expo machines vibrating.pdf

download expo machines vibrating.pdf

of 74

Transcript of expo machines vibrating.pdf

  • 8/12/2019 expo machines vibrating.pdf

    1/74

    USCUSCUSC

    Vibrationsof

    Machine Foundations

    Richard P. Ray, Ph.D., P.E.Civil and Environmental Engineering

    University of South Carolina

  • 8/12/2019 expo machines vibrating.pdf

    2/74

    USCUSCUSC

    ATST Telescope and FE Model

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    3/74

    USCUSCUSC

    Summary and Conclusions (Cho, 2005)1.

    High fidelity FE models were created

    2.

    Relative mirror motions from zenith to horizon pointing: about 400 m intranslation and 60 rad in rotation.

    3.

    Natural frequency changes by 2 Hz as height changes by 10m.

    4.

    Wind buffeting effects caused by dynamic portion (fluctuation) of wind

    5.

    Modal responses sensitive to stiffness of bearings and drive disks

    6. Soil characteristics were the dominant influencesin modal (dynamic) behavior of the telescopes.7.

    Fundamental Frequency (for a lowest soil stiffness):

    OSS=20.5hz; OSS+base=9.9hz; SS+base+Coude+soil=6.3hz8.

    A seismic analysis was made with a sample PSD

    9. ATST structure assembly is adequately designed:1.

    Capable of supporting the OSS2.

    Dynamically stiff enough to hold the optics stable

    3.

    Not significantly vulnerable to wind loadings

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    4/74

    USCUSCUSC

    Topics for Today

    Fundamentals Modeling

    Properties Performance

    Alapok Modellezs

    Tulajdonsgok Gyakorlati

    Alkalmazs

  • 8/12/2019 expo machines vibrating.pdf

    5/74

    USCUSCUSC

    Foundation Movement

    Alapok Mozgslehetsgei

    X

    Z

    Y

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    6/74USCUSCUSC

    Design Questions (1/4) Tervezs

    How Does It Fail? Static Settlement

    Dynamic Motion TooLarge (0.02 mm)

    Settlements Caused By

    Dynamic Motion Liquefaction

    What Are Maximum

    Values of Failure?(Acceleration,Velocity,

    Displacement)

    Hogy rongldik/megytnkre?

    Statikus sllyeds Dinamikus mozgs tl

    nagy (0,02 mm)

    Sllyeds dinamikusmozgs kvetkeztben

    Megfolysods

    Ronglds maximlisrtkei (gyorsuls,sebessg, eltolds)

    Fundamentals-Modeling-Properties-Design-Performance

  • 8/12/2019 expo machines vibrating.pdf

    7/74USCUSCUSC

    Velocity Requirements Sebessg Kvetelmnyek

    Massarch

    (2004) "Mitigation of Traffic-Induced Ground Vibrations"

    Fundamentals-Modeling-Properties-Performance

    0,40

  • 8/12/2019 expo machines vibrating.pdf

    8/74USCUSCUSCFundamentals-Modeling-Properties-Performance

    300 800

  • 8/12/2019 expo machines vibrating.pdf

    9/74

    USCUSCUSC

    Design Questions (2/4) Tervezs

    What Are RelationsBetween Loads AndFailure Quantities?

    Loads -Harmonic,Periodic, Random

    Load Structure

    Foundation Soil Neighboring Structures

    Model: Deterministic or

    Probabilistic

    Mi a kapcsolat terhelsis trsi mennyisgekkztt?

    Terhelsek- Harmnikus,Peridikus, Vletlenszer

    Terhels pletAlapozs Talaj Kzeli

    pletek Model: Determinisztikus s

    probabilisztikus

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    10/74

    USCUSCUSC

    Harmnikus

    Peridikus

    Vletlenszer

  • 8/12/2019 expo machines vibrating.pdf

    11/74

    USCUSCUSC

  • 8/12/2019 expo machines vibrating.pdf

    12/74

    USCUSCUSC

    Design Questions (3/4) Tervezs

    Hogy hatrozzuk meg a tervezshez szksgesparamtereket? (How do we measure what isnecessary?)

