐‘. In addition, the integer whose absolute value is larger takes the sign of the middle coefficient ๐‘๐‘. These observations are summarized in the following Table of Signs.

Assume that |๐‘๐‘| โ‰ฅ |๐‘๐‘|. sum ๐’‚๐’‚ product ๐’„๐’„ ๐’‘๐’‘ ๐’’๐’’ comments

+ + + + ๐‘๐‘ is the sum of ๐‘๐‘ and ๐‘๐‘ โˆ’ + โˆ’ โˆ’ ๐‘๐‘ is the sum of ๐‘๐‘ and ๐‘๐‘ + โˆ’ + โˆ’ ๐‘๐‘ is the difference |๐‘๐‘| โˆ’ |๐‘๐‘| โˆ’ โˆ’ โˆ’ + ๐‘๐‘ is the difference |๐‘๐‘| โˆ’ |๐‘๐‘|

Factoring Trinomials with the Leading Coefficient Equal to 1

Factor each trinomial, if possible.

a. ๐‘ฅ๐‘ฅ2 โˆ’ 10๐‘ฅ๐‘ฅ + 24 b. ๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ โˆ’ 36 c. ๐‘ฅ๐‘ฅ2 โˆ’ 39๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 40๐‘ฅ๐‘ฅ2 d. ๐‘ฅ๐‘ฅ2 + 7๐‘ฅ๐‘ฅ + 9 a. To factor the trinomial ๐‘ฅ๐‘ฅ2 โˆ’ 10๐‘ฅ๐‘ฅ + 24, we look for two integers with a product of 24

and a sum of โˆ’10. The two integers are fairly easy to guess, โˆ’4 and โˆ’6. However, if one wishes to follow a more methodical way of finding these numbers, one can list the possible two-number factorizations of 24 and observe the sums of these numbers.

product = ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ (pairs of factors of 24)

sum = โˆ’๐Ÿ๐Ÿ๐Ÿ๐Ÿ (sum of factors)

๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ’๐Ÿ’ 25 ๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 14 ๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ–๐Ÿ– 11 ๐Ÿ’๐Ÿ’ โˆ™ ๐Ÿ”๐Ÿ” 10

Solution

๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ๐‘ฉ!

For simplicity, the table doesnโ€™t include signs of the

integers. The signs are determined according to

the Table of Signs.

Page 13: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 226

Factoring

Since the product is positive and the sum is negative, both integers must be negative. So, we take โˆ’4 and โˆ’6.

Thus, ๐‘ฅ๐‘ฅ2 โˆ’ 10๐‘ฅ๐‘ฅ + 24 = (๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ’)(๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ”๐Ÿ”). The reader is encouraged to check this factorization by multiplying the obtained binomials.

b. To factor the trinomial ๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ โˆ’ 36, we look for two integers with a product of โˆ’36

and a sum of 9. So, let us list the possible factorizations of 36 into two numbers and observe the differences of these numbers.

product = โˆ’๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” (pairs of factors of 36)

sum = ๐Ÿ—๐Ÿ— (difference of factors)

๐Ÿ๐Ÿ โˆ™ ๐Ÿ‘๐Ÿ‘๐Ÿ”๐Ÿ” 35 ๐Ÿ๐Ÿ โˆ™ ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ– 16 ๐Ÿ‘๐Ÿ‘ โˆ™ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ 9 ๐Ÿ’๐Ÿ’ โˆ™ ๐Ÿ—๐Ÿ— 5 ๐Ÿ”๐Ÿ” โˆ™ ๐Ÿ”๐Ÿ” 0

Since the product is negative and the sum is positive, the integers are of different signs

and the one with the larger absolute value assumes the sign of the sum, which is positive. So, we take 12 and โˆ’3.

Thus, ๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ โˆ’ 36 = (๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘). Again, the reader is encouraged to check this factorization by mltiplying the obtained binomials.

c. To factor the trinomial ๐‘ฅ๐‘ฅ2 โˆ’ 39๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 40๐‘ฅ๐‘ฅ2, we look for two binomials of the form

(๐‘ฅ๐‘ฅ+ ?๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅ+ ?๐‘ฅ๐‘ฅ) where the question marks are two integers with a product of โˆ’40 and a sum of 39. Since the two integers are of different signs and the absolute values of these integers differ by 39, the two integers must be โˆ’40 and 1.

Therefore, ๐‘ฅ๐‘ฅ2 โˆ’ 39๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 40๐‘ฅ๐‘ฅ2 = (๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ’๐Ÿ’๐Ÿ๐Ÿ๐’š๐’š)(๐Ÿ‘๐Ÿ‘ + ๐’š๐’š). Suggestion: Create a table of pairs of factors only if guessing the two integers with the given product and sum becomes too difficult. d. When attempting to factor the trinomial ๐‘ฅ๐‘ฅ2 + 7๐‘ฅ๐‘ฅ + 9, we look for a pair of integers

that would multiply to 9 and add to 7. There are only two possible factorizations of 9: 9 โˆ™ 1 and 3 โˆ™ 3. However, neither of the sums, 9 + 1 or 3 + 3, are equal to 7. So, there is no possible way of factoring ๐‘ฅ๐‘ฅ2 + 7๐‘ฅ๐‘ฅ + 9 into two linear binomials with integral coefficients. Therefore, if we admit only integral coefficients, this polynomial is not factorable.

Factorization of Quadratic Trinomials ๐’‚๐’‚๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ + ๐’„๐’„ with ๐’‚๐’‚ โ‰ 0

Before discussing factoring quadratic trinomials with a leading coefficient different than 1, let us observe the multiplication process of two linear binomials with integral coefficients.

(๐’Ž๐’Ž๐‘ฅ๐‘ฅ + ๐‘๐‘)(๐‘ฉ๐‘ฉ๐‘ฅ๐‘ฅ + ๐‘๐‘) = ๐‘š๐‘š๐‘›๐‘›๐‘ฅ๐‘ฅ2 + ๐‘š๐‘š๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘›๐‘›๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘๐‘๐‘ = ๐’‚๐’‚โŸ๐’Ž๐’Ž๐‘ฉ๐‘ฉ

๐‘ฅ๐‘ฅ2 + ๐’‚๐’‚โŸ(๐’Ž๐’Ž๐’’๐’’+๐‘ฉ๐‘ฉ๐’‘๐’‘)

๐‘ฅ๐‘ฅ + ๐’„๐’„โŸ๐’‘๐’‘๐’’๐’’

This row contains the solution, so there is no need to list any of the

subsequent rows.

Page 14: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 227

Factoring Trinomials

To reverse this process, notice that this time, we are looking for four integers ๐‘š๐‘š, ๐‘›๐‘›, ๐‘๐‘, and ๐‘๐‘ that satisfy the conditions

๐‘š๐‘š๐‘›๐‘› = ๐‘Ž๐‘Ž, ๐‘๐‘๐‘๐‘ = ๐‘Ž๐‘Ž, ๐‘š๐‘š๐‘๐‘ + ๐‘›๐‘›๐‘๐‘ = ๐‘๐‘,

where ๐‘Ž๐‘Ž, ๐‘๐‘, ๐‘Ž๐‘Ž are the coefficients of the quadratic trinomial that needs to be factored. This produces a lot more possibilities to consider than in the guessing method used in the case of the leading coefficient equal to 1. However, if at least one of the outside coefficients, ๐‘Ž๐‘Ž or ๐‘Ž๐‘Ž, are prime, the guessing method still works reasonably well.

For example, consider 2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6. Since the coefficient ๐‘Ž๐‘Ž = 2 = ๐‘š๐‘š๐‘›๐‘› is a prime number, there is only one factorization of ๐‘Ž๐‘Ž, which is 1 โˆ™ 2. So, we can assume that ๐‘š๐‘š = 2 and ๐‘›๐‘› =1. Therefore,

2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6 = (2๐‘ฅ๐‘ฅ ยฑ |๐‘๐‘|)(๐‘ฅ๐‘ฅ โˆ“ |๐‘๐‘|)

Since the constant term ๐‘Ž๐‘Ž = โˆ’6 = ๐‘๐‘๐‘๐‘ is negative, the binomial factors have different signs in the middle. Also, since ๐‘๐‘๐‘๐‘ is negative, we search for such ๐‘๐‘ and ๐‘๐‘ that the inside and outside products differ by the middle term ๐‘๐‘ = ๐‘ฅ๐‘ฅ, up to its sign. The only factorizations of 6 are 1 โˆ™ 6 and 2 โˆ™ 3. So we try

2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6 = (2๐‘ฅ๐‘ฅ ยฑ 1)(๐‘ฅ๐‘ฅ โˆ“ 6)

2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6 = (2๐‘ฅ๐‘ฅ ยฑ 6)(๐‘ฅ๐‘ฅ โˆ“ 1)

2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6 = (2๐‘ฅ๐‘ฅ ยฑ 2)(๐‘ฅ๐‘ฅ โˆ“ 3)

2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6 = (2๐‘ฅ๐‘ฅ ยฑ 3)(๐‘ฅ๐‘ฅ โˆ“ 2)

Then, since the difference between the inner and outer products should be positive, the larger product must be positive and the smaller product must be negative. So, we distribute the signs as below.

2๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 6 = (2๐‘ฅ๐‘ฅ โˆ’ 3)(๐‘ฅ๐‘ฅ + 2)

In the end, it is a good idea to multiply the product to check if it results in the original polynomial. We leave this task to the reader. What if the outside coefficients of the quadratic trinomial are both composite? Checking all possible distributions of coefficients ๐‘š๐‘š, ๐‘›๐‘›, ๐‘๐‘, and ๐‘๐‘ might be too cumbersome. Luckily, there is another method of factoring, called decomposition.

๐‘ฅ๐‘ฅ

12๐‘ฅ๐‘ฅ differs by 11๐‘ฅ๐‘ฅ โ†’ too much

6๐‘ฅ๐‘ฅ 2๐‘ฅ๐‘ฅ

differs by 4๐‘ฅ๐‘ฅ โ†’ still too much

2๐‘ฅ๐‘ฅ 6๐‘ฅ๐‘ฅ

differs by 4๐‘ฅ๐‘ฅ โ†’ still too much

3๐‘ฅ๐‘ฅ 4๐‘ฅ๐‘ฅ

differs by ๐‘ฅ๐‘ฅ โ†’ perfect!

โˆ’3๐‘ฅ๐‘ฅ 4๐‘ฅ๐‘ฅ

Observe that these two trials can be disregarded at once as 2 is not a common factor

of all the terms of the trinomial, while it is a

common factor of the terms of one of the binomials.

Page 15: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 228

Factoring

The decomposition method is based on the reverse FOIL process. Suppose the polynomial 6๐‘ฅ๐‘ฅ2 + 19๐‘ฅ๐‘ฅ + 15 factors into (๐‘š๐‘š๐‘ฅ๐‘ฅ + ๐‘๐‘)(๐‘›๐‘›๐‘ฅ๐‘ฅ + ๐‘๐‘). Observe that the FOIL multiplication of these two binomials results in the four term polynomial,

๐‘š๐‘š๐‘›๐‘›๐‘ฅ๐‘ฅ2 + ๐‘š๐‘š๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘›๐‘›๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘๐‘๐‘๐‘,

which after combining the two middle terms gives us the original trinomial. So, reversing these steps would lead us to the factored form of 6๐‘ฅ๐‘ฅ2 + 19๐‘ฅ๐‘ฅ + 15.

To reverse the FOIL process, we would like to:

โ€ข Express the middle term, 19๐‘ฅ๐‘ฅ, as a sum of two terms, ๐‘š๐‘š๐‘๐‘๐‘ฅ๐‘ฅ and ๐‘›๐‘›๐‘๐‘๐‘ฅ๐‘ฅ, such that the product of their coefficients, ๐‘š๐‘š๐‘›๐‘›๐‘๐‘๐‘๐‘, is equal to the product of the outside coefficients ๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 6 โˆ™ 15 = 90.

โ€ข Then, factor the four-term polynomial by grouping.

Thus, we are looking for two integers with the product of 90 and the sum of 19. One can check that 9 and 10 satisfy these conditions. Therefore,

6๐‘ฅ๐‘ฅ2 + 19๐‘ฅ๐‘ฅ + 15

= 6๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 10๐‘ฅ๐‘ฅ + 15

= 3๐‘ฅ๐‘ฅ(2๐‘ฅ๐‘ฅ + 3) + 5(2๐‘ฅ๐‘ฅ + 3)

= (2๐‘ฅ๐‘ฅ + 3)(3๐‘ฅ๐‘ฅ + 5)

Factoring Trinomials with the Leading Coefficient Different than 1

Factor completely each trinomial.

a. 6๐‘ฅ๐‘ฅ3 + 14๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ b. โˆ’6๐‘ฅ๐‘ฅ2 โˆ’ 10 + 19๐‘ฅ๐‘ฅ c. 18๐‘Ž๐‘Ž2 โˆ’ 19๐‘Ž๐‘Ž๐‘๐‘ โˆ’ 12๐‘๐‘2 d. 2(๐‘ฅ๐‘ฅ + 3)2 + 5(๐‘ฅ๐‘ฅ + 3) โˆ’ 12 a. First, we factor out the GCF, which is 2๐‘ฅ๐‘ฅ. This gives us

6๐‘ฅ๐‘ฅ3 + 14๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ = 2๐‘ฅ๐‘ฅ(3๐‘ฅ๐‘ฅ2 + 7๐‘ฅ๐‘ฅ + 2)

The outside coefficients of the remaining trinomial are prime, so we can apply the guessing method to factor it further. The first terms of the possible binomial factors must be 3๐‘ฅ๐‘ฅ and ๐‘ฅ๐‘ฅ while the last terms must be 2 and 1. Since both signs in the trinomial are positive, the signs used in the binomial factors must be both positive as well. So, we are ready to give it a try:

2๐‘ฅ๐‘ฅ(3๐‘ฅ๐‘ฅ + 2 )(๐‘ฅ๐‘ฅ + 1 ) or 2๐‘ฅ๐‘ฅ(3๐‘ฅ๐‘ฅ + 1 )(๐‘ฅ๐‘ฅ + 2 )

The first distribution of coefficients does not work as it would give us 2๐‘ฅ๐‘ฅ + 3๐‘ฅ๐‘ฅ = 5๐‘ฅ๐‘ฅ for the middle term. However, the second distribution works as ๐‘ฅ๐‘ฅ + 6๐‘ฅ๐‘ฅ = 7๐‘ฅ๐‘ฅ, which matches the middle term of the trinomial. So,

6๐‘ฅ๐‘ฅ3 + 14๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘(๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)(๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)

Solution

This product is often referred to as the

master product or the ๐’‚๐’‚๐’„๐’„-product.

