· Integrability and Bethe equations Coderivative approach to rational spin chains Finite size...

117

Transcript of  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size...

Page 1:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation and the spectrum of(some) quantum integrable models

Sébastien Leurent, Institut de Mathématiques de Bourgogne

August 12, 2015Semestre thématique: Correspondance AdS/CFT, holographie,

intégrabilitéCRM, Montréal

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 1 / 23

Page 2:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Outline

1 Integrability and Bethe equationsCoordinate Bethe ansatzNested Bethe equations for rational spin chains

2 Coderivative approach to rational spin chainsCoderivative formalismHirota equation ↔ Wronskian determinantsNon-twisted limitHirota equation ↔ spectrum

3 Finite size spectrum of sigma modelsThermodynamic Bethe Ansatz�Quantum Spectral Curve� for AdS/CFT

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 2 / 23

Page 3:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Eigenstates of H = −∑L

i=1~σi · ~σi+1

= L− 2∑L

i=1Pi ,i+1

�Vacuum�: |↓↓ · · · ↓〉

Single excitation:|ψ〉 ∝

∑k e

i k p |{k}〉

where e2i p L = 1

H = (C2)⊗L; ~σL+1 = ~σ1P1,2 |↓↓↑↓↑↓↓〉 = |↓↓↑↓↑↓↓〉P1,2 |↓↑↑↓↑↓↓〉 = |↑↓↑↓↑↓↓〉

|{3}〉 = |↓↓↑↓↓ . . .〉|{1, 4}〉 = |↑↓↓↑↓ . . .〉

Two excitations: |ψ〉 =∑

j ,k Ψ(j , k) |{j , k}〉

|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉

where e i L p2 = S = e−i L p1 , withS = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 3 / 23

Page 4:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Eigenstates of H = −∑L

i=1~σi · ~σi+1

= L− 2∑L

i=1Pi ,i+1

�Vacuum�: |↓↓ · · · ↓〉

Single excitation:|ψ〉 ∝

∑k e

i k p |{k}〉

where e2i p L = 1

H = (C2)⊗L; ~σL+1 = ~σ1P1,2 |↓↓↑↓↑↓↓〉 = |↓↓↑↓↑↓↓〉P1,2 |↓↑↑↓↑↓↓〉 = |↑↓↑↓↑↓↓〉

|{3}〉 = |↓↓↑↓↓ . . .〉|{1, 4}〉 = |↑↓↓↑↓ . . .〉

Two excitations: |ψ〉 =∑

j ,k Ψ(j , k) |{j , k}〉

|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉

where e i L p2 = S = e−i L p1 , withS = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 3 / 23

Page 5:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Eigenstates of H = −∑L

i=1~σi · ~σi+1

= L− 2∑L

i=1Pi ,i+1

�Vacuum�: |↓↓ · · · ↓〉

Single excitation:|ψ〉 ∝

∑k e

i k p |{k}〉

where e2i p L = 1

H = (C2)⊗L; ~σL+1 = ~σ1P1,2 |↓↓↑↓↑↓↓〉 = |↓↓↑↓↑↓↓〉P1,2 |↓↑↑↓↑↓↓〉 = |↑↓↑↓↑↓↓〉

|{3}〉 = |↓↓↑↓↓ . . .〉|{1, 4}〉 = |↑↓↓↑↓ . . .〉

Two excitations: |ψ〉 =∑

j ,k Ψ(j , k) |{j , k}〉

|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉

where e i L p2 = S = e−i L p1 , withS = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 3 / 23