    Teljes mretarny teszt (Full scale Test) Prototpus teszt (Prototype Test) Kis mretteszt (Small Scale Tests (Centrifuge))

    Laboratriumi teszt (Laboratory Tests (SpecificParameters)) Szmtgpes program (Computer Model)

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    13/74

    USCUSCUSC

  • 8/12/2019 expo machines vibrating.pdf

    14/74

    USCUSCUSC

    Design Questions (4/4) Milyen biztonsgi tnyezt hasznljunk? (What

    Factor of Safety Do We Use? ) Van a biztonsgi tnyeznek rtelme? (Does FOS Have

    Meaning) Mi trtnik trs utn (What Happens After There Is

    Failure) letveszts (Loss of Life) Tulajdonvesztd (Loss of Property)

    Gyrts kihagys (Loss of Production) Mi a munka clja, tervezett lettartalma, rtke (Purpose of

    Project, Design Life, Value)

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    15/74

    USCUSCUSC

    r -2 r -2 r -0.5

    r-1

    r -1

    r

    Nyrhullm

    Verticalcomponent

    Horizontalcomponent

    Shearwindow

    Rayleigh wave

    Relativeamplitude+

    +

    +

    +

    - -

    +

    +

    Wave TypeHullm tpus

    sszes energiaszzalka

    Rayleigh 67

    Shear 26Compression 7

    Waves

    Fundamentals-Modeling-Properties-Performance

    Compresszi

    hullmNyrablak

  • 8/12/2019 expo machines vibrating.pdf

    16/74

    USCUSCUSC

    Alapok Modellezse (Modeling Foundations)

    Egyestett Tmb (m,c,k)Lumped Parameter (m,c,k) BlockSystem

    Parameters Constant, Layers, Special Ellenllsi Fggvnyek Impedance Functions

    Function of Frequency (), Layers Peremrtk Feladatok Boundary Elements (BEM)

    Infinite Boundary, Interactions, Layers Vges Elemes (Finite Element/Hybrid (FEM, FEM-BEM))

    Complex Geometry, Non-linear Soil

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    17/74

    USCUSCUSC

    Lumped Parameter (Egyestett tmb))sin( tPP o =

    m

    G

    k

    m

    c

    )sin(0 tPkzzczm =++ &&&

    r

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    18/74

    USCUSCUSC

    Egy szabadsgfok (Single Degree ofFreedom)

    )()(

    )(

    )()(

    0

    2

    Norm

    m

    NForceSpringzk

    Nor

    sec

    m

    m

    secNForceDampingzc

    Nor

    sec

    mkgForceInertiazm

    zkzczm

    z

    z

    z

    zzz

    =

    =

    =

    =++

    &

    &&

    &&&

    k

    m

    c

    z

    Tehetetlensgi er

    Rug er

    Csillapt Er

  • 8/12/2019 expo machines vibrating.pdf

    19/74

    USCUSCUSC

    Egy szabadsgfokSingle Degree of Freedom

    condependssforsolution

    sm

    csthen

    m

    k

    setandembydivide

    ekcsmswhere

    constantezformtakewillsolution

    zkzczm

    n

    n

    st

    st

    st

    zzz

    0

    0)(

    .......

    0

    22

    2

    2

    =++

    =

    =++

    ==

    =++

    &&&

    c=0Undamped

    c=2mCriticallyDamped

    c

  • 8/12/2019 expo machines vibrating.pdf

    20/74

    USCUSCUSC

    Single Degree of Freedom

    )cos()0()sin(

    )0(

    )(

    )0()0(

    )(,)cos()sin()()sin()cos('