2๐‘ฅ๐‘ฅ 3๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ 6๐‘ฅ๐‘ฅ

Page 16: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 229

Factoring Trinomials

b. Notice that the trinomial is not arranged in decreasing order of powers of ๐‘ฅ๐‘ฅ. So, first, we rearrange the last two terms to achieve the decreasing order. Also, we factor out the โˆ’1, so that the leading term of the remaining trinomial is positive.

โˆ’6๐‘ฅ๐‘ฅ2 โˆ’ 10 + 19๐‘ฅ๐‘ฅ = โˆ’6๐‘ฅ๐‘ฅ2 + 19๐‘ฅ๐‘ฅ โˆ’ 10 = โˆ’(6๐‘ฅ๐‘ฅ2 โˆ’ 19๐‘ฅ๐‘ฅ + 10)

Then, since the outside coefficients are composite, we will use the decomposition method of factoring. The ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-product equals to 60 and the middle coefficient equals to โˆ’19. So, we are looking for two integers that multiply to 60 and add to โˆ’19. The integers that satisfy these conditions are โˆ’15 and โˆ’4. Hence, we factor

โˆ’(6๐‘ฅ๐‘ฅ2 โˆ’ 19๐‘ฅ๐‘ฅ + 10)

= โˆ’(6๐‘ฅ๐‘ฅ2 โˆ’ 15๐‘ฅ๐‘ฅ โˆ’ 4๐‘ฅ๐‘ฅ + 10)

= โˆ’[3๐‘ฅ๐‘ฅ(2๐‘ฅ๐‘ฅ โˆ’ 5) โˆ’ 2(2๐‘ฅ๐‘ฅ โˆ’ 5)]

= โˆ’(๐Ÿ๐Ÿ๐’š๐’š โˆ’ ๐Ÿ“๐Ÿ“)(๐Ÿ‘๐Ÿ‘๐’š๐’š โˆ’ ๐Ÿ๐Ÿ)

c. There is no common factor to take out of the polynomial 18๐‘Ž๐‘Ž2 โˆ’ 19๐‘Ž๐‘Ž๐‘๐‘ โˆ’ 12๐‘๐‘2. So, we will attempt to factor it into two binomials of the type (๐‘š๐‘š๐‘Ž๐‘Ž ยฑ ๐‘๐‘๐‘๐‘)(๐‘›๐‘›๐‘Ž๐‘Ž โˆ“ ๐‘๐‘๐‘๐‘), using the decomposition method. The ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-product equals โˆ’12 โˆ™ 18 = โˆ’2 โˆ™ 2 โˆ™ 2 โˆ™ 3 โˆ™ 3 โˆ™ 3 and the middle coefficient equals โˆ’19. To find the two integers that multiply to the ๐‘Ž๐‘Ž๐‘Ž๐‘Ž-product and add to โˆ’19, it is convenient to group the factors of the product

2 โˆ™ 2 โˆ™ 2 โˆ™ 3 โˆ™ 3 โˆ™ 3

in such a way that the products of each group differ by 19. It turns out that grouping all the 2โ€™s and all the 3โ€™s satisfy this condition, as 8 and 27 differ by 19. Thus, the desired integers are โˆ’27 and 8, as the sum of them must be โˆ’19. So, we factor

18๐‘Ž๐‘Ž2 โˆ’ 19๐‘Ž๐‘Ž๐‘๐‘ โˆ’ 12๐‘๐‘2

= 18๐‘Ž๐‘Ž2 โˆ’ 27๐‘Ž๐‘Ž๐‘๐‘ + 8๐‘Ž๐‘Ž๐‘๐‘ โˆ’ 12๐‘๐‘2

= 9๐‘Ž๐‘Ž(2๐‘Ž๐‘Ž โˆ’ 3๐‘๐‘) + 4๐‘๐‘(2๐‘Ž๐‘Ž โˆ’ 3๐‘๐‘)

= (๐Ÿ๐Ÿ๐’‚๐’‚ โˆ’ ๐Ÿ‘๐Ÿ‘๐’‚๐’‚)(๐Ÿ—๐Ÿ—๐’‚๐’‚ + ๐Ÿ’๐Ÿ’๐’‚๐’‚)

d. To factor 2(๐‘ฅ๐‘ฅ + 3)2 + 5(๐‘ฅ๐‘ฅ + 3) โˆ’ 12, first, we notice that treating the group (๐‘ฅ๐‘ฅ + 3) as another variable, say ๐‘Ž๐‘Ž, simplify the problem to factoring the quadratic trinomial

2๐‘Ž๐‘Ž2 + 5๐‘Ž๐‘Ž โˆ’ 12

This can be done by the guessing method. Since

2๐‘Ž๐‘Ž2 + 5๐‘Ž๐‘Ž โˆ’ 12 = (2๐‘Ž๐‘Ž โˆ’ 3)(๐‘Ž๐‘Ž + 4),

then

2(๐‘ฅ๐‘ฅ + 3)2 + 5(๐‘ฅ๐‘ฅ + 3) โˆ’ 12 = [2(๐‘ฅ๐‘ฅ + 3) โˆ’ 3][(๐‘ฅ๐‘ฅ + 3) + 4]

= (2๐‘ฅ๐‘ฅ + 6 โˆ’ 3)(๐‘ฅ๐‘ฅ + 3 + 4)

= (๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘)(๐Ÿ‘๐Ÿ‘ + ๐Ÿ•๐Ÿ•)

remember to reverse the sign!

the square bracket is

essential because of the negative sign outside

โˆ’3๐‘Ž๐‘Ž 8๐‘Ž๐‘Ž

IN FORM

Page 17: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 230

Factoring

Note 1: Polynomials that can be written in the form ๐’‚๐’‚( )๐Ÿ๐Ÿ + ๐’‚๐’‚( ) + ๐’„๐’„, where ๐‘Ž๐‘Ž โ‰  0 and ( ) represents any nonconstant polynomial expression, are referred to as quadratic in form. To factor such polynomials, it is convenient to replace the expression in the bracket by a single variable, different than the original one. This was illustrated in Example 2d by substituting ๐‘Ž๐‘Ž for (๐‘ฅ๐‘ฅ + 3). However, when using this substitution method, we must remember to leave the final answer in terms of the original variable. So, after factoring, we replace ๐‘Ž๐‘Ž back with (๐‘ฅ๐‘ฅ + 3), and then simplify each factor.

Note 2: Some students may feel comfortable factoring polynomials quadratic in form directly, without using substitution.

Application of Factoring in Geometry Problems If the area of a trapezoid is 2๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ + 2 square meters and the lengths of the two parallel sides are ๐‘ฅ๐‘ฅ and ๐‘ฅ๐‘ฅ + 1 meters, then what polynomial represents the height of the trapezoid?

Using the formula for the area of a trapezoid, we write the equation 12โ„Ž(๐‘Ž๐‘Ž + ๐‘๐‘) = 2๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ + 2

Since ๐‘Ž๐‘Ž + ๐‘๐‘ = ๐‘ฅ๐‘ฅ + (๐‘ฅ๐‘ฅ + 1) = 2๐‘ฅ๐‘ฅ + 1, then we have 12โ„Ž(2๐‘ฅ๐‘ฅ + 1) = 2๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ + 2,

which after factoring the right-hand side gives us 12โ„Ž(2๐‘ฅ๐‘ฅ + 1) = (2๐‘ฅ๐‘ฅ + 1)(๐‘ฅ๐‘ฅ + 2).

To find โ„Ž, it is enough to divide the above equation by the common factor (2๐‘ฅ๐‘ฅ + 1) and then multiply it by 2. So,

โ„Ž = 2(๐‘ฅ๐‘ฅ + 2) = ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ’๐Ÿ’.

F.2 Exercises

Vocabulary Check Complete each blank with the most appropriate term or phrase from the given list:

decomposition, guessing, multiplication, prime, quadratic, sum, variable. 1. Any factorization can be checked by using _________________.

Solution

๐‘ฅ๐‘ฅ

๐‘ฅ๐‘ฅ + 1

โ„Ž

Page 18: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 231

Factoring Trinomials

2. To factor a quadratic trinomial with a leading coefficient equal to 1, we usually use the ______________ method.

3. To factor ๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž using the guessing method, write the trinomial as (๐‘ฅ๐‘ฅ+ ? )(๐‘ฅ๐‘ฅ+ ? ), where the question marks are two factors of ๐‘Ž๐‘Ž whose _______ is ๐‘๐‘.

4. To factor a quadratic trinomial with a leading coefficient different than 1, we usually use the ______________ method. If one of the outside coefficients is a __________ number, we can still use the guessing method.

5. To factor polynomials that are _____________ in form, it is convenient to substitute a single variable (different than the original one) for the expression that appears in the first and the second power. However, the final factorization must be expressed back in the original __________.

Concept Check

6. If ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ2 + ๐‘๐‘๐‘ฅ๐‘ฅ + ๐‘Ž๐‘Ž has no monomial factor, can either of the possible binomial factors have a monomial factor?

7. Is (2๐‘ฅ๐‘ฅ + 5)(2๐‘ฅ๐‘ฅ โˆ’ 4) a complete factorization of the polynomial 4๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ โˆ’ 20?

8. When factoring the polynomial โˆ’2๐‘ฅ๐‘ฅ2 โˆ’ 7๐‘ฅ๐‘ฅ + 15, students obtained the following answers: (โˆ’2๐‘ฅ๐‘ฅ + 3)(๐‘ฅ๐‘ฅ + 5), (2๐‘ฅ๐‘ฅ โˆ’ 3)(โˆ’๐‘ฅ๐‘ฅ โˆ’ 5), or โˆ’(2๐‘ฅ๐‘ฅ โˆ’ 3)(๐‘ฅ๐‘ฅ + 5)

Which of the above factorizations are correct?

9. Is the polynomial ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ + 2 factorable or is it prime?

Concept Check Fill in the missing factor.

10. ๐‘ฅ๐‘ฅ2 โˆ’ 4๐‘ฅ๐‘ฅ + 3 = ( )(๐‘ฅ๐‘ฅ โˆ’ 1) 11. ๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ โˆ’ 10 = ( )(๐‘ฅ๐‘ฅ โˆ’ 2)

12. ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 20๐‘ฅ๐‘ฅ2 = (๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ)( ) 13. ๐‘ฅ๐‘ฅ2 + 12๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 35๐‘ฅ๐‘ฅ2 = (๐‘ฅ๐‘ฅ + 5๐‘ฅ๐‘ฅ)( )

Factor, if possible.

14. ๐‘ฅ๐‘ฅ2 + 7๐‘ฅ๐‘ฅ + 12 15. ๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ + 35 16. ๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ โˆ’ 48

17. ๐‘Ž๐‘Ž2 โˆ’ ๐‘Ž๐‘Ž โˆ’ 42 18. ๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ + 3 19. ๐‘๐‘2 โˆ’ 12๐‘๐‘ โˆ’ 27

20. ๐‘š๐‘š2 โˆ’ 15๐‘š๐‘š + 56 21. ๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ โˆ’ 28 22. 18 โˆ’ 7๐‘›๐‘› โˆ’ ๐‘›๐‘›2

23. 20 + 8๐‘๐‘ โˆ’ ๐‘๐‘2 24. ๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 6๐‘ฅ๐‘ฅ2 25. ๐‘๐‘2 + 9๐‘๐‘๐‘๐‘ + 20๐‘๐‘2

Factor completely.

26. โˆ’๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ + 21 27. โˆ’๐‘ฅ๐‘ฅ2 + 14๐‘ฅ๐‘ฅ + 32 28. ๐‘›๐‘›4 โˆ’ 13๐‘›๐‘›3 โˆ’ 30๐‘›๐‘›2

29. ๐‘ฅ๐‘ฅ3 โˆ’ 15๐‘ฅ๐‘ฅ2 + 54๐‘ฅ๐‘ฅ 30. โˆ’2๐‘ฅ๐‘ฅ2 + 28๐‘ฅ๐‘ฅ โˆ’ 80 31. โˆ’3๐‘ฅ๐‘ฅ2 โˆ’ 33๐‘ฅ๐‘ฅ โˆ’ 72

32. ๐‘ฅ๐‘ฅ4๐‘ฅ๐‘ฅ + 7๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ’ 60๐‘ฅ๐‘ฅ 33. 24๐‘Ž๐‘Ž๐‘๐‘2 + 6๐‘Ž๐‘Ž2๐‘๐‘2 โˆ’ 3๐‘Ž๐‘Ž3๐‘๐‘2 34. 40 โˆ’ 35๐‘ก๐‘ก15 โˆ’ 5๐‘ก๐‘ก30

35. ๐‘ฅ๐‘ฅ4๐‘ฅ๐‘ฅ2 + 11๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ + 30 36. 64๐‘›๐‘› โˆ’ 12๐‘›๐‘›5 โˆ’ ๐‘›๐‘›9 37. 24 โˆ’ 5๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ ๐‘ฅ๐‘ฅ2๐‘›๐‘›

Page 19: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 232

Factoring

Discussion Point

38. A polynomial ๐‘ฅ๐‘ฅ2 + ๐‘๐‘ ๐‘ฅ๐‘ฅ + 75 with an unknown coefficient ๐‘๐‘ by the middle term can be factored into two binomials with integral coefficients. What are the possible values of ๐‘๐‘?