Page 6:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Eigenstates of H = −∑L

i=1~σi · ~σi+1

= L− 2∑L

i=1Pi ,i+1

�Vacuum�: |↓↓ · · · ↓〉

Single excitation:|ψ〉 ∝

∑k e

i k p |{k}〉

where e2i p L = 1

H = (C2)⊗L; ~σL+1 = ~σ1P1,2 |↓↓↑↓↑↓↓〉 = |↓↓↑↓↑↓↓〉P1,2 |↓↑↑↓↑↓↓〉 = |↑↓↑↓↑↓↓〉

|{3}〉 = |↓↓↑↓↓ . . .〉|{1, 4}〉 = |↑↓↓↑↓ . . .〉

Two excitations: |ψ〉 =∑

j ,k Ψ(j , k) |{j , k}〉

|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉

where e i L p2 = S = e−i L p1 , withS = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 3 / 23

Page 7:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Eigenstates of H = −∑L

i=1~σi · ~σi+1

= L− 2∑L

i=1Pi ,i+1

�Vacuum�: |↓↓ · · · ↓〉

Single excitation:|ψ〉 ∝

∑k e

i k p |{k}〉

where e2i p L = 1

H = (C2)⊗L; ~σL+1 = ~σ1P1,2 |↓↓↑↓↑↓↓〉 = |↓↓↑↓↑↓↓〉P1,2 |↓↑↑↓↑↓↓〉 = |↑↓↑↓↑↓↓〉

|{3}〉 = |↓↓↑↓↓ . . .〉|{1, 4}〉 = |↑↓↓↑↓ . . .〉

Two excitations: |ψ〉 =∑

j ,k Ψ(j , k) |{j , k}〉

|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉

where e i L p2 = S = e−i L p1 , withS = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 3 / 23

Page 8:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Eigenstates of H = −∑L

i=1~σi · ~σi+1

= L− 2∑L

i=1Pi ,i+1

�Vacuum�: |↓↓ · · · ↓〉

Single excitation:|ψ〉 ∝

∑k e

i k p |{k}〉

where e2i p L = 1

H = (C2)⊗L; ~σL+1 = ~σ1P1,2 |↓↓↑↓↑↓↓〉 = |↓↓↑↓↑↓↓〉P1,2 |↓↑↑↓↑↓↓〉 = |↑↓↑↓↑↓↓〉

|{3}〉 = |↓↓↑↓↓ . . .〉|{1, 4}〉 = |↑↓↓↑↓ . . .〉

Two excitations: |ψ〉 =∑

j ,k Ψ(j , k) |{j , k}〉

|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉

where e i L p2 = S = e−i L p1 , withS = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 3 / 23

Page 9:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Eigenstates of H = −∑L

i=1~σi · ~σi+1

= L− 2∑L

i=1Pi ,i+1

�Vacuum�: |↓↓ · · · ↓〉

Single excitation:|ψ〉 ∝

∑k e

i k p |{k}〉

where e2i p L = 1

H = (C2)⊗L; ~σL+1 = ~σ1P1,2 |↓↓↑↓↑↓↓〉 = |↓↓↑↓↑↓↓〉P1,2 |↓↑↑↓↑↓↓〉 = |↑↓↑↓↑↓↓〉

|{3}〉 = |↓↓↑↓↓ . . .〉|{1, 4}〉 = |↑↓↓↑↓ . . .〉

Two excitations:

|ψ〉 =∑

j ,k Ψ(j , k) |{j , k}〉

|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉

where e i L p2 = S = e−i L p1 , withS = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 3 / 23

Page 10:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Two excitations:|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉where e i L p2 = S = e−i L p1 , with S = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1n excitations:

|Ψ〉 =∑

16j1<j2<···<jn6L

∑σ∈Sn

Aσe i∑

k pσ(k)jk |{j1, j2, . . . , jn}〉

is an eigenstate if

Aσ ∝ (−1)σ∏

j<k

(1 + e i(pσ(j)+pσ(k)) − 2e ipσ(k)