    .).(,)(...0

    2121

    22

    tzt

    z

    tz

    AzandBz

    conditioninitialfBAtBtAtz

    titeidentitysEuler

    condinitfwhereeetz

    issm

    c

    s

    nnn

    n

    n

    nnti

    titi

    nn

    n

    nn

    +

    =

    ==

    =+=+=

    =+===++

    &

    &

    undamped

    )0(z&

    z(0)

    t

    Kiindul felttel

  • 8/12/2019 expo machines vibrating.pdf

    21/74

    USCUSCUSC

    [ ] tn

    t

    nncrit

    n

    n

    n

    n

    etztztz

    condinitfwhereettz

    m

    c

    sandmccthenif

    m

    c

    m

    c

    sthen

    presentdampingifsm

    c

    s

    ++=

    =+======

    =

    =++

    )0()1)(0()(

    .).(,)()(220

    22

    0

    2121

    22

    22

    &

    critical

    Single Degree of Freedom

    z(0)

    )0(z&

    t

  • 8/12/2019 expo machines vibrating.pdf

    22/74

    USCUSCUSC

    ( )

    ( )

    +

    +=

    +=+=+=

    ==

    ===

  • 8/12/2019 expo machines vibrating.pdf

    23/74

    USCUSCUSC

    Single Degree of Freedom

    )sin(0 tPzkzczm Pzzz =++ &&&

    k

    m

    c

    )sin( tPP Po =( ) ( ){ }

    ( )( )

    22

    2222

    0

    1

    2tan

    sin

    cos)sin(

    ==

    +

    +

    +=

    n

    P

    n

    P

    P

    P

    P

    PP

    DD

    Dt

    D

    mk

    c

    t

    cmk

    P

    tBtAez n

    critc

    c

    D=

    m

    kn= 21 DnD = kmc

    crit 2=

  • 8/12/2019 expo machines vibrating.pdf

    24/74

    USCUSCUSC

    SDOF tmenti s lland Transient

    and Steady-State

  • 8/12/2019 expo machines vibrating.pdf

    25/74

    USCUSCUSC

    ( ) ( )

    222

    0max

    2222

    0

    21

    1

    sin)(

    +

    =

    +=

    n

    P

    n

    P

    P

    PP

    D

    k

    P

    z

    tcmk

    P

    tz

    222

    21

    1

    +

    =

    n

    P

    n

    P

    staticmax

    D

    zz

  • 8/12/2019 expo machines vibrating.pdf

    26/74

    USCUSCUSCFundamentals-Modeling-Properties-Performance

    Dynamic Magnification (Logarithmic)

    0.1

    1

    10

    100

    0.1 1 10

    Frequency Ratio (P/

    n)

    M

    agnification

    D=0.02D=0.05

    D=0.10

    D=0.20

    D=0.50

  • 8/12/2019 expo machines vibrating.pdf

    27/74

    USCUSCUSC

    Lumped Parameter System

    Kx

    Z

    KzCz

    Cx

    K

    C

    /2 C

    /2

    X

    )sin(0 tPzkzczm Pzzz =++ &&&

    mI

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    28/74

    USCUSCUSC

    Rendszer paramterek Lumped Parameter Values

    Mode Verticalz

    Horizontalx

    Rocking

    Torsion

    Stiffness

    k

    Mass Ratio

    mDampingRatio, D

    1

    4Gr

    2

    8Gr

    )1(3

    8 3

    Gr

    3

    16 3Gr

    5r

    I

    3

    8

    )2(

    r

    m

    34

    )1(

    r

    m

    2/1425.0

    m2/1

    288.0

    m2/1)1(

    15.0

    mm+ m21

    50.0

    +

    m

    D=c/ccr

    G=Shear Modulus =Poisson's Ratio r=Radius

    =Mass Density I

    ,I

    =Mass Moment of Inertia

    5

    8

    )1(3

    r

    I

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    29/74

    USCUSCUSC

    Design Example 1 (Plda)VERTICAL COMPRESSORUnbalanced Forces

    (kiegyenslyozatlan erk)