Concept Check Fill in the missing factor.

39. 2๐‘ฅ๐‘ฅ2 + 7๐‘ฅ๐‘ฅ + 3 = ( )(๐‘ฅ๐‘ฅ + 3) 40. 3๐‘ฅ๐‘ฅ2 โˆ’ 10๐‘ฅ๐‘ฅ + 8 = ( )(๐‘ฅ๐‘ฅ โˆ’ 2)

41. 4๐‘ฅ๐‘ฅ2 + 8๐‘ฅ๐‘ฅ โˆ’ 5 = (2๐‘ฅ๐‘ฅ โˆ’ 1)( ) 42. 6๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 15 = (2๐‘ฅ๐‘ฅ + 3)( )

Factor completely.

43. 2๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ โˆ’ 3 44. 6๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 2 45. 4๐‘š๐‘š2 + 17๐‘š๐‘š + 4

46. 6๐‘ก๐‘ก2 โˆ’ 13๐‘ก๐‘ก + 6 47. 10๐‘ฅ๐‘ฅ2 + 23๐‘ฅ๐‘ฅ โˆ’ 5 48. 42๐‘›๐‘›2 + 5๐‘›๐‘› โˆ’ 25

49. 3๐‘๐‘2 โˆ’ 27๐‘๐‘ + 24 50. โˆ’12๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 30 51. 6๐‘ฅ๐‘ฅ2 + 41๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ โˆ’ 7๐‘ฅ๐‘ฅ2

52. 18๐‘ฅ๐‘ฅ2 + 27๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 10๐‘ฅ๐‘ฅ2 53. 8 โˆ’ 13๐‘Ž๐‘Ž + 6๐‘Ž๐‘Ž2 54. 15 โˆ’ 14๐‘›๐‘› โˆ’ 8๐‘›๐‘›2

55. 30๐‘ฅ๐‘ฅ4 + 3๐‘ฅ๐‘ฅ3 โˆ’ 9๐‘ฅ๐‘ฅ2 56. 10๐‘ฅ๐‘ฅ3 โˆ’ 6๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ4 57. 2๐‘ฅ๐‘ฅ6 + 7๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 + 6๐‘ฅ๐‘ฅ2

58. 9๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2 โˆ’ 4 + 5๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ 59. 16๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ3 + 3๐‘ฅ๐‘ฅ โˆ’ 16๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 60. 4๐‘๐‘4 โˆ’ 28๐‘๐‘2๐‘๐‘ + 49๐‘๐‘2

61. 4(๐‘ฅ๐‘ฅ โˆ’ 1)2 โˆ’ 12(๐‘ฅ๐‘ฅ โˆ’ 1) + 9 62. 2(๐‘Ž๐‘Ž + 2)2 + 11(๐‘Ž๐‘Ž + 2) + 15 63. 4๐‘ฅ๐‘ฅ2๐‘›๐‘› โˆ’ 4๐‘ฅ๐‘ฅ๐‘›๐‘› โˆ’ 3

Discussion Point

64. A polynomial 2๐‘ฅ๐‘ฅ2 + ๐‘๐‘ ๐‘ฅ๐‘ฅ โˆ’ 15 with an unknown coefficient ๐‘๐‘ by the middle term can be factored into two binomials with integral coefficients. What are the possible values of ?

Analytic Skills

65. If the volume of a case of apples is ๐‘ฅ๐‘ฅ3 + ๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ cubic feet and the height of this box is (๐‘ฅ๐‘ฅ โˆ’ 1) feet, then what polynomial represents the area of the bottom of the case?

66. A ceremonial red carpet is rectangular in shape and covers 2๐‘ฅ๐‘ฅ2 + 11๐‘ฅ๐‘ฅ + 12 square feet. If the width of the carpet is (๐‘ฅ๐‘ฅ + 4) feet, express the length, in feet.

๐‘ฅ๐‘ฅโˆ’

1

Page 20: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 233

Special Factoring and a General Strategy of Factoring

F.3 Special Factoring and a General Strategy of Factoring

Recall that in Section P2, we considered formulas that provide a shortcut for finding special products, such as a product of two conjugate binomials,

(๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘) = ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ,

or the perfect square of a binomial,

(๐‘Ž๐‘Ž ยฑ ๐‘๐‘)2 = ๐’‚๐’‚๐Ÿ๐Ÿ ยฑ ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ.

Since factoring reverses the multiplication process, these formulas can be used as shortcuts in factoring binomials of the form ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ (difference of squares), and trinomials of the form ๐’‚๐’‚๐Ÿ๐Ÿ ยฑ ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ (perfect square). In this section, we will also introduce a formula for factoring binomials of the form ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ ยฑ ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ (sum or difference of cubes). These special product factoring techniques are very useful in simplifying expressions or solving equations, as they allow for more efficient algebraic manipulations.

At the end of this section, we give a summary of all the factoring strategies shown in this chapter.

Difference of Squares Out of the special factoring formulas, the easiest one to use is the difference of squares,

๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ = (๐’‚๐’‚ + ๐’‚๐’‚)(๐’‚๐’‚ โˆ’ ๐’‚๐’‚) Figure 3.1 shows a geometric interpretation of this formula. The area of the yellow square, ๐‘Ž๐‘Ž2, diminished by the area of the blue square, ๐‘๐‘2, can be rearranged to a rectangle with the length of (๐‘Ž๐‘Ž + ๐‘๐‘) and the width of (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘). To factor a difference of squares ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ, first, identify ๐’‚๐’‚ and ๐’‚๐’‚, which are the expressions being squared, and then, form two factors, the sum (๐’‚๐’‚ + ๐’‚๐’‚), and the difference (๐’‚๐’‚ โˆ’ ๐’‚๐’‚), as illustrated in the example below.

Factoring Differences of Squares

Factor each polynomial completely.

a. 25๐‘ฅ๐‘ฅ2 โˆ’ 1 b. 3.6๐‘ฅ๐‘ฅ4 โˆ’ 0.9๐‘ฅ๐‘ฅ6 c. ๐‘ฅ๐‘ฅ4 โˆ’ 81 d. 16 โˆ’ (๐‘Ž๐‘Ž โˆ’ 2)2 a. First, we rewrite each term of 25๐‘ฅ๐‘ฅ2 โˆ’ 1 as a perfect square of an expression.

๐‘Ž๐‘Ž ๐‘๐‘

25๐‘ฅ๐‘ฅ2 โˆ’ 1 = (5๐‘ฅ๐‘ฅ)2 โˆ’ 12

Then, treating 5๐‘ฅ๐‘ฅ as the ๐‘Ž๐‘Ž and 1 as the ๐‘๐‘ in the difference of squares formula ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘), we factor:

Solution

Figure 3.1

๐‘Ž๐‘Ž

๐‘๐‘ ๐‘Ž๐‘Ž โˆ’ ๐‘๐‘ ๐‘๐‘

๐‘Ž๐‘Žโˆ’๐‘๐‘

๐‘Ž๐‘Ž ๐‘Ž๐‘Ž + ๐‘๐‘

๐‘Ž๐‘Ž2 ๐‘๐‘2

Page 21: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F3 | 234

Factoring

๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

25๐‘ฅ๐‘ฅ2 โˆ’ 1 = (5๐‘ฅ๐‘ฅ)2 โˆ’ 12 = (๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)(๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ)

b. First, we factor out 0.9 to leave the coefficients in a perfect square form. So,

3.6๐‘ฅ๐‘ฅ4 โˆ’ 0.9๐‘ฅ๐‘ฅ6 = 0.9(4๐‘ฅ๐‘ฅ4 โˆ’ ๐‘ฅ๐‘ฅ6)

Then, after writing the terms of 4๐‘ฅ๐‘ฅ4 โˆ’ ๐‘ฅ๐‘ฅ6 as perfect squares of expressions that correspond to ๐‘Ž๐‘Ž and ๐‘๐‘ in the difference of squares formula ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘), we factor

๐‘Ž๐‘Ž ๐‘๐‘

0.9(4๐‘ฅ๐‘ฅ4 โˆ’ ๐‘ฅ๐‘ฅ6) = 0.9[(2๐‘ฅ๐‘ฅ2)2 โˆ’ (๐‘ฅ๐‘ฅ3)2] = ๐Ÿ๐Ÿ.๐Ÿ—๐Ÿ—๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐’š๐’š๐Ÿ‘๐Ÿ‘๏ฟฝ๏ฟฝ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐’š๐’š๐Ÿ‘๐Ÿ‘๏ฟฝ

c. Similarly as in the previous two examples, ๐‘ฅ๐‘ฅ4 โˆ’ 81 can be factored by following the difference of squares pattern. So,

๐‘ฅ๐‘ฅ4 โˆ’ 81 = (๐‘ฅ๐‘ฅ2)2 โˆ’ (9)2 = (๐‘ฅ๐‘ฅ2 + 9)(๐‘ฅ๐‘ฅ2 โˆ’ 9)

However, this factorization is not complete yet. Notice that ๐‘ฅ๐‘ฅ2 โˆ’ 9 is also a difference of squares, so the original polynomial can be factored further. Thus,

๐‘ฅ๐‘ฅ4 โˆ’ 81 = (๐‘ฅ๐‘ฅ2 + 9)(๐‘ฅ๐‘ฅ2 โˆ’ 9) = ๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ—๐Ÿ—๏ฟฝ(๐Ÿ‘๐Ÿ‘ + ๐Ÿ‘๐Ÿ‘)(๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ‘๐Ÿ‘) Attention: The sum of squares, ๐‘ฅ๐‘ฅ2 + 9, cannot be factored using real coefficients.

Generally, except for a common factor, a quadratic binomial of the form ๐’‚๐’‚๐Ÿ๐Ÿ + ๐’‚๐’‚๐Ÿ๐Ÿ is not factorable over the real numbers.

d. Following the difference of squares formula, we have

16 โˆ’ (๐‘Ž๐‘Ž โˆ’ 2)2 = 42 โˆ’ (๐‘Ž๐‘Ž โˆ’ 2)2

= [4 + (๐‘Ž๐‘Ž โˆ’ 2)][4 โˆ’ (๐‘Ž๐‘Ž โˆ’ 2)]

= (4 + ๐‘Ž๐‘Ž โˆ’ 2)(4 โˆ’ ๐‘Ž๐‘Ž + 2) work out the inner brackets

= (๐Ÿ๐Ÿ + ๐’‚๐’‚)(๐Ÿ”๐Ÿ” โˆ’ ๐’‚๐’‚) combine like terms

Perfect Squares

Another frequently used special factoring formula is the perfect square of a sum or a difference.

๐’‚๐’‚๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ = (๐’‚๐’‚ + ๐’‚๐’‚)๐Ÿ๐Ÿ or

๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ = (๐’‚๐’‚ โˆ’ ๐’‚๐’‚)๐Ÿ๐Ÿ

Figure 3.2 shows the geometric interpretation of the perfect square of a sum. We encourage the reader to come up with a similar interpretation of the perfect square of a difference.

Remember to use brackets after the

negative sign!

Figure 3.2

๐‘Ž๐‘Ž + ๐‘๐‘

๐‘Ž๐‘Ž + ๐‘๐‘ ๐‘๐‘2 ๐‘Ž๐‘Ž๐‘๐‘

๐‘Ž๐‘Ž2 ๐‘Ž๐‘Ž๐‘๐‘

Page 22: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 235

Special Factoring and a General Strategy of Factoring

To factor a perfect square trinomial ๐’‚๐’‚๐Ÿ๐Ÿ ยฑ ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚+ ๐’‚๐’‚๐Ÿ๐Ÿ, we find ๐’‚๐’‚ and ๐’‚๐’‚, which are the expressions being squared. Then, depending on the middle sign, we use ๐’‚๐’‚ and ๐’‚๐’‚ to form the perfect square of the sum (๐’‚๐’‚ + ๐’‚๐’‚)๐Ÿ๐Ÿ, or the perfect square of the difference (๐’‚๐’‚ โˆ’ ๐’‚๐’‚)๐Ÿ๐Ÿ.

Identifying Perfect Square Trinomials Decide whether the given polynomial is a perfect square.

a. 9๐‘ฅ๐‘ฅ2 + 6๐‘ฅ๐‘ฅ + 4 b. 9๐‘ฅ๐‘ฅ2 + 4๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ c. 25๐‘๐‘4 + 40๐‘๐‘2 โˆ’ 16 d. 49๐‘ฅ๐‘ฅ6 + 84๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3 + 36๐‘ฅ๐‘ฅ2 a. Observe that the outside terms of the trinomial 9๐‘ฅ๐‘ฅ2 + 6๐‘ฅ๐‘ฅ + 4 are perfect squares, as

9๐‘ฅ๐‘ฅ2 = (3๐‘ฅ๐‘ฅ)2 and 4 = 22. So, the trinomial would be a perfect square if the middle terms would equal 2 โˆ™ 3๐‘ฅ๐‘ฅ โˆ™ 2 = 12๐‘ฅ๐‘ฅ. Since this is not the case, our trinomial is not a perfect square.