)∀j , e i L pj =

∏k 6=j S(pj , pk) where S(p, p′) ≡ − 1+e i (p+p′)−2e i p

1+e i (p+p′)−2e i p′

The corresponding eigenvalue is

E = −L +∑k

(4− 4 cos pk)

spectrum

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 4 / 23

Page 11:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Two excitations:|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉where e i L p2 = S = e−i L p1 , with S = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1n excitations:

|Ψ〉 =∑

16j1<j2<···<jn6L

∑σ∈Sn

Aσe i∑

k pσ(k)jk |{j1, j2, . . . , jn}〉

is an eigenstate if

Aσ ∝ (−1)σ∏

j<k

(1 + e i(pσ(j)+pσ(k)) − 2e ipσ(k)

)∀j , e i L pj =

∏k 6=j S(pj , pk) where S(p, p′) ≡ − 1+e i (p+p′)−2e i p

1+e i (p+p′)−2e i p′

The corresponding eigenvalue is

E = −L +∑k

(4− 4 cos pk)

spectrum

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 4 / 23

Page 12:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Two excitations:|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉where e i L p2 = S = e−i L p1 , with S = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1n excitations:

|Ψ〉 =∑

16j1<j2<···<jn6L

∑σ∈Sn

Aσe i∑

k pσ(k)jk |{j1, j2, . . . , jn}〉

is an eigenstate if

Aσ ∝ (−1)σ∏

j<k

(1 + e i(pσ(j)+pσ(k)) − 2e ipσ(k)

)∀j , e i L pj =

∏k 6=j S(pj , pk) where S(p, p′) ≡ − 1+e i (p+p′)−2e i p

1+e i (p+p′)−2e i p′

The corresponding eigenvalue is

E = −L +∑k

(4− 4 cos pk)

spectrum

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 4 / 23

Page 13:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Two excitations:|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉where e i L p2 = S = e−i L p1 , with S = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1n excitations:

|Ψ〉 =∑

16j1<j2<···<jn6L

∑σ∈Sn

Aσe i∑

k pσ(k)jk |{j1, j2, . . . , jn}〉

is an eigenstate if

Aσ ∝ (−1)σ∏

j<k

(1 + e i(pσ(j)+pσ(k)) − 2e ipσ(k)

)∀j , e i L pj =

∏k 6=j S(pj , pk) where S(p, p′) ≡ − 1+e i (p+p′)−2e i p

1+e i (p+p′)−2e i p′

The corresponding eigenvalue is

E = −L +∑k

(4− 4 cos pk)

spectrum

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 4 / 23

Page 14:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

"Coordinate Bethe Ansatz" for XXX1/2 Heisenberg spin chain

Two excitations:|ψ〉 ∝∑

j<k(e i(p1j+p2k) + S e i(p1k+p2j)) |{j , k}〉where e i L p2 = S = e−i L p1 , with S = −1+e i(p1+p2)−2e ip2

1+e i(p1+p2)−2e ip1n excitations:

|Ψ〉 =∑

16j1<j2<···<jn6L

∑σ∈Sn

Aσe i∑

k pσ(k)jk |{j1, j2, . . . , jn}〉

is an eigenstate if

Aσ ∝ (−1)σ∏

j<k

(1 + e i(pσ(j)+pσ(k)) − 2e ipσ(k)

)∀j , e i L pj =

∏k 6=j S(pj , pk) where S(p, p′) ≡ − 1+e i (p+p′)−2e i p

1+e i (p+p′)−2e i p′

The corresponding eigenvalue is

E = −L +∑k

(4− 4 cos pk)spectrum

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 4 / 23

Page 15:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

1+1 D Integrability �eld theories / spin chains

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

1 The space is one-dimensional andthere are periodic boundary conditions.

2 The interactions are local.

3 A factorization formula holds

4 There are in�nitely many conservedcharges

Conditions (1,2) are necessary for thisansatzConditions (1,2,4) are su�cient for this

ansatz [Zamolodchikov Zamolodchikov 79]

j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 5 / 23

Page 16:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

1+1 D Integrability �eld theories / spin chains

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

1 The space is one-dimensional andthere are periodic boundary conditions.

2 The interactions are local.

3 A factorization formula holds

4 There are in�nitely many conservedcharges

Conditions (1,2) are necessary for thisansatzConditions (1,2,4) are su�cient for this

ansatz [Zamolodchikov Zamolodchikov 79]

j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 5 / 23

Page 17:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

1+1 D Integrability �eld theories / spin chains

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

1 The space is one-dimensional andthere are periodic boundary conditions.

2 The interactions are local.

3 A factorization formula holds:

4 There are in�nitely many conservedcharges

Conditions (1,2,3) are necessary for thisansatzConditions (1,2,4) are su�cient for this

ansatz [Zamolodchikov Zamolodchikov 79]