    Vertical = 45 kN

    Horizontal Primary = 0,5 kNOperating Speed= 450 rpm

    Wt Machine + Motor = 5 000 kg

    Soil Properties

    Shear Wave Velocity Vs

    = 250 m/sec

    Density,

    = 1600 kg/m3

    Shear Modulus, G = 1,0e8 Pa

    Poisson's Ratio,

    = 0,33

    DESIGN CRITERION:Smooth Operation At Speed

    Velocity

  • 8/12/2019 expo machines vibrating.pdf

    30/74

    USCUSCUSC

    rGr

    Qmm

    k

    QZ

    z

    static =

    ===

    800

    100,14

    1000)00045(667,0

    4

    )1(05,0

    mr 5.105.0

    075.0==

    ( )

    mmZZ

    DM

    mD

    m

    rm

    staticdynamic

    z

    05,0

    2

    10,153,0

    425,0

    65,055,116004

    0002367,0

    4

    )1(

    33

    ==

    ==

    =

    =

    =

    Try a 3 x 2,5 x 1 foundation block, r = 1,55 m

    Mass = 18 000 kg Total Mass = 18 000 + 5 000 = 23 000 kg

    Jump to Figure

    Fundamentals-Modeling-Properties-Performance

    667,0

    100,14

    )1(

    4 8 rGrk

    ==

    34

    )1(

    r

    mm

    =

    tmeg

    tmbalaptest

  • 8/12/2019 expo machines vibrating.pdf

    31/74

  • 8/12/2019 expo machines vibrating.pdf

    32/74

    USCUSCUSC

    Horizontal Translation Only

    mmk

    QXMag

    mD

    r

    mmm

    lwrtEquivanlen

    x

    staticx

    37

    02/1

    3

    103,199,3108,6

    33,02

    8

    18002,141,0

    288,0

    49,0

    8

    299,3

    510

    =

    ====

    ===

    ==

    Rocking About Point "O"

    0,25019,0

    29,3)29,31(

    15,0

    )1(

    15,0

    29,3)39,3(1700

    100,1

    8

    )67,0(3

    8

    )1(3

    /4,32100,1

    10054,1

    /10054,1)33,01(3 39,31080,68)1(38

    /5,3332039,33

    510

    3

    5

    7

    5

    7

    10

    10

    373

    4

    3

    4

    3

    ==

    +

    =

    +

    =

    =

    ==

    =

    ==

    = ==

    ===

    ==

    Mag

    mm

    D

    r

    Im

    secradI

    k

    radNGrk

    secradrpmmlw

    rEquivalent

    n

    Fundamentals-Modeling-Properties-Performance

    Ax = 40x10-3

    mm

    csak vzszintes mozgs

  • 8/12/2019 expo machines vibrating.pdf

    33/74

    USCUSCUSC

    mmResonanceAt

    mmhXMotionHorizontal

    rad

    k

    MDeflectionAngularStatic

    mNMBaseAboutMomentStatic

    s

    os

    33

    37

    710

    0

    100,85)104,3(0,25

    104,341054.8

    1054.8

    10054.1

    9000

    900051800

    ==

    ====

    =

    ===

    ===

    Fundamentals-Modeling-Properties-Performance

    X

    X = 40x10-3

    mm

    Dynamic Magnification (Linear)

    0

    5

    10

    15

    20

    25

    30

    0,0 0,5 1,0 1,5 2,0Frequency Ratio ( P/ n)

    Magnification

    0,02

    0,05

    0,1

    0,2

    0,5

  • 8/12/2019 expo machines vibrating.pdf

    34/74

    USCUSCUSC

    Impedance Methods

    Based on Elasto-Dynamic Solutions

    Compute Frequency-Dependent ImpedanceValues (Complex-Valued)

    Solved By Boundary Integral Methods Require Uniform, Single Layer or Special Soil