Attention: Except for a common factor, trinomials of the type ๐’‚๐’‚๐Ÿ๐Ÿ ยฑ ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ are not factorable over the real numbers!

b. First, we arrange the trinomial in decreasing order of the powers of ๐‘ฅ๐‘ฅ. So, we obtain

9๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ2. Then, since 9๐‘ฅ๐‘ฅ2 = (3๐‘ฅ๐‘ฅ)2, 4๐‘ฅ๐‘ฅ2 = (2๐‘ฅ๐‘ฅ)2, and the middle term (except for the sign) equals 2 โˆ™ 3๐‘ฅ๐‘ฅ โˆ™ 2 = 12๐‘ฅ๐‘ฅ, we claim that the trinomial is a perfect square. Since the middle term is negative, this is the perfect square of a difference. So, the trinomial 9๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ2 can be seen as

๐‘Ž๐‘Ž2 โˆ’ 2 ๐‘Ž๐‘Ž ๐‘๐‘ + ๐‘๐‘2 = ( ๐‘Ž๐‘Ž โˆ’ ๐‘๐‘ )2

(3๐‘ฅ๐‘ฅ)2 โˆ’ 2 โˆ™ 3๐‘ฅ๐‘ฅ โˆ™ 2๐‘ฅ๐‘ฅ + (2๐‘ฅ๐‘ฅ)2 = (3๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฅ๐‘ฅ)2 c. Even though the coefficients of the trinomial 25๐‘๐‘4 + 40๐‘๐‘2 โˆ’ 16 and the distribution

of powers seem to follow the pattern of a perfect square, the last term is negative, which makes it not a perfect square.

d. Since 49๐‘ฅ๐‘ฅ6 = (7๐‘ฅ๐‘ฅ3)2, 36๐‘ฅ๐‘ฅ2 = (6๐‘ฅ๐‘ฅ)2, and the middle term equals 2 โˆ™ 7๐‘ฅ๐‘ฅ3 โˆ™ 6๐‘ฅ๐‘ฅ =

84๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ3, we claim that the trinomial is a perfect square. Since the middle term is positive, this is the perfect square of a sum. So, the trinomial 9๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + 4๐‘ฅ๐‘ฅ2 can be seen as

๐‘Ž๐‘Ž2 + 2 ๐‘Ž๐‘Ž ๐‘๐‘ + ๐‘๐‘2 = ( ๐‘Ž๐‘Ž โˆ’ ๐‘๐‘ )2

(7๐‘ฅ๐‘ฅ3)2 + 2 โˆ™ 7๐‘ฅ๐‘ฅ3 โˆ™ 6๐‘ฅ๐‘ฅ + (6๐‘ฅ๐‘ฅ)2 = (7๐‘ฅ๐‘ฅ3 โˆ’ 6๐‘ฅ๐‘ฅ)2

Factoring Perfect Square Trinomials Factor each polynomial completely.

a. 25๐‘ฅ๐‘ฅ2 + 10๐‘ฅ๐‘ฅ + 1 b. ๐‘Ž๐‘Ž2 โˆ’ 12๐‘Ž๐‘Ž๐‘๐‘ + 36๐‘๐‘2 c. ๐‘š๐‘š2 โˆ’ 8๐‘š๐‘š + 16 โˆ’ 49๐‘›๐‘›2 d. โˆ’4๐‘ฅ๐‘ฅ2 โˆ’ 144๐‘ฅ๐‘ฅ8 + 48๐‘ฅ๐‘ฅ5

Solution

Page 23: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F3 | 236

Factoring

a. The outside terms of the trinomial 25๐‘ฅ๐‘ฅ2 + 10๐‘ฅ๐‘ฅ + 1 are perfect squares of 5๐‘Ž๐‘Ž and 1, and the middle term equals 2 โˆ™ 5๐‘ฅ๐‘ฅ โˆ™ 1 = 10๐‘ฅ๐‘ฅ, so we can follow the perfect square formula. Therefore,

25๐‘ฅ๐‘ฅ2 + 10๐‘ฅ๐‘ฅ + 1 = (๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ b. The outside terms of the trinomial ๐‘Ž๐‘Ž2 โˆ’ 12๐‘Ž๐‘Ž๐‘๐‘ + 36๐‘๐‘2 are perfect squares of ๐‘Ž๐‘Ž and 6๐‘๐‘,

and the middle term (disregarding the sign) equals 2 โˆ™ ๐‘Ž๐‘Ž โˆ™ 6๐‘๐‘ = 12๐‘Ž๐‘Ž๐‘๐‘, so we can follow the perfect square formula. Therefore,

๐‘Ž๐‘Ž2 โˆ’ 12๐‘Ž๐‘Ž๐‘๐‘ + 36๐‘๐‘2 = (๐’‚๐’‚ โˆ’ ๐Ÿ”๐Ÿ”๐’‚๐’‚)๐Ÿ๐Ÿ c. Observe that the first three terms of the polynomial ๐‘š๐‘š2 โˆ’ 8๐‘š๐‘š + 16 โˆ’ 49๐‘›๐‘›2 form a

perfect square of ๐‘š๐‘šโˆ’ 6 and the last term is a perfect square of 7๐‘›๐‘›. So, we can write

๐‘š๐‘š2 โˆ’ 8๐‘š๐‘š + 16 โˆ’ 49๐‘›๐‘›2 = (๐‘š๐‘š โˆ’ 6)2 โˆ’ (7๐‘›๐‘›)2

Notice that this way we have formed a difference of squares. So we can factor it by following the difference of squares formula

(๐‘š๐‘š โˆ’ 6)2 โˆ’ (7๐‘›๐‘›)2 = (๐’Ž๐’Žโˆ’ ๐Ÿ”๐Ÿ”โˆ’ ๐Ÿ•๐Ÿ•๐‘ฉ๐‘ฉ)(๐’Ž๐’Žโˆ’ ๐Ÿ”๐Ÿ” + ๐Ÿ•๐Ÿ•๐‘ฉ๐‘ฉ)

d. As in any factoring problem, first we check the polynomial โˆ’4๐‘ฅ๐‘ฅ2 โˆ’ 144๐‘ฅ๐‘ฅ8 + 48๐‘ฅ๐‘ฅ5 for a common factor, which is 4๐‘ฅ๐‘ฅ2. To leave the leading term of this polynomial positive, we factor out โˆ’4๐‘ฅ๐‘ฅ2. So, we obtain

โˆ’4๐‘ฅ๐‘ฅ2 โˆ’ 144๐‘ฅ๐‘ฅ8 + 48๐‘ฅ๐‘ฅ5

= โˆ’4๐‘ฅ๐‘ฅ2 (1 + 36๐‘ฅ๐‘ฅ6 โˆ’ 12๐‘ฅ๐‘ฅ3)

= โˆ’4๐‘ฅ๐‘ฅ2 (36๐‘ฅ๐‘ฅ6 โˆ’ 12๐‘ฅ๐‘ฅ3 + 1)

= โˆ’๐Ÿ’๐Ÿ’๐’š๐’š๐Ÿ๐Ÿ ๏ฟฝ๐Ÿ”๐Ÿ”๐’š๐’š๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๏ฟฝ๐Ÿ๐Ÿ

Sum or Difference of Cubes

The last special factoring formula to discuss in this section is the sum or difference of cubes.

๐’‚๐’‚๐Ÿ‘๐Ÿ‘ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ = (๐’‚๐’‚ + ๐’‚๐’‚)๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ๏ฟฝ or

๐’‚๐’‚๐Ÿ‘๐Ÿ‘ โˆ’ ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ = (๐’‚๐’‚ โˆ’ ๐’‚๐’‚)๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ + ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ๏ฟฝ

The reader is encouraged to confirm these formulas by multiplying the factors in the right-hand side of each equation. In addition, we offer a geometric visualization of one of these formulas, the difference of cubes, as shown in Figure 3.3.

Solution

fold to the perfect square form

arrange the polynomial in decreasing powers

This is not in factored form yet!

Figure 3.3

๐‘Ž๐‘Ž3 โˆ’ ๐‘๐‘3 = ๐‘Ž๐‘Ž2(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)+๐‘Ž๐‘Ž๐‘๐‘(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘) + ๐‘๐‘2(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)

๐‘Ž๐‘Ž

๐‘Ž๐‘Ž โˆ’ ๐‘๐‘ ๐‘Ž๐‘Ž

๐‘๐‘

๐‘๐‘

๐‘Ž๐‘Ž โˆ’ ๐‘๐‘

๐‘Ž๐‘Ž โˆ’ ๐‘๐‘

๐‘๐‘

๐‘Ž๐‘Ž

๐‘๐‘3

= (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)(๐‘Ž๐‘Ž2+๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2)

๐‘Ž๐‘Ž3

Page 24: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 237

Special Factoring and a General Strategy of Factoring

Hints for memorization of the sum or difference of cubes formulas: โ€ข The binomial factor is a copy of the sum or difference of the terms that were originally

cubed. โ€ข The trinomial factor follows the pattern of a perfect square, except that the middle term

is single, not doubled. โ€ข The signs in the factored form follow the pattern Same-Opposite-Positive (SOP).

Factoring Sums or Differences of Cubes Factor each polynomial completely.

a. 8๐‘ฅ๐‘ฅ3 + 1 b. 27๐‘ฅ๐‘ฅ7๐‘ฅ๐‘ฅ โˆ’ 125๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4 c. 2๐‘›๐‘›6 โˆ’ 128 d. (๐‘๐‘ โˆ’ 2)3 + ๐‘๐‘3

a. First, we rewrite each term of 8๐‘ฅ๐‘ฅ3 + 1 as a perfect cube of an expression.

๐‘Ž๐‘Ž ๐‘๐‘

8๐‘ฅ๐‘ฅ3 + 1 = (2๐‘ฅ๐‘ฅ)2 + 12

Then, treating 2๐‘ฅ๐‘ฅ as the ๐‘Ž๐‘Ž and 1 as the ๐‘๐‘ in the sum of cubes formula ๐‘Ž๐‘Ž3 + ๐‘๐‘3 =(๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž2 โˆ’ ๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2), we factor:

๐’‚๐’‚๐Ÿ‘๐Ÿ‘ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ = (๐’‚๐’‚ + ๐’‚๐’‚) ๏ฟฝ ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚ ๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ๏ฟฝ

8๐‘ฅ๐‘ฅ3 + 1 = (2๐‘ฅ๐‘ฅ)2 + 12 = (2๐‘ฅ๐‘ฅ + 1)((2๐‘ฅ๐‘ฅ)2 โˆ’ 2๐‘ฅ๐‘ฅ โˆ™ 1 + 12)

= (๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)๏ฟฝ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ๏ฟฝ

Notice that the trinomial 4๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 1 in not factorable anymore. b. Since the two terms of the polynomial 27๐‘ฅ๐‘ฅ7๐‘ฅ๐‘ฅ โˆ’ 125๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4 contain the common factor

๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ, we factor it out and obtain

27๐‘ฅ๐‘ฅ7๐‘ฅ๐‘ฅ โˆ’ 125๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(27๐‘ฅ๐‘ฅ6 โˆ’ 125๐‘ฅ๐‘ฅ3)

Observe that the remaining polynomial is a difference of cubes, (3๐‘ฅ๐‘ฅ2)3 โˆ’ (5๐‘ฅ๐‘ฅ)3. So, we factor,

27๐‘ฅ๐‘ฅ7๐‘ฅ๐‘ฅ โˆ’ 125๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ4 = ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ[(3๐‘ฅ๐‘ฅ2)3 โˆ’ (5๐‘ฅ๐‘ฅ)3]

( ๐’‚๐’‚ + ๐’‚๐’‚ ) ๏ฟฝ ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚ ๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ๏ฟฝ

= ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ(3๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ)[(3๐‘ฅ๐‘ฅ2)2 + 3๐‘ฅ๐‘ฅ2 โˆ™ 5๐‘ฅ๐‘ฅ + (5๐‘ฅ๐‘ฅ)2]

= ๐Ÿ‘๐Ÿ‘๐’š๐’š๏ฟฝ๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ“๐Ÿ“๐’š๐’š๏ฟฝ๏ฟฝ๐Ÿ—๐Ÿ—๐Ÿ‘๐Ÿ‘๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ๐’š๐’š+ ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“๐’š๐’š๐Ÿ๐Ÿ๏ฟฝ c. After factoring out the common factor 2, we obtain

2๐‘›๐‘›6 โˆ’ 128 = 2(๐‘›๐‘›6 โˆ’ 64)

Solution

Difference of squares or difference of cubes?

Quadratic trinomials of the form ๐’‚๐’‚๐Ÿ๐Ÿ ยฑ ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ

are not factorable!

Page 25: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F3 | 238

Factoring

Notice that ๐‘›๐‘›6 โˆ’ 64 can be seen either as a difference of squares, (๐‘›๐‘›3)2 โˆ’ 82, or as a difference of cubes, (๐‘›๐‘›2)3 โˆ’ 43. It turns out that applying the difference of squares formula first leads us to a complete factorization while starting with the difference of cubes does not work so well here. See the two approaches below.

