Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from...

20
Experimental evidence for closed nuclear shells 28 28 50 50 82 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon) 2 4 2 He 8 16 8 O 20 40 20 Ca 28 48 20 Ca 126 208 82 Pb very stable:

Transcript of Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from...

Page 1: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Experimental evidence for closed nuclear shells

2828 50

50

82

82126

NeutronProton

Deviations from Bethe-Weizsäcker mass formula:

mass number A

B/A

(M

eV p

er n

ucl

eon

)

242 He

8168O

204020Ca

284820Ca

12620882 Pb

very stable:

Page 2: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Shell structure from masses

• Deviations from Weizsäcker mass formula:

Page 3: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Energy required to remove two neutrons from nuclei(2-neutron binding energies = 2-neutron “separation” energies)

Sn

Ba

SmHf

Pb

5

7

9

11

13

15

17

19

21

23

25

52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132

Neutron Number

S(2

n)

Me

V

N = 82

N = 84

N = 126

Page 4: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Shell structure from Ex(21) and B(E2;2+→0+)

high energy of first 2+ states

low reduced transition probabilities B(E2)

Page 5: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

The three faces of the shell model

Page 6: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Average nuclear potential well: Woods-Saxon

aRrVrV /exp1/ 00

02

22

rrV

m

smm XY

r

rur ,

A

jiji

A

i i

i rrVm

pH ,ˆ

2

ˆˆ1

2

A

ji

A

iiji

A

ii

i

i rVrrVrVm

pH

11

2

ˆ,ˆˆ2

ˆˆ

Page 7: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Woods-Saxon potential

Woods-Saxon gives proper magic numbers (2, 8, 20, 28, 50, 82, 126) Meyer und Jensen (1949): strong spin-orbit interaction

02

22

rsrVrV

m s

01

~ mitdr

dV

rrV s

dr

rdV

rV r

Spin-orbit term has its origin in the relativistic description of the single-particle motion in the nucleus.

Page 8: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Woods-Saxon potential (jj-coupling)

2

2222

1112

12

1

ssjj

sjssj

2/12

jforVrV s

The nuclear potential with the spin-orbit term is

spin-orbit interaction leads to a large splitting for large ℓ.

2/12

1

jforVrV s

2/1j

2/1j

2/1j

sV 2/1

sV 2/

Page 9: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Woods-Saxon potential

The spin-orbit term

reduces the energy of states with spin oriented parallel to the orbital angular momentum j = ℓ+1/2 (Intruder states) reproduces the magic numbers large energy gaps → very stable nucleiss VE

2

2

1221

21Important consequences: Reduced orbitals from higher lying N+1 shell have different parities than orbitals from the N shell

Strong interaction preserves their parity. The reduced orbitals with different parity are rather pure states and do not mix within the shell.

Page 10: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Shell model – mass dependence of single-particle energies

Mass dependence of the neutron energies:

Number of neutrons in each level: 122

2~ RE

Page 11: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

½ Nobel price in physics 1963: The nuclear shell model

Page 12: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Experimental single-particle energies

208Pb → 209Bi Elab = 5 MeV/u

1 h9/2

2 f7/2

1 i13/2 1609 keV

896 keV

0 keV

γ-spectrumsingle-particle energies

12620983 Bi

Page 13: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Experimental single-particle energies

208Pb → 207Pb Elab = 5 MeV/u

γ-spectrum

single-hole energies

3 p1/2

2 f5/2

3 p3/2 898 keV

570 keV

0 keV

12520782 Pb

Page 14: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Experimental single-particle energies

209Pb209Bi

207Pb207Tl

)2()()( 2/9208209 gEPbBEPbBE

)3()()( 2/1208207 pEPbBEPbBE

energy of shell closure:

432.3

)(2)()()3(2 2082072092/12/9

PbBEPbBEPbBEpEgE

)1()()( 2/9208209 hEPbBEBiBE

)3()()( 2/1208207 sEPbBETlBE

MeV

PbBETlBEBiBEsEhE

211.4

)(2)()()3(1 2082072092/12/9

1 h9/2

2 f7/2

1 i13/21609 keV

896 keV

0 keV

12620882 Pb

particle states

hole states

proton

Page 15: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Level scheme of 210Pb

0.0 keV

779 keV

1423 keV

1558 keV

2202 keV

2846 keV

-1304 keV (pairing energy)

M. Rejmund Z.Phys. A359 (1997), 243

12720982 Pb

Page 16: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Level scheme of 206Hg

0.0 keV

997 keV

1348 keV

2345 keV

12/5

12/1

ds

12/5

12/3

dd

B. Fornal et al., Phys.Rev.Lett. 87 (2001) 212501

126207

81Tl

Page 17: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Success of the extreme single-particle model

Ground state spin and parity:

Every orbit has 2j+1 magnetic sub-states, fully occupied orbitals have spin J=0, they do not contribute to the nuclear spin.

For a nucleus with one nucleon outside a completely occupied orbit the nuclear spin is given by the single nucleon.

n ℓ j → J (-)ℓ = π

Page 18: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Success of the extreme single-particle model

magnetic moments: The g-factor gj is given by:

with

Simple relation for the g-factor of single-particle states

jgsgg jsj

2222 2 ssjjsj

2222 2

jjjs

j

jj

jjgjjg sj

12

4/3114/311

2/1

12

jfor

gggg s

KernK

j

j

j

jsgg sj

ssj ggjj

ssggg

1

11

2

1

2

1

Page 19: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Success of the extreme single-particle model

magnetic moments:

g-faktor of nucleons:proton: gℓ = 1; gs = +5.585 neutron: gℓ = 0; gs = -3.82

proton:

neutron:

2/1

2

1

2

3

1

2/12

1

2

1

jfürgjgj

j

jfürgjg

Ks

Ks

z

2/1

1293.2

2/1293.2

jfürj

jj

jfürj

K

K

z

2/1

191.1

2/191.1

jfürj

jjfür

K

K

z

Page 20: Experimental evidence for closed nuclear shells 28 50 82 126 Neutron Proton Deviations from Bethe-Weizsäcker mass formula: mass number A B/A (MeV per nucleon)

Magnetic moments: Schmidt lines

magnetic moments: neutron

magnetic moments: proton