    Property Distribution Solved For Many Foundation Types

    Fundamentals-Modeling-Properties-Performance

    Ellenllsi fggvnyek

    Frekvencitl fggellenllsi rtkek

    Peremrtk integrl mdszer

    Egyenletes, egy rteg, specilistalajrtk eloszls szksges

    Tbbfajta alap tpusra megoldott

  • 8/12/2019 expo machines vibrating.pdf

    35/74

    USCUSCUSC

    Impedance Functions

    ( ))sin()cos( titPePP oti

    o +==

    ( )

    ++=+== SOILSTATIC

    z

    zz D

    KCikKCiK

    A

    RS

    2)(

    Radiation DampingSoil Damping

    Jump Wave

    Sz

    Fundamentals-Modeling-Properties-Performance

    Energia csillaptsTalaj csillapts

  • 8/12/2019 expo machines vibrating.pdf

    36/74

    USCUSCUSC

    Impedance Functions

    Luco

    and Westmann

    (1970)

    sVr

    Gra ==0

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    37/74

    USCUSCUSC

    Impedance Functions

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    38/74

    USCUSCUSC

    Boundary Element

    Stehmeyer

    and Rizos, 2006

    Fundamentals-Modeling-Properties-Performance

    Peremrtk feladatok

  • 8/12/2019 expo machines vibrating.pdf

    39/74

    USCUSCUSC

    B-Spline Impulse Response Approach

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    40/74

    USCUSCUSC

    [ ]{ } [ ]{ } { } tie puKuM =+&&

    Fundamentals-Modeling-Properties-Performance

    { } { }

    [ ] [ ]{ }{ } { }pUMK

    Uu

    =

    =

    2

    thene ti

  • 8/12/2019 expo machines vibrating.pdf

    41/74

    USCUSCUSCFundamentals-Modeling-Properties-Performance

    G1

    ,1

    ,1

    u1

    u2

    u7

    u8

    [ ] ),,(1111

    GfnK =

    8

    7

    2

    1

    8,87,82,81,8

    8,77,72,71,7

    8,27,22,21,2

    8,17,12,11,1

    u

    u

    u

    u

    kkkk

    kkkk

    kkkk

    kkkk

    [ ] )( 11 fnm =

    linear

    linear

    dcxyybxau iii

    ==

    +++=

  • 8/12/2019 expo machines vibrating.pdf

    42/74

    USCUSCUSC

    [ ]{ } [ ]{ } { } tie puKuM =+&&

    tie

    p

    p

    p

    pp

    u

    u

    u

    uu

    kkk

    kkkk

    kkkkk

    kkkkkkk

    u

    u

    u

    uu

    m

    m

    m

    mm

    =

    +

    5

    4

    3

    2

    1

    5

    4

    3

    2

    1

    5,54,53,5

    5,44,43,42,4

    5,34,33,32,31,3

    4,23,22,21,2

    3,12,11,1

    5

    4

    3

    2

    1

    5

    4

    3

    2

    1

    &&

    &&

    &&

    &&&&

    { } { } { } { }[ ] [ ]{ }{ } { } { }

    [ ]{ } valuedcomplexare

    forsolvegiven

    andethenezif titi

    ===

    ZK

    ZpZMKZzZ

    ,

    ,22

    &&

    22 1221* DiDDGG +=

  • 8/12/2019 expo machines vibrating.pdf

    43/74

  • 8/12/2019 expo machines vibrating.pdf

    44/74

    C h l T tiOscilloscope

  • 8/12/2019 expo machines vibrating.pdf

    45/74

    USCUSCUSC

    Crosshole TestingOscilloscope

    PVC-casedBorehole

    PVC-casedBorehole

    Downhole

    Hammer

    (Source) VelocityTransducer

    (GeophoneReceiver)

    t

    x

    Shear Wave Velocity:Vs

    = x/t

    Test

    Depth

    ASTM D 4428

    Pump

    packer

    Note: Verticality of casingmust be established byslope inclinometers to correct

    distances x with depth.