(๐‘›๐‘›3)2 โˆ’ 82 (๐‘›๐‘›2)3 โˆ’ 43

= (๐‘›๐‘›3 + 8)(๐‘›๐‘›3 โˆ’ 8) = (๐‘›๐‘›2 โˆ’ 4)(๐‘›๐‘›4 + 4๐‘›๐‘›2 + 16) = (๐‘›๐‘› + 2)(๐‘›๐‘›2 โˆ’ 2๐‘›๐‘› + 4)(๐‘›๐‘› โˆ’ 2)(๐‘›๐‘›2 + 2๐‘›๐‘› + 4) = (๐‘›๐‘› + 2)(๐‘›๐‘› โˆ’ 2)(๐‘›๐‘›4 + 4๐‘›๐‘›2 + 16)

Therefore, the original polynomial should be factored as follows:

2๐‘›๐‘›6 โˆ’ 128 = 2(๐‘›๐‘›6 โˆ’ 64) = 2[(๐‘›๐‘›3)2 โˆ’ 82] = 2(๐‘›๐‘›3 + 8)(๐‘›๐‘›3 โˆ’ 8)

= ๐Ÿ๐Ÿ(๐‘ฉ๐‘ฉ + ๐Ÿ๐Ÿ)๏ฟฝ๐‘ฉ๐‘ฉ๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐‘ฉ๐‘ฉ + ๐Ÿ’๐Ÿ’๏ฟฝ(๐‘ฉ๐‘ฉ โˆ’ ๐Ÿ๐Ÿ)๏ฟฝ๐‘ฉ๐‘ฉ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐‘ฉ๐‘ฉ + ๐Ÿ’๐Ÿ’๏ฟฝ

d. To factor (๐‘๐‘ โˆ’ 2)3 + ๐‘๐‘3, we follow the sum of cubes formula (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž2 โˆ’ ๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2) by assuming ๐‘Ž๐‘Ž = ๐‘๐‘ โˆ’ 2 and ๐‘๐‘ = ๐‘๐‘. So, we have

(๐‘๐‘ โˆ’ 2)3 + ๐‘๐‘3 = (๐‘๐‘ โˆ’ 2 + ๐‘๐‘) [(๐‘๐‘ โˆ’ 2)2 โˆ’ (๐‘๐‘ โˆ’ 2)๐‘๐‘ + ๐‘๐‘2]

= (๐‘๐‘ โˆ’ 2 + ๐‘๐‘) [๐‘๐‘2 โˆ’ 2๐‘๐‘๐‘๐‘ + 4 โˆ’ ๐‘๐‘๐‘๐‘ + 2๐‘๐‘ + ๐‘๐‘2]

= (๐’‘๐’‘ โˆ’ ๐Ÿ๐Ÿ + ๐’’๐’’) ๏ฟฝ๐’‘๐’‘๐Ÿ๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ‘๐’‘๐’‘๐’’๐’’ + ๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ๐’’๐’’ + ๐’’๐’’๐Ÿ๐Ÿ๏ฟฝ

General Strategy of Factoring

Recall that a polynomial with integral coefficients is factored completely if all of its factors are prime over the integers.

How to Factorize Polynomials Completely?

1. Factor out all common factors. Leave the remaining polynomial with a positive leading term and integral coefficients, if possible.

2. Check the number of terms. If the polynomial has

- more than three terms, try to factor by grouping; a four term polynomial may require 2-2, 3-1, or 1-3 types of grouping.

- three terms, factor by guessing, decomposition, or follow the perfect square formula, if applicable.

- two terms, follow the difference of squares, or sum or difference of cubes formula, if applicable. Remember that sum of squares, ๐’‚๐’‚๐Ÿ๐Ÿ + ๐’‚๐’‚๐Ÿ๐Ÿ, is not factorable over the real numbers, except for possibly a common factor.

There is no easy way of factoring this trinomial!

4 prime factors, so the factorization is complete

Page 26: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 239

Special Factoring and a General Strategy of Factoring

3. Keep in mind the special factoring formulas:

Difference of Squares ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚๐Ÿ๐Ÿ = (๐’‚๐’‚ + ๐’‚๐’‚)(๐’‚๐’‚ โˆ’ ๐’‚๐’‚) Perfect Square of a Sum ๐’‚๐’‚๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ = (๐’‚๐’‚ + ๐’‚๐’‚)๐Ÿ๐Ÿ Perfect Square of a Difference ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐Ÿ๐Ÿ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ = (๐’‚๐’‚ โˆ’ ๐’‚๐’‚)๐Ÿ๐Ÿ Sum of Cubes ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ = (๐’‚๐’‚ + ๐’‚๐’‚)๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ๏ฟฝ Difference of Cubes ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ โˆ’ ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ = (๐’‚๐’‚ โˆ’ ๐’‚๐’‚)๏ฟฝ๐’‚๐’‚๐Ÿ๐Ÿ + ๐’‚๐’‚๐’‚๐’‚ + ๐’‚๐’‚๐Ÿ๐Ÿ๏ฟฝ 4. Keep factoring each of the obtained factors until all of them are prime over the

integers.

Multiple-step Factorization Factor each polynomial completely.

a. 80๐‘ฅ๐‘ฅ5 โˆ’ 5๐‘ฅ๐‘ฅ b. 4๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 1 โˆ’ ๐‘๐‘2 c. (5๐‘Ÿ๐‘Ÿ + 8)2 โˆ’ 6(5๐‘Ÿ๐‘Ÿ + 8) + 9 d. (๐‘๐‘ โˆ’ 2๐‘๐‘)3 + (๐‘๐‘ + 2๐‘๐‘)3

a. First, we factor out the GCF of 80๐‘ฅ๐‘ฅ5 and โˆ’5๐‘ฅ๐‘ฅ, which equals to 5๐‘ฅ๐‘ฅ. So, we obtain

80๐‘ฅ๐‘ฅ5 โˆ’ 5๐‘ฅ๐‘ฅ = 5๐‘ฅ๐‘ฅ(16๐‘ฅ๐‘ฅ4 โˆ’ 1)

Then, we notice that 16๐‘ฅ๐‘ฅ4 โˆ’ 1 can be seen as the difference of squares (4๐‘ฅ๐‘ฅ2)2 โˆ’ 12. So, we factor further

80๐‘ฅ๐‘ฅ5 โˆ’ 5๐‘ฅ๐‘ฅ = 5๐‘ฅ๐‘ฅ(4๐‘ฅ๐‘ฅ2 + 1)(4๐‘ฅ๐‘ฅ2 โˆ’ 1)

The first binomial factor, 4๐‘ฅ๐‘ฅ2 + 1, cannot be factored any further using integral coefficients as it is the sum of squares, (2๐‘ฅ๐‘ฅ)2 + 12. However, the second binomial factor, 4๐‘ฅ๐‘ฅ2 โˆ’ 1, is still factorable as a difference of squares, (2๐‘ฅ๐‘ฅ)2 โˆ’ 12. Therefore,

80๐‘ฅ๐‘ฅ5 โˆ’ 5๐‘ฅ๐‘ฅ = ๐Ÿ“๐Ÿ“๐Ÿ‘๐Ÿ‘๏ฟฝ๐Ÿ’๐Ÿ’๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๏ฟฝ(๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ + ๐Ÿ๐Ÿ)(๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ)

This is a complete factorization as all the factors are prime over the integers. b. The polynomial 4๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 1 โˆ’ ๐‘๐‘2 consists of four terms, so we might be able to

factor it by grouping. Observe that the 2-2 type of grouping has no chance to succeed, as the first two terms involve only the variable ๐‘Ž๐‘Ž while the second two terms involve only the variable ๐‘๐‘. This means that after factoring out the common factor in each group, the remaining binomials would not be the same. So, the 2-2 grouping would not lead us to a factorization. However, the 3-1 type of grouping should help. This is because the first three terms form the perfect square, (2๐‘Ž๐‘Ž โˆ’ 1)2, and there is a subtraction before the last term ๐‘๐‘2, which is also a perfect square. So, in the end, we can follow the difference of squares formula to complete the factoring process.

4๐‘Ž๐‘Ž2 โˆ’ 4๐‘Ž๐‘Ž + 1๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝโˆ’ ๐‘๐‘2๏ฟฝ = (2๐‘Ž๐‘Ž โˆ’ 1)2 โˆ’ ๐‘๐‘2 = (๐Ÿ๐Ÿ๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ โˆ’ ๐’‚๐’‚)(๐Ÿ๐Ÿ๐’‚๐’‚ โˆ’ ๐Ÿ๐Ÿ + ๐’‚๐’‚)

Solution

3-1 type of grouping

repeated difference of squares

Page 27: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F3 | 240

Factoring

c. To factor (5๐‘Ÿ๐‘Ÿ + 8)2 โˆ’ 6(5๐‘Ÿ๐‘Ÿ + 8) + 9, it is convenient to substitute a new variable, say ๐’‚๐’‚, for the expression 5๐‘Ÿ๐‘Ÿ + 8. Then,

(5๐‘Ÿ๐‘Ÿ + 8)2 โˆ’ 6(5๐‘Ÿ๐‘Ÿ + 8) + 9 = ๐’‚๐’‚2 โˆ’ 6๐’‚๐’‚ + 9

= (๐’‚๐’‚ โˆ’ 3)2

= (5๐‘Ÿ๐‘Ÿ + 8 โˆ’ 3)2

= (5๐‘Ÿ๐‘Ÿ + 5)2

Notice that 5๐‘Ÿ๐‘Ÿ + 5 can still be factored by taking the 5 out. So, for a complete factorization, we factor further

(5๐‘Ÿ๐‘Ÿ + 5)2 = ๏ฟฝ5(๐‘Ÿ๐‘Ÿ + 1)๏ฟฝ2 = ๐Ÿ๐Ÿ๐Ÿ“๐Ÿ“(๐’“๐’“ + ๐Ÿ๐Ÿ)๐Ÿ๐Ÿ

d. To factor (๐‘๐‘ โˆ’ 2๐‘๐‘)3 + (๐‘๐‘ + 2๐‘๐‘)3, we follow the sum of cubes formula (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž2 โˆ’

๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2) by assuming ๐‘Ž๐‘Ž = ๐‘๐‘ โˆ’ 2๐‘๐‘ and ๐‘๐‘ = ๐‘๐‘ + 2๐‘๐‘. So, we have

(๐‘๐‘ โˆ’ 2๐‘๐‘)3 + (๐‘๐‘ + 2๐‘๐‘)3

= (๐‘๐‘ โˆ’ 2๐‘๐‘ + ๐‘๐‘ + 2๐‘๐‘) [(๐‘๐‘ โˆ’ 2๐‘๐‘)2 โˆ’ (๐‘๐‘ โˆ’ 2๐‘๐‘)(๐‘๐‘ + 2๐‘๐‘) + (๐‘๐‘ + 2๐‘๐‘)2]

= 2๐‘๐‘ [๐‘๐‘2 โˆ’ 4๐‘๐‘๐‘๐‘ + 4๐‘๐‘2 โˆ’ (๐‘๐‘2 โˆ’ 4๐‘๐‘2) + ๐‘๐‘2 + 4๐‘๐‘๐‘๐‘ + 4๐‘๐‘2]

= 2๐‘๐‘ (2๐‘๐‘2 + 8๐‘๐‘2 โˆ’ ๐‘๐‘2 + 4๐‘๐‘2) = ๐Ÿ๐Ÿ๐’‘๐’‘๏ฟฝ๐’‘๐’‘๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐’’๐’’๐Ÿ๐Ÿ๏ฟฝ

F.3 Exercises

Vocabulary Check Complete each blank with one of the suggested words, or the most appropriate term or

phrase from the given list: difference of cubes, difference of squares, perfect square, sum of cubes, sum of squares.

1. If a binomial is a ________________________________ its factorization has the form (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘).

2. Trinomials of the form ๐‘Ž๐‘Ž2 ยฑ 2๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2 are ____________________________ trinomials.

3. The product (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž2 โˆ’ ๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2) is the factorization of the __________________________.

4. The product (๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)(๐‘Ž๐‘Ž2 + ๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2) is the factorization of the __________________________.

5. A ________________________ is not factorable.

6. Quadratic trinomials of the form ๐‘Ž๐‘Ž2 ยฑ ๐‘Ž๐‘Ž๐‘๐‘ + ๐‘๐‘2 _________________๐‘Ž๐‘Ž๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž /๐‘Ž๐‘Ž๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž ๐‘›๐‘›๐‘›๐‘›๐‘ก๐‘ก

factorable.

go back to the original variable

perfect square! factoring by substitution

multiple special formulas and simplifying

Remember to represent the new variable by a

different letter than the original variable!

Page 28: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F2 | 241

Special Factoring and a General Strategy of Factoring

Concept Check Determine whether each polynomial is a perfect square, a difference of squares, a sum or difference of cubes, or neither.

7. 0.25๐‘ฅ๐‘ฅ2 โˆ’ 0.16๐‘ฅ๐‘ฅ2 8. ๐‘ฅ๐‘ฅ2 โˆ’ 14๐‘ฅ๐‘ฅ + 49

9. 9๐‘ฅ๐‘ฅ4 + 4๐‘ฅ๐‘ฅ2 + 1 10. 4๐‘ฅ๐‘ฅ2 โˆ’ (๐‘ฅ๐‘ฅ + 4)2

11. 125๐‘ฅ๐‘ฅ3 โˆ’ 64 12. ๐‘ฅ๐‘ฅ12 + 0.008๐‘ฅ๐‘ฅ3

13. โˆ’๐‘ฅ๐‘ฅ4 + 16๐‘ฅ๐‘ฅ4 14. 64 + 48๐‘ฅ๐‘ฅ3 + 9๐‘ฅ๐‘ฅ6

15. 25๐‘ฅ๐‘ฅ6 โˆ’ 10๐‘ฅ๐‘ฅ3๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ4 16. โˆ’4๐‘ฅ๐‘ฅ6 โˆ’ ๐‘ฅ๐‘ฅ6

17. โˆ’8๐‘ฅ๐‘ฅ3 + 27๐‘ฅ๐‘ฅ6 18. 81๐‘ฅ๐‘ฅ2 โˆ’ 16๐‘ฅ๐‘ฅ

Concept Check

19. The binomial 4๐‘ฅ๐‘ฅ2 + 64 is an example of a sum of two squares that can be factored. Under what conditions can the sum of two squares be factored?

