Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

26
Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms

Transcript of Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Page 1: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

Lars-Jochen Thoms

Page 2: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 2

Munich, Bavaria, Germany

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 3: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 3

physics

spectrometry

biophysics astrophysics

chemistry

eligible curriculum inBavarian higher education

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 4: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

remotely controlled laboratory (RCL)

# 4

user

server

webcam

outline

educational POV

physical POV technical POV

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 5: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 5

physical POV

light source spectrometeroptical fiber

350 450 550 650 750 850 9500

500

1000

1500

2000

2500

3000

wavelength in nm

inte

nsi

ty i

n c

ou

nt

specifications• linear silicon CCD array• 650 enabled pixels• 350-1000 nm• 12 bit A/D resolution• 75 photons/count

@400nm• 25 µm entrance slit• ~2.0 nm FWHM

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 6: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

350 450 550 650 750 850 9500

500

1000

1500

2000

2500

3000

wavelength in nm

inte

nsi

ty i

n c

ou

nt

# 6

physical POV

problems• especially advanced

learners identify the acquired spectrum asblack-body radiation

• Mind spectral sensitivity!

• knowledge about the measurement processcritical attitude

• no energy information given

• absolute irradiance measurement needed

350 400 450 500 550 600 650 700 750 800 850 900 950 10001

10

100

1000

10000

spectral sensitivity

wavelength in nmmeg

ap

hoto

ns p

er

cou

nt

lg

x 1000

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 7: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

obtain calibration data

# 7

radiometric calibration standardcalibrated tungsten halogen light source

fit sample spectrum toknown spectral power

distribution

calibrationfactor

in µJ/count per pixel

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 8: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 8

350 450 550 650 750 850 9500

500

1000

1500

2000

2500

3000

0

5

10

15

20

25

30

35

from apparent to true spectrumsample [count]dark [count]sample-dark [count]absolute irradiance [µW/cm²/nm]

wavelength in nm

inte

nsi

ty i

n c

ou

nt

ab

solu

te i

rrad

ian

ce i

n µ

W/c

m²/

nm

spectralirradianc

e

darkspectru

m

acquired sample

calibration

factor A Δt Δλ: : :sample - dark

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 9: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

cosine-corrected probe

# 9

light source spectrometer

true spectral irradiance needs 180° field of view

optical fiber

diffusing material:opaline glass~180° FOV

© Ocean Optics, Inc

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 10: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

pusher.com

# 10

technical POV

client

WebSocket service (RESTful)• distribute spectral data• distribute control data• user information• authenticated users

web server

http service (PHP)• authentication• provide

website

RCL spectrometer serverwindows service (C#)• acquire spectrum• calculate irradiance• push data via

WebSocket• listen for control data• control experiment

IP cam

• capture video stream

spectral irradianc

e

acquired sample

HTML5 browser (JS)• display spectra• control experiment• ask for authentication• display webcam

control ?

special challenge:very high restrictionsin German schools!

no static ip needed!

DATABASEdatabase

assessment

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 11: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

control

# 11GIREP-MPTL 2014, Palermo, 08.07.2014Lars-Jochen Thoms, Raimund Girwidz

technical POV

light source

cosine-corrected probe

optical fiber

spectrometer• set acquisition

parameters• integration time• boxcar width• samples to average

• choose light source• tungsten lamps• tungsten halogen

lamps• compact fluorescent

lamps• light emitting diodes• light bulbs• reflector lamps

carousel

Page 12: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

control

# 12GIREP-MPTL 2014, Palermo, 08.07.2014Lars-Jochen Thoms, Raimund Girwidz

technical POV

light source

cosine-corrected probe

spectrometer

• set acquisition parameters• integration time• boxcar width• samples to average

• choose light source• tungsten lamps• tungsten halogen

lamps• compact fluorescent

lamps• light emitting diodes• light bulbs• reflector lamps

carousel

optical fiber

Page 13: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

control

# 13GIREP-MPTL 2014, Palermo, 08.07.2014Lars-Jochen Thoms, Raimund Girwidz

technical POV

• set acquisition parameters• integration time• boxcar width• samples to average

• choose light source• tungsten lamps• tungsten halogen

lamps• compact fluorescent

lamps• light emitting diodes• light bulbs• reflector lamps

• move probe• ca. 1.5 m x 1.0 m

Page 14: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

control

# 14

technical POV

• set acquisition parameters• integration time• boxcar width• samples to average

• choose light source• tungsten lamps• tungsten halogen

lamps• compact fluorescent

lamps• light emitting diodes• light bulbs• reflector lamps

• move probe• ca. 1.5 m x 1.0 m

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 15: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

control

# 15

technical POV

• set acquisition parameters• integration time• boxcar width• samples to average

• choose light source• tungsten lamps• tungsten halogen

lamps• compact fluorescent

lamps• light emitting diodes• light bulbs• reflector lamps

• move probe• ca. 1.5 m x 1.0 m

• rotate probe• - 90° to 90°• (360° possible)• automatic available

many different parameters

a lot of opportunities

authentic experimenting

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 16: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 16Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

predefined setups

Page 17: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 17

educational POV

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

context based anchored instruction

objectives:• compare and rate spectra from

different light sources

Page 18: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 18

objectives:• compare and rate spectra from

different light sources• assess color temperature and

color fault • compare with color sensitivity

of the human eye• distinguish between physical

and physiological quantities

educational POV

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 19: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 19

objectives:• analyze energy efficiency

educational POV

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 20: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 20

objectives:• measure -decrease of radiation

with growing distance

educational POV

Compact Fluorescent Lamps:differences can be noticed betweenthe light coming from the gas dischargeand light coming from the fluorescent layer

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 21: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 21

objectives:• examine, distinguish, classify,

and rate the directional characteristics of radiation from different light sources

educational POV

Schultz (2010)

from introductory school physicsto advanced university courses

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 22: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 22Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

Page 23: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 23

educational POV

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

multiple representations

augmented reality

Page 24: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 24

educational POV

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

augmented reality

multiple representations

feedback

free formula input

Page 25: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

# 25

educational POV

Workshop on Remote Experiments for HE, Milton Keynes, 17.04.2015

Lars-Jochen Thoms

augmented reality

multiple representations

feedback

scaffoldingcross-linking multiple representations

linking theory and practice

Page 26: Experimenting from a distance: optical spectrometry via the Internet Lars-Jochen Thoms.

Experimenting from a distance:optical spectrometry via the Internet

Thank you for your attention!

Lars-Jochen Thoms

myrcl.org