    Slope

    Inclinometer

    Slope

    Inclinometer

    R C l T

  • 8/12/2019 expo machines vibrating.pdf

    46/74

    USCUSCUSC

    Resonant Column Test

    G, D for Different

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    47/74

    USCUSCUSC

    Torsional

    Shear Test

    Schematic Stress-Strain

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    48/74

    USCUSCUSC

    Hollow Cylinder RC-TOSS

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    49/74

    USCUSCUSC

    TOSS Test Results

    Fundamentals-Modeling-Properties-Performance

    Steam Turbine-Generator

  • 8/12/2019 expo machines vibrating.pdf

    50/74

    USCUSCUSC

    Steam Turbine-Generator (Moreschi

    and Farzam, 2003)

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    51/74

    USCUSCUSC

    Machine Foundation Design Criteria

    Deflection criteria: maintain turbine-generatoralignment during machine operating conditions

    Dynamic criteria: ensure that no resonancecondition is encountered during machineoperating conditions

    Strength criteria: reinforced concrete design

    Fundamentals-Modeling-Properties-Performance

    Jump to Resonance

    El/kihajlsi kritrium: a turbina-genertor szintben maradjon mkdse alatt

    Dinamikus felttel: nincs rezonancia a gp mkdse alatt

    Erssgi felttel: elfesztett beton tervezs

  • 8/12/2019 expo machines vibrating.pdf

    52/74

    USCUSCUSC

    STG Pedestal Structure

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    53/74

    USCUSCUSC

    Vibration Properties Evaluation

    Identification of the foundation natural

    frequencies for the dominant modes Frequency exclusion zones for the natural

    frequencies of the foundation system andindividual structural members (20%)

    Eigenvalue analysis: natural frequencies,mode shapes, and mass participationfactors

    Fundamentals-Modeling-Properties-Performance

    Az alap sajt frekvenciinak meghatrozsa a dominns lengsekre/mdokra

    Kihagysi frekvencia znk a termszetes frekvencikra

    Eigenrtk

    elemzs:termszetes frekvencik,

    lengsmdnl alakok, tmeg egyttdolgozsa

  • 8/12/2019 expo machines vibrating.pdf

    54/74

    USCUSCUSC

    XY

    Z

    XY

    Z

    Finite Element Model

    Structure and Base

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    55/74

    USCUSCUSC

    Low Frequency Modes

    1st mode6.5 Hz95 % m.p.f.

    2nd

    mode

    7.2 Hz76 % m.p.f

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    56/74

    USCUSCUSC

    High Frequency Modes

    28th mode46.3 Hz0.3% m.p.f

    42nd mode64.6 Hz0.03% m.p.f

    Excitation frequency: 50-60 HzFundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    57/74

    USCUSCUSC

    Local Vibration Modes

    Identification of naturalfrequencies for individual

    structural members

    Quantification of changeson vibration properties due

    to foundation modifications

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    58/74

    Assumptions in FE analyses

  • 8/12/2019 expo machines vibrating.pdf

    59/74

    USCUSCUSC

    Optics Lab mass/Instrument weight = 228 tons Wind mean force = 75 N, RMS = 89 N

    Ground base excitation PSD = 0.004 g2

    /hz Concrete Pier

    High Strength Concrete (E=3.11010

    N/m2

    ,=0.15)

    Soil Stiffness, k Four different values using Arya & ONeils

    formula based on the site test data (Shear

    modulus:30~75ksi, Poissons ratio:0.35~0.45)

    Assumptions in FE analyses

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    60/74

    USCUSCUSC

    Soil property range: Shear modulus (30~75ksi), Poissons ratio (0.35~0.45)