20. Insert the correct signs into the blanks. a. 8 + ๐‘Ž๐‘Ž3 = (2 ___ ๐‘Ž๐‘Ž)(4 ___ 2๐‘Ž๐‘Ž ___ ๐‘Ž๐‘Ž2) b. ๐‘๐‘3 โˆ’ 1 = (๐‘๐‘ ___ 1)(๐‘๐‘2 ___ ๐‘๐‘ ___ 1) Factor each polynomial completely, if possible.

21. ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ2 22. ๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ2 23. ๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ3

24. 16๐‘ฅ๐‘ฅ2 โˆ’ 100 25. 4๐‘ง๐‘ง2 โˆ’ 4๐‘ง๐‘ง + 1 26. ๐‘ฅ๐‘ฅ3 + 27

27. 4๐‘ง๐‘ง2 + 25 28. ๐‘ฅ๐‘ฅ2 + 18๐‘ฅ๐‘ฅ + 81 29. 125โˆ’ ๐‘ฅ๐‘ฅ3

30. 144๐‘ฅ๐‘ฅ2 โˆ’ 64๐‘ฅ๐‘ฅ2 31. ๐‘›๐‘›2 + 20๐‘›๐‘›๐‘š๐‘š + 100๐‘š๐‘š2 32. 27๐‘Ž๐‘Ž3๐‘๐‘6 + 1

33. 9๐‘Ž๐‘Ž4 โˆ’ 25๐‘๐‘6 34. 25 โˆ’ 40๐‘ฅ๐‘ฅ + 16๐‘ฅ๐‘ฅ2 35. ๐‘๐‘6 โˆ’ 64๐‘๐‘3

36. 16๐‘ฅ๐‘ฅ2๐‘ง๐‘ง2 โˆ’ 100๐‘ฅ๐‘ฅ2 37. 4 + 49๐‘๐‘2 + 28๐‘๐‘ 38. ๐‘ฅ๐‘ฅ12 + 0.008๐‘ฅ๐‘ฅ3

39. ๐‘Ÿ๐‘Ÿ4 โˆ’ 9๐‘Ÿ๐‘Ÿ2 40. 9๐‘Ž๐‘Ž2 โˆ’ 12๐‘Ž๐‘Ž๐‘๐‘ โˆ’ 4๐‘๐‘2 41. 18โˆ’ ๐‘Ž๐‘Ž3

42. 0.04๐‘ฅ๐‘ฅ2 โˆ’ 0.09๐‘ฅ๐‘ฅ2 43. ๐‘ฅ๐‘ฅ4 + 8๐‘ฅ๐‘ฅ2 + 1 44. โˆ’ 127

+ ๐‘ก๐‘ก3

45. 16๐‘ฅ๐‘ฅ6 โˆ’ 121๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ4 46. 9 + 60๐‘๐‘๐‘๐‘ + 100๐‘๐‘2๐‘๐‘2 47. โˆ’๐‘Ž๐‘Ž3๐‘๐‘3 โˆ’ 125๐‘Ž๐‘Ž6

48. 36๐‘›๐‘›2๐‘๐‘ โˆ’ 1 49. 9๐‘Ž๐‘Ž8 โˆ’ 48๐‘Ž๐‘Ž4๐‘๐‘ + 64๐‘๐‘2 50. 9๐‘ฅ๐‘ฅ3 + 8

51. (๐‘ฅ๐‘ฅ + 1)2 โˆ’ 49 52. 14๐‘ข๐‘ข2 โˆ’ ๐‘ข๐‘ข๐‘ข๐‘ข + ๐‘ข๐‘ข2 53. 2๐‘ก๐‘ก4 โˆ’ 128๐‘ก๐‘ก

54. 81 โˆ’ (๐‘›๐‘› + 3)2 55. ๐‘ฅ๐‘ฅ2๐‘›๐‘› + 6๐‘ฅ๐‘ฅ๐‘›๐‘› + 9 56. 8 โˆ’ (๐‘Ž๐‘Ž + 2)3

57. 16๐‘ง๐‘ง4 โˆ’ 1 58. 5๐‘Ž๐‘Ž3 + 20๐‘Ž๐‘Ž2 + 20๐‘Ž๐‘Ž 59. (๐‘ฅ๐‘ฅ + 5)3 โˆ’ ๐‘ฅ๐‘ฅ3

60. ๐‘Ž๐‘Ž4 โˆ’ 81๐‘๐‘4 61. 0.25๐‘ง๐‘ง2 โˆ’ 0.7๐‘ง๐‘ง + 0.49 62. (๐‘ฅ๐‘ฅ โˆ’ 1)3 + (๐‘ฅ๐‘ฅ + 1)3

63. (๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฅ๐‘ฅ)2 โˆ’ (๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ)2 64. 0.81๐‘๐‘8 + 9๐‘๐‘4 + 25 65. (๐‘ฅ๐‘ฅ + 2)3 โˆ’ (๐‘ฅ๐‘ฅ โˆ’ 2)3

Page 29: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F3 | 242

Factoring

Factor each polynomial completely.

66. 3๐‘ฅ๐‘ฅ3 โˆ’ 12๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ 67. 2๐‘ฅ๐‘ฅ2 + 50๐‘Ž๐‘Ž2 โˆ’ 20๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ 68. ๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ3

69. ๐‘ฅ๐‘ฅ2 โˆ’ 9๐‘Ž๐‘Ž2 + 12๐‘ฅ๐‘ฅ + 36 70. 64๐‘ข๐‘ข6 โˆ’ 1 71. 7๐‘š๐‘š3 + ๐‘š๐‘š6 โˆ’ 8

72. โˆ’7๐‘›๐‘›2 + 2๐‘›๐‘›3 + 4๐‘›๐‘› โˆ’ 14 73. ๐‘Ž๐‘Ž8 โˆ’ ๐‘๐‘8 74. ๐‘ฅ๐‘ฅ9 โˆ’ ๐‘ฅ๐‘ฅ

75. (๐‘ฅ๐‘ฅ2 โˆ’ 2)2 โˆ’ 4(๐‘ฅ๐‘ฅ2 โˆ’ 2) โˆ’ 21 76. 8(๐‘๐‘ โˆ’ 3)2 โˆ’ 64(๐‘๐‘ โˆ’ 3) + 128 77. ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 โˆ’ 6๐‘๐‘ โˆ’ 9

78. 25(2๐‘Ž๐‘Ž โˆ’ ๐‘๐‘)2 โˆ’ 9 79. 3๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ2๐‘ง๐‘ง + 25๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ง๐‘ง2 + 28๐‘ง๐‘ง3 80. ๐‘ฅ๐‘ฅ8๐‘›๐‘› โˆ’ ๐‘ฅ๐‘ฅ2

81. ๐‘ฅ๐‘ฅ6 โˆ’ 2๐‘ฅ๐‘ฅ5 + ๐‘ฅ๐‘ฅ4 โˆ’ ๐‘ฅ๐‘ฅ2 + 2๐‘ฅ๐‘ฅ โˆ’ 1 82. 4๐‘ฅ๐‘ฅ2๐‘ฅ๐‘ฅ4 โˆ’ 9๐‘ฅ๐‘ฅ4 โˆ’ 4๐‘ฅ๐‘ฅ2๐‘ง๐‘ง4 + 9๐‘ง๐‘ง4 83. ๐‘Ž๐‘Ž2๐‘ค๐‘ค+1 + 2๐‘Ž๐‘Ž๐‘ค๐‘ค+1 + ๐‘Ž๐‘Ž

Page 30: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 243

Solving Polynomial Equations and Applications of Factoring

F.4 Solving Polynomial Equations and Applications of Factoring

Many application problems involve solving polynomial equations. In Chapter L, we studied methods for solving linear, or first-degree, equations. Solving higher degree polynomial equations requires other methods, which often involve factoring. In this chapter, we study solving polynomial equations using the zero-product property, graphical connections between roots of an equation and zeros of the corresponding function, and some application problems involving polynomial equations or formulas that can be solved by factoring.

Zero-Product Property

Recall that to solve a linear equation, for example 2๐‘ฅ๐‘ฅ + 1 = 0, it is enough to isolate the variable on one side of the equation by applying reverse operations. Unfortunately, this method usually does not work when solving higher degree polynomial equations. For example, we would not be able to solve the equation ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ = 0 through the reverse operation process, because the variable ๐‘ฅ๐‘ฅ appears in different powers.

So โ€ฆ how else can we solve it?

In this particular example, it is possible to guess the solutions. They are ๐‘ฅ๐‘ฅ = 0 and ๐‘ฅ๐‘ฅ = 1.

But how can we solve it algebraically?

It turns out that factoring the left-hand side of the equation ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ = 0 helps. Indeed, ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 1) = 0 tells us that the product of ๐‘ฅ๐‘ฅ and ๐‘ฅ๐‘ฅ โˆ’ 1 is 0. Since the product of two quantities is 0, at least one of them must be 0. So, either ๐‘ฅ๐‘ฅ = 0 or ๐‘ฅ๐‘ฅ โˆ’ 1 = 0, which solves to ๐‘ฅ๐‘ฅ = 1.

The equation discussed above is an example of a second degree polynomial equation, more commonly known as a quadratic equation.

Definition 4.1 A quadratic equation is a second degree polynomial equation in one variable that can be written in the form,

๐’‚๐’‚๐Ÿ‘๐Ÿ‘๐Ÿ๐Ÿ + ๐’‚๐’‚๐Ÿ‘๐Ÿ‘ + ๐’„๐’„ = ๐Ÿ๐Ÿ,

where ๐‘Ž๐‘Ž, ๐‘๐‘, and ๐‘Ž๐‘Ž are real numbers and ๐‘Ž๐‘Ž โ‰  0. This form is called standard form.

One of the methods of solving such equations involves factoring and the zero-product property that is stated below.

For any real numbers ๐’‚๐’‚ and ๐’‚๐’‚,

๐’‚๐’‚๐’‚๐’‚ = ๐Ÿ๐Ÿ if and only if ๐’‚๐’‚ = ๐Ÿ๐Ÿ or ๐’‚๐’‚ = ๐Ÿ๐Ÿ

This means that any product containing a factor of 0 is equal to 0, and conversely, if a product is equal to 0, then at least one of its factors is equal to 0.

The implication โ€œif ๐’‚๐’‚ = ๐Ÿ๐Ÿ or ๐’‚๐’‚ = ๐Ÿ๐Ÿ, then ๐’‚๐’‚๐’‚๐’‚ = ๐Ÿ๐Ÿโ€ is true by the multiplicative property of zero.

To prove the implication โ€œif ๐’‚๐’‚๐’‚๐’‚ = ๐Ÿ๐Ÿ, then ๐’‚๐’‚ = ๐Ÿ๐Ÿ or ๐’‚๐’‚ = ๐Ÿ๐Ÿโ€, let us assume first that ๐‘Ž๐‘Ž โ‰  0. (As, if ๐‘Ž๐‘Ž = 0, then the implication is already proven.)

Zero-Product Theorem

Proof

Page 31: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 244

Factoring

Since ๐‘Ž๐‘Ž โ‰  0, then 1๐‘›๐‘› exists. Therefore, both sides of ๐‘Ž๐‘Ž๐‘๐‘ = 0 can be multiplied by 1

๐‘›๐‘› and we

obtain

1๐‘Ž๐‘Žโˆ™ ๐‘Ž๐‘Ž๐‘๐‘ =

1๐‘Ž๐‘Žโˆ™ 0

๐‘๐‘ = 0,

which concludes the proof.

Attention: The zero-product property works only for a product equal to 0. For example, the fact that ๐’‚๐’‚๐’‚๐’‚ = ๐Ÿ๐Ÿ does not mean that either ๐‘Ž๐‘Ž or ๐‘๐‘ equals to 1.

Using the Zero-Product Property to Solve Polynomial Equations

Solve each equation.

a. (๐‘ฅ๐‘ฅ โˆ’ 3)(2๐‘ฅ๐‘ฅ + 5) = 0 b. 2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 5)2 = 0 a. Since the product of ๐‘ฅ๐‘ฅ โˆ’ 3 and 2๐‘ฅ๐‘ฅ + 5 is equal to zero, then by the zero-product

property at least one of these expressions must equal to zero. So,

๐‘ฅ๐‘ฅ โˆ’ 3 = 0 or 2๐‘ฅ๐‘ฅ + 5 = 0

which results in ๐‘ฅ๐‘ฅ = 3 or 2๐‘ฅ๐‘ฅ = โˆ’5 ๐‘ฅ๐‘ฅ = โˆ’5

2

Thus, ๏ฟฝโˆ’ ๐Ÿ“๐Ÿ“๐Ÿ๐Ÿ

,๐Ÿ‘๐Ÿ‘๏ฟฝ is the solution set of the given equation.

b. Since the product 2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 5)2 is zero, then either ๐‘ฅ๐‘ฅ = 0 or ๐‘ฅ๐‘ฅ โˆ’ 5 = 0, which solves to ๐‘ฅ๐‘ฅ = 5. Thus, the solution set is equal to {๐Ÿ๐Ÿ,๐Ÿ“๐Ÿ“}.

Note 1: The factor of 2 does not produce any solution, as 2 is never equal to 0.