= =

j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 5 / 23

Page 18:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

1+1 D Integrability �eld theories / spin chains

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

1 The space is one-dimensional andthere are periodic boundary conditions.

2 The interactions are local.

3 A factorization formula holds

4 There are in�nitely many conservedcharges

Conditions (1,2,3) are necessary for thisansatzConditions (1,2,4) are su�cient for this

ansatz [Zamolodchikov Zamolodchikov 79]

= =

j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 5 / 23

Page 19:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

1+1 D Integrability �eld theories / spin chains

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

1 The space is one-dimensional andthere are periodic boundary conditions.

2 The interactions are local.

3 A factorization formula holds

4 There are in�nitely many conservedcharges

Spectrum

E =∑

i E(pi ) e i L pj =∏

k 6=j S(pj , pk)E and S are model-dependent functions

= =

j

k

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 5 / 23

Page 20:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Nested Bethe Ansatzunexpected simplicity of the equations for higher rank rational spin chain

SU(2) spin chain:∀j , e i L pj =

∏k 6=j S(pj , pk)

S(p, p′) ≡ − 1+e i(p+p′)−2e i p1+e i(p+p′)−2e i p′

E = −L +∑

k(4− 4 cos pk)

tanpk2

=− 12θk←−−−−−−−−−→

Q(u)=∏

k(u−θk)

∀j ,(θj−i/2θj+i/2

)L= −Q(θj−i)

Q(θj+i)

E = −L + 2∑

k1

θ2k

+1/4

SU(N) spin chain:

polynomials Q0, Q1, Q2, . . . , QN , with Q0 = 1, QN(u) = uL

E = −L + 2∑

θk :QN−1(θk)=0

1

θ2k

+1/4

Qi−1(θ+i/2)Qi (θ−i)Qi+1(θ+i/2)Qi−1(θ−i/2)Qi (θ+i)Qi+1(θ−i/2) = −1 when Qi (θ) = 0

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 6 / 23

Page 21:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Nested Bethe Ansatzunexpected simplicity of the equations for higher rank rational spin chain

SU(2) spin chain:∀j , e i L pj =

∏k 6=j S(pj , pk)

S(p, p′) ≡ − 1+e i(p+p′)−2e i p1+e i(p+p′)−2e i p′

E = −L +∑

k(4− 4 cos pk)

tanpk2

=− 12θk←−−−−−−−−−→

Q(u)=∏

k(u−θk)

∀j ,(θj−i/2θj+i/2

)L= −Q(θj−i)

Q(θj+i)

E = −L + 2∑

k1

θ2k

+1/4

SU(N) spin chain:

polynomials Q0, Q1, Q2, . . . , QN , with Q0 = 1, QN(u) = uL

E = −L + 2∑

θk :QN−1(θk)=0

1

θ2k

+1/4

Qi−1(θ+i/2)Qi (θ−i)Qi+1(θ+i/2)Qi−1(θ−i/2)Qi (θ+i)Qi+1(θ−i/2) = −1 when Qi (θ) = 0

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 6 / 23

Page 22:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Contents

1 Integrability and Bethe equationsCoordinate Bethe ansatzNested Bethe equations for rational spin chains

2 Coderivative approach to rational spin chainsCoderivative formalismHirota equation ↔ Wronskian determinantsNon-twisted limitHirota equation ↔ spectrum

