f 2-revised.pdf
-
Upload
behdad1985 -
Category
Documents
-
view
227 -
download
0
Embed Size (px)
Transcript of f 2-revised.pdf
-
--------------
1
eracnioP irneH 2
.
( 1
.
htoomS (2
.
2 (3
.
. ( suomonotuA) 2
2212) () ( 1112
,,xfxxxfxx
==
& &
. f,f 21 x,x 21
x,x 21
. ( enalp esahp)
. xx 21 x1 x2
(2-1) suomonotuA
-
--------------
2
. ( yrotcejart enalp esahp)
. tiartrop esahp
tiartrop esahp:
1=K1=m .
x
&&+= xx0
xo m
. ) (
xtXnist ) (xtXsoct
o
o= &=
. &x x
+= &o xxx 222
&x x
. xo
.
. tiartrop esahp
&x
x
.
.
-
--------------
3
(stniop ralugnis)
( 2-1) x= &o
fxxfxx oo == 112221 ,,, 22) ( ) ( ) ( .
.
.
&&o& xxxx +++= 2 .630 23) ( 0,0) ( 3,0) (:
tiartrop esahp
.
&x 2- 3
32 xxx +++== oooo
= x3
-
--------------
4
112) () ( : 212
1
2
fx,xfx,x
xd = xd
( deulav ralugnis ) 0 f,f 21
o . =o
1
2
xd xd
.
. ( )
.
. tiartrop esahp &=+ x4xx3 :
: o +==== 3 :4xxx0,x2,x2
. tiartrop esahp
tiartrop esahp
: tiartrop esahp lacitylanA - senilcosi - atled - draneiL - llep -
-
--------------
5
. ( raenil esiw -eceip)
. enilcosi
. ) (112) (
212
1
2
fx,xfx,x
xd = xd
xx += &&o = &&& xdxxdxdtd) ( ) (
:
x += &&oxd
xdx :
+= &o xxx 222&x
0x )0x . (
.
d=0S1
S &1
-
--------------
6
d=o ) (
o
uu
ut
uddu d &&&&&& === ud
&=+ 2uc 21
.
. = &o x1 ,t=o . &&x x = uU
= uu
1 & =+ uc 2 2
esahptiartrop
-
--------------
7
. ( )
.
( 1 ) t=o =+ uU
= uU . ( A ) ( 2 )
( B ) . .
-
--------------
8
cosIsenil
&= xfx,x 1112) ( &= xfx,x 2212) (
x2 x1
. ) (112 == ) (
212
1
2
fx,xfx,x
xd xd
enilcosI enilcosi .
= fx,xfx,x 212112) ( ) ( . = fx,xfx,x 212112) ( ) (
tiartrop esahp enilcosI
. 9
. 9
21212
1
xxxxxx
xxxx
==
=+==
& &&o&&
2
1
1
2xx
xd = xd
-
--------------
9
. enilcosI
xx 12 +=o
1 xx 21
= x1x 21 - 1
.
- 2
.
2 x.2x1xx ++= &&o&o ) ( enilcosi : :
21122 ) (212
1
xx.2x1xxxxx
xx
===
=
&o &&
enilcosi == ) (2
2211
1
2
xx.2x1x
xo xo
o
-
--------------
01
.2x1xxx 12212 ++= oo ) ( .
.
senilcosi
. x2 x1 (1
(21
2
xd enilcosi tiartrop esahp xd
.
2
2 ) (xxcxda2) (
xxaxba1
212
112
=+=+
& &
-
--------------
11
a2) ( a1) ( bxxcbdxxaa4) ( ) () ( :
xaxbxa3
2111
112
=+=+
&& &&&&
a4) ( a3) ( xabxdacbx 111 ++= &&&o ) ( ) (
2
) ( ) (
22 adad4dacb
1,2 =++
, 21
222
111
xxxx
==
& &
== 12 101t202t xtxe,xtxe* ) ( ) ( t
x,x 21 * , 21( 1
1
2
exxxx
01
1202
=
-
--------------
21
2 1
(edon elbats)
xx , 21 * , 21 (3
.
j
.
, 21 ( )
. ( tniop elddas)
.
. 12 == * etartrop esahp :
(. 0 )
(
-
--------------
31
( 1
.
212
112
xxxxxx=+=+
& &
( )
22
2 =+ rxx 1
1
12
x =gtx
=) (. =
& rrt &
.
-
--------------
41
=o tniop retnec
k
.
2 yk1yyy += &&&o ) (xyxy
2
1
=& =
21122 ) (12
xxk1xxxx
=+=
& &
====&oo&oo
21
12
xx xx
=
2
1
2
2
1
2
2
1
1
1
2
1
xx
xf
xf
xf
xf
xx& &
-
--------------
51
) (
=
2
1
A
22111
1
xx
12xkxk1x1
xx
12 4444443 444444
o& &
A
1k =
1A
o
) (
2k1kk4
tedIA2
1,2+== 2
=o
o
ok2
=
&o
&
) (212 ) (
121
xxcdxxaxbx
==
& &
-
--------------
61
=
=
ba
cd
x,xo ee 12
o
=
=
da
xAf
ex1o
o
ad +=o ) ( ) ( == 12 a,d
e2
x
=
0dac
c0bd
A
o +== 2dajda
tniop retnec
(1
rotcartta ecnaroL
&= xxx 121) ( &=+ x1xxx 2312 ) (
3123 xxxbx,,b => &o
( 2
-
--------------
71
.
322
2 &=+ x0/30/1xx0/881xx0/57x 1121
212
3 &=++ x0/52x0/1x0/7400/881xx 2121
(1
(2
.
.
-
--------------
81
3,o) ( ,oo) (
.
selcyc timiL
-
--------------
91
( 1
t
( 2
t
.
(3
.
-
--------------
02
:
&=+ 1211222 xxxxx1) ( &=+ 2121222 xxxxx1) (
tiartrop esahp
1
2122
2x 1
=+= rxx,gtx
1 ) (tdrr1,d
td == 2 rd
r rt= &o ) ( = r1
tdd
.
.
2 =1darss) ( 1
rt> &o ) ( < r1
rt< &o ) ( > r1
tiartrop esahp (
-
--------------
12
(
&=+ xxxxx1 12112222) ( &xxxxx =+1 21212222) (
N( a
s( b
eracnoip
NS =+1 2
xedni
.
nosxidneB
D
&= xfx,x 1112) ( &= xfx,x 2212) (
o ) (+
=2
2
1
1
xf
x D fxf
2 &=+ xxxx 1112
-
--------------
22
22 &=+ xxxx 211
fxxx 2212 =+o ) ( x2o x1o fx) (
eracnioP-nosxidneB
XX 21 &= XfX) (