Note 2: The perfect square (๐‘ฅ๐‘ฅ โˆ’ 5)2 equals to 0 if and only if the base ๐‘ฅ๐‘ฅ โˆ’ 5 equals to 0.

Solving Polynomial Equations by Factoring

To solve polynomial equations of second or higher degree by factoring, we

โ€ข arrange the polynomial in decreasing order of powers on one side of the equation, โ€ข keep the other side of the equation equal to 0, โ€ข factor the polynomial completely, โ€ข use the zero-product property to form linear equations for each factor, โ€ข solve the linear equations to find the roots (solutions) to the original equation.

Solution

Page 32: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 245

Solving Polynomial Equations and Applications of Factoring

Solving Quadratic Equations by Factoring Solve each equation by factoring.

a. ๐‘ฅ๐‘ฅ2 + 9 = 6๐‘ฅ๐‘ฅ b. 15๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ = 0

c. (๐‘ฅ๐‘ฅ + 2)(๐‘ฅ๐‘ฅ โˆ’ 1) = 4(3 โˆ’ ๐‘ฅ๐‘ฅ) โˆ’ 8 d. (๐‘ฅ๐‘ฅ โˆ’ 3)2 = 36๐‘ฅ๐‘ฅ2

a. To solve ๐‘ฅ๐‘ฅ2 + 9 = 6๐‘ฅ๐‘ฅ by factoring we need one side of this equation equal to 0. So, first, we move the 6๐‘ฅ๐‘ฅ term to the left side of the equation,

๐‘ฅ๐‘ฅ2 + 9 โˆ’ 6๐‘ฅ๐‘ฅ = 0,

and arrange the terms in decreasing order of powers of ๐‘ฅ๐‘ฅ,

๐‘ฅ๐‘ฅ2 โˆ’ 6๐‘ฅ๐‘ฅ + 9 = 0.

Then, by observing that the resulting trinomial forms a perfect square of ๐‘ฅ๐‘ฅ โˆ’ 3, we factor

(๐‘ฅ๐‘ฅ โˆ’ 3)2 = 0, which is equivalent to

๐‘ฅ๐‘ฅ โˆ’ 3 = 0, and finally

๐‘ฅ๐‘ฅ = 3.

So, the solution is ๐‘ฅ๐‘ฅ = ๐Ÿ‘๐Ÿ‘.

b. After factoring the left side of the equation 15๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ = 0,

3๐‘ฅ๐‘ฅ(5๐‘ฅ๐‘ฅ โˆ’ 4) = 0,

we use the zero-product property. Since 3 is never zero, the solutions come from the equations

๐‘ฅ๐‘ฅ = ๐Ÿ๐Ÿ or 5๐‘ฅ๐‘ฅ โˆ’ 4 = 0.

Solving the second equation for ๐‘ฅ๐‘ฅ, we obtain

5๐‘ฅ๐‘ฅ = 4, and finally

๐‘ฅ๐‘ฅ = ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“.

So, the solution set consists of 0 and ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ“.

c. To solve (๐‘ฅ๐‘ฅ + 2)(๐‘ฅ๐‘ฅ โˆ’ 1) = 4(3 โˆ’ ๐‘ฅ๐‘ฅ) โˆ’ 8 by factoring, first, we work out the brackets and arrange the polynomial in decreasing order of exponents on the left side of the equation. So, we obtain

๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 2 = 12โˆ’ 4๐‘ฅ๐‘ฅ โˆ’ 8

๐‘ฅ๐‘ฅ2 + 5๐‘ฅ๐‘ฅ โˆ’ 6 = 0

(๐‘ฅ๐‘ฅ + 6)(๐‘ฅ๐‘ฅ โˆ’ 1) = 0

Solution

Page 33: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 246

Factoring

Now, we can read the solutions from each bracket, that is, ๐‘ฅ๐‘ฅ = โˆ’๐Ÿ”๐Ÿ” and ๐‘ฅ๐‘ฅ = ๐Ÿ๐Ÿ.

Observation: In the process of solving a linear equation of the form ๐‘Ž๐‘Ž๐‘ฅ๐‘ฅ + ๐‘๐‘ = 0, first we subtract ๐‘๐‘ and then we divide by ๐‘Ž๐‘Ž. So the solution, sometimes

referred to as the root, is ๐‘ฅ๐‘ฅ = โˆ’๐’‚๐’‚๐’‚๐’‚. This allows us to read the solution

directly from the equation. For example, the solution to ๐‘ฅ๐‘ฅ โˆ’ 1 = 0 is ๐‘ฅ๐‘ฅ = 1 and the solution to 2๐‘ฅ๐‘ฅ โˆ’ 1 = 0 is ๐‘ฅ๐‘ฅ = 1

2.

d. To solve (๐‘ฅ๐‘ฅ โˆ’ 3)2 = 36๐‘ฅ๐‘ฅ2, we bring all the terms to one side and factor the obtained difference of squares, following the formula ๐‘Ž๐‘Ž2 โˆ’ ๐‘๐‘2 = (๐‘Ž๐‘Ž + ๐‘๐‘)(๐‘Ž๐‘Ž โˆ’ ๐‘๐‘). So, we have

(๐‘ฅ๐‘ฅ โˆ’ 3)2 โˆ’ 36๐‘ฅ๐‘ฅ2 = 0

(๐‘ฅ๐‘ฅ โˆ’ 3 + 6๐‘ฅ๐‘ฅ)(๐‘ฅ๐‘ฅ โˆ’ 3 โˆ’ 6๐‘ฅ๐‘ฅ) = 0

(7๐‘ฅ๐‘ฅ โˆ’ 3)(โˆ’5๐‘ฅ๐‘ฅ โˆ’ 3) = 0

Then, by the zero-product property,

7๐‘ฅ๐‘ฅ โˆ’ 3 = 0 or โˆ’5๐‘ฅ๐‘ฅ โˆ’ 3, which results in

๐‘ฅ๐‘ฅ = ๐Ÿ‘๐Ÿ‘๐Ÿ•๐Ÿ• or ๐‘ฅ๐‘ฅ = โˆ’๐Ÿ‘๐Ÿ‘

๐Ÿ“๐Ÿ“.

Solving Polynomial Equations by Factoring

Solve each equation by factoring.

a. 2๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 = 12๐‘ฅ๐‘ฅ b. ๐‘ฅ๐‘ฅ4 + 36 = 13๐‘ฅ๐‘ฅ2

a. First, we bring all the terms to one side of the equation and then factor the resulting polynomial.

2๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 = 12๐‘ฅ๐‘ฅ

2๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 โˆ’ 12๐‘ฅ๐‘ฅ = 0

2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 6) = 0

2๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 3)(๐‘ฅ๐‘ฅ + 2) = 0

By the zero-product property, the factors ๐‘ฅ๐‘ฅ, (๐‘ฅ๐‘ฅ โˆ’ 3) and (๐‘ฅ๐‘ฅ + 2), give us the corresponding solutions, 0, 3, and โ€“ 2. So, the solution set of the given equation is {๐Ÿ๐Ÿ,๐Ÿ‘๐Ÿ‘,โˆ’๐Ÿ๐Ÿ}.

b. Similarly as in the previous examples, we solve ๐‘ฅ๐‘ฅ4 + 36 = 13๐‘ฅ๐‘ฅ2 by factoring and

using the zero-product property. Since

๐‘ฅ๐‘ฅ4 โˆ’ 13๐‘ฅ๐‘ฅ2 + 36 = 0

Solution

Page 34: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 247

Solving Polynomial Equations and Applications of Factoring

(๐‘ฅ๐‘ฅ2 โˆ’ 4)(๐‘ฅ๐‘ฅ2 โˆ’ 9) = 0

(๐‘ฅ๐‘ฅ + 2)(๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 3)(๐‘ฅ๐‘ฅ โˆ’ 3) = 0,

then, the solution set of the original equation is {โˆ’๐Ÿ๐Ÿ,๐Ÿ๐Ÿ,โˆ’๐Ÿ‘๐Ÿ‘,๐Ÿ‘๐Ÿ‘}

Observation: ๐‘›๐‘›-th degree polynomial equations may have up to ๐‘›๐‘› roots (solutions).

Factoring in Applied Problems

Factoring is a useful strategy when solving applied problems. For example, factoring is often used in solving formulas for a variable, in finding roots of a polynomial function, and generally, in any problem involving polynomial equations that can be solved by factoring.

Solving Formulas with the Use of Factoring

Solve each formula for the specified variable.

a. ๐ด๐ด = 2๐’‰๐’‰๐‘ค๐‘ค + 2๐‘ค๐‘ค๐‘ค๐‘ค + 2๐‘ค๐‘ค๐’‰๐’‰, for ๐’‰๐’‰ b. ๐‘ ๐‘  = 2๐’•๐’•+3๐’•๐’•

, for ๐’•๐’• a. To solve ๐ด๐ด = 2๐’‰๐’‰๐‘ค๐‘ค + 2๐‘ค๐‘ค๐‘ค๐‘ค + 2๐‘ค๐‘ค๐’‰๐’‰ for ๐’‰๐’‰, we want to keep both terms containing ๐’‰๐’‰ on

the same side of the equation and bring the remaining terms to the other side. Here is an equivalent equation,

๐ด๐ด โˆ’ 2๐‘ค๐‘ค๐‘ค๐‘ค = 2๐’‰๐’‰๐‘ค๐‘ค + 2๐‘ค๐‘ค๐’‰๐’‰,

which, for convenience, could be written starting with โ„Ž-terms:

2๐’‰๐’‰๐‘ค๐‘ค + 2๐‘ค๐‘ค๐’‰๐’‰ = ๐ด๐ด โˆ’ 2๐‘ค๐‘ค๐‘ค๐‘ค

Now, factoring ๐’‰๐’‰ out causes that ๐’‰๐’‰ appears in only one place, which is what we need to isolate it. So,

(2๐‘ค๐‘ค + 2๐‘ค๐‘ค)๐’‰๐’‰ = ๐ด๐ด โˆ’ 2๐‘ค๐‘ค๐‘ค๐‘ค

๐’‰๐’‰ =๐‘จ๐‘จ โˆ’ ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ + ๐Ÿ๐Ÿ๐Ÿ๐Ÿ

Notice: In the above formula, there is nothing that can be simplified. Trying to reduce 2 or 2๐‘ค๐‘ค or ๐‘ค๐‘ค would be an error, as there is no essential common factor that can be carried out of the numerator.

b. When solving ๐‘ ๐‘  = 2๐’•๐’•+3๐’•๐’•

for ๐’•๐’•, our goal is to, firstly, keep the variable ๐’•๐’• in the numerator and secondly, to keep it in a single place. So, we have

๐‘ ๐‘  =2๐’•๐’• + 3๐’•๐’•

๐‘ ๐‘ ๐’•๐’• = 2๐’•๐’• + 3

Solution

/ รท (2๐‘ค๐‘ค + 2๐‘ค๐‘ค)

/ โˆ™ ๐‘ก๐‘ก

/ โˆ’2๐‘ก๐‘ก

Page 35: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 248

Factoring

๐‘ ๐‘ ๐’•๐’• โˆ’ 2๐’•๐’• = 3

๐’•๐’•(๐‘ ๐‘  โˆ’ 2) = 3

๐’•๐’• =๐Ÿ‘๐Ÿ‘

๐’”๐’” โˆ’ ๐Ÿ๐Ÿ.

Finding Roots of a Polynomial Function

A small rocket is launched from the ground vertically upwards with an initial velocity of 128 feet per second. Its height in feet after ๐‘ก๐‘ก seconds is a function defined by

โ„Ž(๐‘ก๐‘ก) = โˆ’16๐‘ก๐‘ก2 + 128๐‘ก๐‘ก.

After how many seconds will the rocket hit the ground? The rocket hits the ground when its height is 0. So, we need to find the time ๐‘ก๐‘ก for which โ„Ž(๐‘ก๐‘ก) = 0. Therefore, we solve the equation

โˆ’16๐‘ก๐‘ก2 + 128๐‘ก๐‘ก = 0 for ๐‘ก๐‘ก. From the factored form

โˆ’16๐‘ก๐‘ก(๐‘ก๐‘ก โˆ’ 8) = 0

we conclude that the rocket is on the ground at times 0 and 8 seconds. So the rocket hits the ground after 8 seconds from its launch.

Solving an Application Problem with the Use of Factoring

The height of a triangle is 1 meter less than twice the length of the base. The area is 14 m2. What are the measures of the base and the height? Let ๐‘๐‘ and โ„Ž represent the base and the height of the triangle, correspondingly. The first sentence states that โ„Ž is 1 less than 2 times ๐‘๐‘. So, we record

โ„Ž = 2๐‘๐‘ โˆ’ 1.

Using the formula for area of a triangle, ๐ด๐ด = 12๐‘๐‘โ„Ž, and the fact that ๐ด๐ด = 14, we obtain

14 =12๐‘๐‘(2๐‘๐‘ โˆ’ 1).

Since this is a one-variable quadratic equation, we will attempt to solve it by factoring, after bringing all the terms to one side of the equation. So, we have

0 =12๐‘๐‘(2๐‘๐‘ โˆ’ 1) โˆ’ 14

0 = ๐‘๐‘(2๐‘๐‘ โˆ’ 1) โˆ’ 28

0 = 2๐‘๐‘2 โˆ’ ๐‘๐‘ โˆ’ 28

Solution

Solution

/ โˆ™ 2

to clear the fraction, multiply each term by 2 before working out the bracket

factor ๐‘ก๐‘ก

/ รท (๐‘ ๐‘  โˆ’ 2)

Page 36: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 249

Solving Polynomial Equations and Applications of Factoring

0 = (2๐‘๐‘ + 7)(๐‘๐‘ โˆ’ 4),

which by the zero-product property gives us ๐‘๐‘ = โˆ’72 or ๐‘๐‘ = 4. Since ๐‘๐‘ represents the length

of the base, it must be positive. So, the base is 4 meters long and the height is โ„Ž = 2๐‘๐‘ โˆ’1 = 2 โˆ™ 4 โˆ’ 1 = ๐Ÿ•๐Ÿ• meters long.