3 Finite size spectrum of sigma modelsThermodynamic Bethe Ansatz�Quantum Spectral Curve� for AdS/CFT

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 7 / 23

Page 23:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative

Advertisement

Tλ(u) = g = g

picture for L = 3 spin chain,operators on H = (CN)⊗3

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 8 / 23

Page 24:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative

g = g

let g ∈ GL(CN), f (g)

L

∈ L((CN)⊗L

)

derivative of f w.r.t. log(g) :

D̂⊗f (g)

L + 1

≡ ∂φt f (eφg)

∣∣∣∣φ→0

(D̂ ⊗ g

)β1,β0α1,α0

= ∂∂φ

α1β1

(eφg

)β0α0

∣∣∣φ→0

= ∂∂φ

α1β1

φβ0kgkα0 = δβ0α1g

β1α0

D̂ ⊗ g = P1,0 (I⊗ g) D̂ g = g = g

D̂ ⊗ D̂ ⊗ g = P1,0P2,0 (I⊗ I⊗ g)

D̂ D̂ g = g = g

g = g where = u I + iP, = u I + i D̂Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 9 / 23

Page 25:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative

g = g

let g ∈ GL(CN), f (g)

L

∈ L((CN)⊗L

)

derivative of f w.r.t. log(g) :

D̂⊗f (g)

L + 1

≡ ∂φt f (eφg)

∣∣∣∣φ→0

(D̂ ⊗ g

)β1,β0α1,α0

= ∂∂φ

α1β1

(eφg

)β0α0

∣∣∣φ→0

= ∂∂φ

α1β1

φβ0kgkα0 = δβ0α1g

β1α0

D̂ ⊗ g = P1,0 (I⊗ g) D̂ g = g = g

D̂ ⊗ D̂ ⊗ g = P1,0P2,0 (I⊗ I⊗ g)

D̂ D̂ g = g = g

g = g where = u I + iP, = u I + i D̂

well-behaved under change of representation

derivation exchanges in-going and outgoing indices:∂i = ∂x i , ∂

i = ∂xi

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 9 / 23

Page 26:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative

g = g

let g ∈ GL(CN), g ∈ L((CN)⊗L

)derivative of f w.r.t. log(g) :

D̂⊗f (g) ≡ ∂φt f (eφg)

∣∣∣∣φ→0(

D̂ ⊗ g)β1,β0α1,α0

= ∂∂φ

α1β1

(eφg

)β0α0

∣∣∣φ→0

= ∂∂φ

α1β1

φβ0kgkα0 = δβ0α1g

β1α0

D̂ ⊗ g = P1,0 (I⊗ g) D̂ g = g = g

D̂ ⊗ D̂ ⊗ g = P1,0P2,0 (I⊗ I⊗ g)

D̂ D̂ g = g = g

g = g where = u I + iP, = u I + i D̂

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 9 / 23

Page 27:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative

g = g

let g ∈ GL(CN), g ∈ L((CN)⊗L

)derivative of f w.r.t. log(g) :

D̂⊗f (g) ≡ ∂φt f (eφg)

∣∣∣∣φ→0(

D̂ ⊗ g)β1,β0α1,α0

= ∂∂φ

α1β1

(eφg

)β0α0

∣∣∣φ→0

= ∂∂φ

α1β1

φβ0kgkα0 = δβ0α1g

β1α0

D̂ ⊗ g = P1,0 (I⊗ g) D̂ g = g = g

D̂ ⊗ D̂ ⊗ g = P1,0P2,0 (I⊗ I⊗ g)

D̂ D̂ g = g = g

g = g where = u I + iP, = u I + i D̂

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 9 / 23

Page 28:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative

g = g

let g ∈ GL(CN), g ∈ L((CN)⊗L

)derivative of f w.r.t. log(g) :

D̂⊗f (g) ≡ ∂φt f (eφg)