    Pier Footing: Diameter (23.3m)

    min

    for shear modulus of 30 ksi; max

    for 75 ksi

    Frequency vs

    Soil Stiffness

    Stiffness m i n m in +33.3% m in +66.6% m ax

    Kx 1.19E+10 1.83E+10 2.48E+10 3.12E+10

    Ky 1.19E+10 1.83E+10 2.48E+10 3.12E+10

    Kz 1.48E+10 2.45E+10 3.41E+10 4.38E+10Krx 1.34E+12 2.21E+12 3.09E+12 3.96E+12

    Kry 1.34E+12 2.21E+12 3.09E+12 3.96E+12

    Krz 1.74E+12 2.61E+12 3.49E+12 4.36E+12

    6.3 7.0 7.4 7.5

    6.4 7.1 7.5 7.7

    9.4 9.7 9.9 10

    9.4 10.3 11.1 11.8

    10.4 11.9 12.6 13.3

    11.2 13.0 13.6 13.7

    4

    5

    6

    MODE

    1

    2

    3

    Stiffness units = SI, frequency mode (hz)

    Fundamentals-Modeling-Properties-Performance

    d l i ( h )

  • 8/12/2019 expo machines vibrating.pdf

    61/74

    USCUSCUSC

    Summary and Conclusions (Cho, 2005)

    1.

    High fidelity FE models were created

    2.

    Relative mirror motions from zenith to horizon pointing: about 400 m intranslation and 60 rad in rotation.

    3. Natural frequency changes by 2 hz as height changes by 10m.4. Wind buffeting effects caused by dynamic portion (fluctuation) of wind

    5.

    Modal responses sensitive to stiffness of bearings and drive disks

    6. Soil characteristics were the dominant influences in modal

    behavior of the telescopes.7.

    Fundamental Frequency (for a lowest soil stiffness):

    OSS=20.5hz; OSS+base=9.9hz; SS+base+Coude+soil=6.3hz8.

    A seismic analysis was made with a sample PSD

    9.

    ATST structure assembly is adequately designed:

    1.

    Capable of supporting the OSS

    2.

    Dynamically stiff enough to hold the optics stable

    3.

    Not significantly vulnerable to wind loadings

    Fundamentals-Modeling-Properties-Performance

    F Fi ld A l ti l S l ti

  • 8/12/2019 expo machines vibrating.pdf

    62/74

    USCUSCUSC

    Free-Field Analytical Solutions

    =

    R

    VzCrHaRVLiru

    2003

    0 )(2

    )0,,(

    =

    RVr C

    rHaR

    VMiru

    2

    103

    0 )(2

    )0,,(

    uruz

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    63/74

    USCUSCUSCFundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    64/74

    USCUSCUSCFundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    65/74

  • 8/12/2019 expo machines vibrating.pdf

    66/74

    USCUSCUSCFundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    67/74

    USCUSCUSCFundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    68/74

    USCUSCUSC

    Karlstrom

    and Bostrom

    2007

    Trench

    Isolation

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    69/74

    USCUSCUSC

    Chehab

    and Nagger 2003

    Fundamentals-Modeling-Properties-Performance

  • 8/12/2019 expo machines vibrating.pdf

    70/74

    USCUSCUSC

    Celibi

    et al (in press)

  • 8/12/2019 expo machines vibrating.pdf

    71/74

    USCUSCUSC

    Thank-you Questions?

    2 2 0 5

  • 8/12/2019 expo machines vibrating.pdf

    72/74

    USCUSCUSC

    r -2 r -2 r -0.5

    r -1

    r -1

    r

    Shearwave

    Verticalcomponent

    Horizontalcomponent

    Shearwindow

    Rayleigh wave

    Relativeamplitude+

    +

    +

    +

    - -

    +

    +

    Wave Type Percentage ofTotal Energy

    Rayleigh 67

    Shear 26

    Compression 7

    Waves

  • 8/12/2019 expo machines vibrating.pdf

    73/74

    USCUSCUSC

    Waves

    Rayleigh, R

    Surface

    Shear,S Secondary

    Compression, PPrimary

    Machine Performance Chart

  • 8/12/2019 expo machines vibrating.pdf

    74/74

    Machine Performance Chart

    Performance ZonesA=No Faults, New

    B=Minor Faults,

    Good Condition

    C = Faulty, CorrectIn 10 Days To Save

    $$D = Failure Is Near,Correct In 2 Days

    E = Stop Now

    0.002