F.4 Exercises

Vocabulary Check Complete each blank with the most appropriate term from the given list: factored, linear,

n, zero, zero-product.

1. The ________________________ property states that if ๐‘Ž๐‘Ž๐‘๐‘ = 0 then either ๐‘Ž๐‘Ž = 0 or ๐‘๐‘ = 0.

2. When a quadratic equation is solved by factoring, the zero-product property is used to form two ______________ equations.

3. The zero-product property can be applied only when one side of the equation is equal to __________ and the other side is in a ________________ form.

4. An ๐‘›๐‘›-th degree polynomial equation may have up to _____ solutions. Concept Check True or false.

5. If ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ = 0 then ๐‘ฅ๐‘ฅ = 0 or ๐‘ฅ๐‘ฅ = 0.

6. If ๐‘Ž๐‘Ž๐‘๐‘ = 1 then ๐‘Ž๐‘Ž = 1 or ๐‘๐‘ = 1.

7. If ๐‘ฅ๐‘ฅ + ๐‘ฅ๐‘ฅ = 0 then ๐‘ฅ๐‘ฅ = 0 or ๐‘ฅ๐‘ฅ = 0.

8. If ๐‘Ž๐‘Ž2 = 0 then ๐‘Ž๐‘Ž = 0.

9. If ๐‘ฅ๐‘ฅ2 = 1 then ๐‘ฅ๐‘ฅ = 1. Concept Check

10. Which of the following equations is not in proper form for using the zero-product property.

a. ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 1) + 3(๐‘ฅ๐‘ฅ โˆ’ 1) = 0 b. (๐‘ฅ๐‘ฅ + 3)(๐‘ฅ๐‘ฅ โˆ’ 1) = 0

c. ๐‘ฅ๐‘ฅ(๐‘ฅ๐‘ฅ โˆ’ 1) = 3(๐‘ฅ๐‘ฅ โˆ’ 1) d. (๐‘ฅ๐‘ฅ + 3)(๐‘ฅ๐‘ฅ โˆ’ 1) = โˆ’3 Solve each equation.

11. 3(๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ + 4) = 0 12. 2(๐‘ฅ๐‘ฅ + 5)(๐‘ฅ๐‘ฅ โˆ’ 7) = 0

13. (3๐‘ฅ๐‘ฅ + 1)(5๐‘ฅ๐‘ฅ + 4) = 0 14. (2๐‘ฅ๐‘ฅ โˆ’ 3)(4๐‘ฅ๐‘ฅ โˆ’ 1) = 0

15. ๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 18 = 0 16. ๐‘ฅ๐‘ฅ2 โˆ’ 18๐‘ฅ๐‘ฅ + 80 = 0

Page 37: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 250

Factoring

17. 2๐‘ฅ๐‘ฅ2 = 7 โˆ’ 5๐‘ฅ๐‘ฅ 18. 3๐‘˜๐‘˜2 = 14๐‘˜๐‘˜ โˆ’ 8

19. ๐‘ฅ๐‘ฅ2 + 6๐‘ฅ๐‘ฅ = 0 20. 6๐‘ฅ๐‘ฅ2 โˆ’ 3๐‘ฅ๐‘ฅ = 0

21. (4 โˆ’ ๐‘Ž๐‘Ž)2 = 0 22. (2๐‘๐‘ + 5)2 = 0

23. 0 = 4๐‘›๐‘›2 โˆ’ 20๐‘›๐‘› + 25 24. 0 = 16๐‘ฅ๐‘ฅ2 + 8๐‘ฅ๐‘ฅ + 1

25. ๐‘๐‘2 โˆ’ 32 = โˆ’4๐‘๐‘ 26. 19๐‘Ž๐‘Ž + 36 = 6๐‘Ž๐‘Ž2

27. ๐‘ฅ๐‘ฅ2 + 3 = 10๐‘ฅ๐‘ฅ โˆ’ 2๐‘ฅ๐‘ฅ2 28. 3๐‘ฅ๐‘ฅ2 + 9๐‘ฅ๐‘ฅ + 30 = 2๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ

29. (3๐‘ฅ๐‘ฅ + 4)(3๐‘ฅ๐‘ฅ โˆ’ 4) = โˆ’10๐‘ฅ๐‘ฅ 30. (5๐‘ฅ๐‘ฅ + 1)(๐‘ฅ๐‘ฅ + 3) = โˆ’2(5๐‘ฅ๐‘ฅ + 1)

31. 4(๐‘ฅ๐‘ฅ โˆ’ 3)2 โˆ’ 36 = 0 32. 3(๐‘Ž๐‘Ž + 5)2 โˆ’ 27 = 0

33. (๐‘ฅ๐‘ฅ โˆ’ 3)(๐‘ฅ๐‘ฅ + 5) = โˆ’7 34. (๐‘ฅ๐‘ฅ + 8)(๐‘ฅ๐‘ฅ โˆ’ 2) = โˆ’21

35. (2๐‘ฅ๐‘ฅ โˆ’ 1)(๐‘ฅ๐‘ฅ โˆ’ 3) = ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ โˆ’ 2 36. 4๐‘ฅ๐‘ฅ2 + ๐‘ฅ๐‘ฅ โˆ’ 10 = (๐‘ฅ๐‘ฅ โˆ’ 2)(๐‘ฅ๐‘ฅ + 1)

37. 4(2๐‘ฅ๐‘ฅ + 3)2 โˆ’ (2๐‘ฅ๐‘ฅ + 3) โˆ’ 3 = 0 38. 5(3๐‘ฅ๐‘ฅ โˆ’ 1)2 + 3 = โˆ’16(3๐‘ฅ๐‘ฅ โˆ’ 1)

39. ๐‘ฅ๐‘ฅ3 + 2๐‘ฅ๐‘ฅ2 โˆ’ 15๐‘ฅ๐‘ฅ = 0 40. 6๐‘ฅ๐‘ฅ3 โˆ’ 13๐‘ฅ๐‘ฅ2 โˆ’ 5๐‘ฅ๐‘ฅ = 0

41. 25๐‘ฅ๐‘ฅ3 = 64๐‘ฅ๐‘ฅ 42. 9๐‘ฅ๐‘ฅ3 = 49๐‘ฅ๐‘ฅ

43. ๐‘ฅ๐‘ฅ4 โˆ’ 26๐‘ฅ๐‘ฅ2 + 25 = 0 44. ๐‘›๐‘›4 โˆ’ 50๐‘›๐‘›2 + 49 = 0

45. ๐‘ฅ๐‘ฅ3 โˆ’ 6๐‘ฅ๐‘ฅ2 = โˆ’8๐‘ฅ๐‘ฅ 46. ๐‘ฅ๐‘ฅ3 โˆ’ 2๐‘ฅ๐‘ฅ2 = 3๐‘ฅ๐‘ฅ

47. ๐‘Ž๐‘Ž3 + ๐‘Ž๐‘Ž2 โˆ’ 9๐‘Ž๐‘Ž โˆ’ 9 = 0 48. 2๐‘ฅ๐‘ฅ3 โˆ’ ๐‘ฅ๐‘ฅ2 โˆ’ 2๐‘ฅ๐‘ฅ + 1 = 0

49. 5๐‘ฅ๐‘ฅ3 + 2๐‘ฅ๐‘ฅ2 โˆ’ 20๐‘ฅ๐‘ฅ โˆ’ 8 = 0 50. 2๐‘ฅ๐‘ฅ3 + 3๐‘ฅ๐‘ฅ2 โˆ’ 18๐‘ฅ๐‘ฅ โˆ’ 27 = 0 Discussion Point

51. A student tried to solve the equation ๐‘ฅ๐‘ฅ3 = 9๐‘ฅ๐‘ฅ by first dividing each side by ๐‘ฅ๐‘ฅ, obtaining ๐‘ฅ๐‘ฅ2 = 9. She then solved the resulting equation by the zero-product property and obtained the solution set {โˆ’3,3}. Is this a complete solution? Explain your reasoning.

Analytic Skills

52. Given that ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘ฅ๐‘ฅ2 + 14๐‘ฅ๐‘ฅ + 50, find all values of ๐‘ฅ๐‘ฅ such that ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 5.

53. Given that ๐‘”๐‘”(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ2 โˆ’ 15๐‘ฅ๐‘ฅ, find all values of ๐‘ฅ๐‘ฅ such that ๐‘”๐‘”(๐‘ฅ๐‘ฅ) = โˆ’7.

54. Given that ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ2 + 3๐‘ฅ๐‘ฅ and ๐‘”๐‘”(๐‘ฅ๐‘ฅ) = โˆ’6๐‘ฅ๐‘ฅ + 5, find all values of ๐‘ฅ๐‘ฅ such that ๐‘“๐‘“(๐‘ฅ๐‘ฅ) = ๐‘”๐‘”(๐‘ฅ๐‘ฅ).

55. Given that ๐‘”๐‘”(๐‘ฅ๐‘ฅ) = 2๐‘ฅ๐‘ฅ2 + 11๐‘ฅ๐‘ฅ โˆ’ 16 and โ„Ž(๐‘ฅ๐‘ฅ) = 5 + 2๐‘ฅ๐‘ฅ โˆ’ ๐‘ฅ๐‘ฅ2, find all values of ๐‘ฅ๐‘ฅ such that ๐‘”๐‘”(๐‘ฅ๐‘ฅ) = โ„Ž(๐‘ฅ๐‘ฅ).

Solve each equation for the specified variable.

56. ๐‘ท๐‘ท๐‘Ÿ๐‘Ÿ๐‘ก๐‘ก = ๐ด๐ด โˆ’ ๐‘ท๐‘ท, for ๐‘ท๐‘ท 57. 3๐’”๐’” + 2๐‘๐‘ = 5 โˆ’ ๐‘Ÿ๐‘Ÿ๐’”๐’”, for ๐’”๐’”

58. 5๐‘Ž๐‘Ž + ๐‘๐‘๐’“๐’“ = ๐’“๐’“ โˆ’ 2๐‘Ž๐‘Ž, for ๐’“๐’“ 59. ๐ธ๐ธ = ๐‘…๐‘…+๐’“๐’“๐’“๐’“

, for ๐’“๐’“

Page 38: Factoring - Anna Kuczynska...section F1 | 217 Greatest Common Factor and Factoring by Grouping d. T he lowest power out of ๐‘ฅ๐‘ฅ โˆ’1 and ๐‘ฅ๐‘ฅ โˆ’2 is ๐‘ฅ๐‘ฅ โˆ’2, and the

section F4 | 251

Solving Polynomial Equations and Applications of Factoring

60. ๐‘ง๐‘ง = ๐‘ฅ๐‘ฅ+2๐’š๐’š

๐’š๐’š, for ๐’š๐’š 61. ๐‘Ž๐‘Ž = โˆ’2๐’•๐’•+4

๐’•๐’•, for ๐’•๐’•

Analytic Skills

Use factoring the GCF out to solve each formula for the indicated variable.

62. An object is thrown downwards, with an initial speed of 16 ft/s, from the top of a building 480 ft high. If the distance travelled by the object, in ft, is given by the function ๐‘Ž๐‘Ž(๐‘ก๐‘ก) = ๐‘ข๐‘ข๐‘ก๐‘ก + 16๐‘ก๐‘ก2, where ๐‘ข๐‘ข is the initial speed in ft/s, and ๐‘ก๐‘ก is the time in seconds, then how many seconds later will the object hit the ground?

63. A sandbag is dropped from a hot-air balloon 900 ft above the ground. The height, โ„Ž, of the sandbag above the ground, in feet, after ๐‘ก๐‘ก seconds is given by the function โ„Ž(๐‘ก๐‘ก) = 900 โˆ’ 16๐‘ก๐‘ก2. When will the sandbag hit the ground?

64. The sum of a number and its square is 72. Find the number.

65. The sum of a number and its square is 210. Find the number.

66. The length of a rectangle is 2 meters more than twice the width. The area of the rectangle is 84 m2. Find the length and width of the rectangle.

67. An envelope is 4 cm longer than it is wide. The area is 96 cm2. Find its length and width.

68. The height of a triangle is 8 cm more than the length of the base. The area of the triangle is 64 cm2. Find the base and height of the triangle.

69. A triangular sail is 9 m taller than it is wide. The area is 56 m2. Find the height and the base of the sail.

70. A gardener decides to build a stone pathway of uniform width around her flower bed. The flower bed measures 10 ft by 12 ft. If she wants the area of the bed and the pathway together to be 224 ft2, how wide should she make the pathway?

71. Suppose a rectangular flower bed is 3 m longer than it is wide. What are the dimensions of the flower bed if its area is 108 m2 ?

72. A picture frame measures 12 cm by 20 cm, and 84 cm2 of picture shows. Find the width of the frame.

73. A picture frame measures 14 cm by 20 cm, and 160 cm2 of picture shows. Find the width of the frame.

74. If each of the sides of a square is lengthened by 6 cm, the area becomes 144 cm2. Find the length of a side of the original square.

75. If each of the sides of a square is lengthened by 4 m, the area becomes 49 m2. Find the length of a side of the original square.

๐‘๐‘

๐‘๐‘ + 8

2๐‘ค๐‘ค + 2

๐‘ค๐‘ค