∣∣∣∣φ→0(

D̂ ⊗ g)β1,β0α1,α0

= ∂∂φ

α1β1

(eφg

)β0α0

∣∣∣φ→0

= ∂∂φ

α1β1

φβ0kgkα0 = δβ0α1g

β1α0

D̂ ⊗ g = P1,0 (I⊗ g) D̂ g = g = g

D̂ ⊗ D̂ ⊗ g = P1,0P2,0 (I⊗ I⊗ g)

D̂ D̂ g = g = g

g = g where = u I + iP, = u I + i D̂

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 9 / 23

Page 29:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative

g = g

let g ∈ GL(CN), g ∈ L((CN)⊗L

)derivative of f w.r.t. log(g) :

D̂⊗f (g) ≡ ∂φt f (eφg)

∣∣∣∣φ→0(

D̂ ⊗ g)β1,β0α1,α0

= ∂∂φ

α1β1

(eφg

)β0α0

∣∣∣φ→0

= ∂∂φ

α1β1

φβ0kgkα0 = δβ0α1g

β1α0

D̂ ⊗ g = P1,0 (I⊗ g) D̂ g = g = g

D̂ ⊗ D̂ ⊗ g = P1,0P2,0 (I⊗ I⊗ g)

D̂ D̂ g = g = g

g = g where = u I + iP, = u I + i D̂

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 9 / 23

Page 30:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative and transfer matrices

derivative of f w.r.t.log(g):

D̂⊗f (g) ≡ ∂φt f (eφg)

g = g

where = u I + iP, = u I + i D̂

Transfer matrix T (u) = g = g = (u + i D̂)⊗L Tr g

[T (u),T (v)] = 0 H = L− 2i∂u logT (u)|u=0,g=1

Arbitrary irrep (in auxiliary space):

Tλ(u) = g = g = (u + i D̂)⊗Lχλ(g)

[Tλ(u),Tµ(v)] = 0 H = L− 2i∂u logT�(u)

∣∣u=0,g=1

Rectangular irrep: Ta,s(u) = Tλa,s (u + i a−s2

)where λa,s =

}a︸ ︷︷ ︸

sSébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 10 / 23

Page 31:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative and transfer matrices

derivative of f w.r.t.log(g):

D̂⊗f (g) ≡ ∂φt f (eφg)

g = g

where = u I + iP, = u I + i D̂

Transfer matrix T (u) = g = g = (u + i D̂)⊗L Tr g

[T (u),T (v)] = 0 H = L− 2i∂u logT (u)|u=0,g=1

Arbitrary irrep (in auxiliary space):

Tλ(u) = g = g = (u + i D̂)⊗Lχλ(g)

[Tλ(u),Tµ(v)] = 0 H = L− 2i∂u logT�(u)

∣∣u=0,g=1

Rectangular irrep: Ta,s(u) = Tλa,s (u + i a−s2

)where λa,s =

}a︸ ︷︷ ︸

sSébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 10 / 23

Page 32:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative and transfer matrices

derivative of f w.r.t.log(g):

D̂⊗f (g) ≡ ∂φt f (eφg)

g = g

where = u I + iP, = u I + i D̂

Transfer matrix T (u) = g = g = (u + i D̂)⊗L Tr g

[T (u),T (v)] = 0 H = L− 2i∂u logT (u)|u=0,g=1

Arbitrary irrep (in auxiliary space):

Tλ(u) = g = g = (u + i D̂)⊗Lχλ(g)

[Tλ(u),Tµ(v)] = 0 H = L− 2i∂u logT�(u)

∣∣u=0,g=1

Rectangular irrep: Ta,s(u) = Tλa,s (u + i a−s2

)where λa,s =

}a︸ ︷︷ ︸

sSébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 10 / 23

Page 33:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative and transfer matrices

derivative of f w.r.t.log(g):

D̂⊗f (g) ≡ ∂φt f (eφg)

g = g

where = R−matrix,= u I + i D̂

Transfer matrix T (u) = g = g = (u + i D̂)⊗L Tr g

[T (u),T (v)] = 0 H = L− 2i∂u logT (u)|u=0,g=1

Arbitrary irrep (in auxiliary space):

Tλ(u) = g = g = (u + i D̂)⊗Lχλ(g)

[Tλ(u),Tµ(v)] = 0 H = L− 2i∂u logT�(u)

∣∣u=0,g=1

Rectangular irrep: Ta,s(u) = Tλa,s (u + i a−s2

)where λa,s =

}a︸ ︷︷ ︸

sSébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 10 / 23

Page 34:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Group-derivative and transfer matrices

derivative of f w.r.t.log(g):

D̂⊗f (g) ≡ ∂φt f (eφg)

g = g

where = R−matrix,= u I + i D̂

Transfer matrix T (u) = g = g = (u + i D̂)⊗L Tr g

[T (u),T (v)] = 0 H = L− 2i∂u logT (u)|u=0,g=1

Arbitrary irrep (in auxiliary space):

Tλ(u) = g = g = (u + i D̂)⊗Lχλ(g)

[Tλ(u),Tµ(v)] = 0 H = L− 2i∂u logT�(u)

∣∣u=0,g=1

Rectangular irrep: Ta,s(u) = Tλa,s (u + i a−s2

)where λa,s =

}a︸ ︷︷ ︸

sSébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 10 / 23

Page 35:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation

Hirota equation

Ta,s(u + i/2)Ta,s(u − i/2) = Ta+1,sTa−1,s + Ta,s+1Ta,s−1

Some arguments of the proof (combinatorial): [Kazakov Vieira 08]∑s≥0 z

sT1,s(u + i s−12

) = (u + D̂)⊗L∑s≥0

zsχ1,s(g)︸ ︷︷ ︸w(z)

D̂⊗3w(z) =

(+ + + + +

)w(z)

(1+ D̂)⊗3w(z) =

(+ + + + +

)w(z)

where = g z1−g z and = 1

1−g z

[(1 + D̂)⊗Lw(z1)

]·[D̂⊗Lw(z2)

]= z2

z1

[D̂⊗Lw(z1)

]·[(1 + D̂)⊗Lw(z2)

]Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 11 / 23

Page 36:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation

Hirota equation

Ta,s(u + i/2)Ta,s(u − i/2) = Ta+1,sTa−1,s + Ta,s+1Ta,s−1

Some arguments of the proof (combinatorial): [Kazakov Vieira 08]∑s≥0 z

sT1,s(u + i s−12

) = (u + D̂)⊗L∑s≥0

zsχ1,s(g)︸ ︷︷ ︸w(z)

D̂⊗3w(z) =

(+ + + + +

)w(z)

(1+ D̂)⊗3w(z) =

(+ + + + +

)w(z)

where = g z1−g z and = 1

1−g z

[(1 + D̂)⊗Lw(z1)

]·[D̂⊗Lw(z2)

]= z2

z1

[D̂⊗Lw(z1)

]·[(1 + D̂)⊗Lw(z2)

]Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 11 / 23

Page 37:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation

Hirota equation

Ta,s(u + i/2)Ta,s(u − i/2) = Ta+1,sTa−1,s + Ta,s+1Ta,s−1

Some arguments of the proof (combinatorial): [Kazakov Vieira 08]∑s≥0 z

sT1,s(u + i s−12

) = (u + D̂)⊗L∑s≥0

zsχ1,s(g)︸ ︷︷ ︸w(z)

D̂⊗3w(z) =

(+ + + + +

)w(z)

(1+ D̂)⊗3w(z) =

(+ + + + +

)w(z)

where = g z1−g z and = 1

1−g z

[(1 + D̂)⊗Lw(z1)

]·[D̂⊗Lw(z2)

]= z2

z1

[D̂⊗Lw(z1)

]·[(1 + D̂)⊗Lw(z2)

]Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 11 / 23

Page 38:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation

Hirota equation

Ta,s(u + i/2)Ta,s(u − i/2) = Ta+1,sTa−1,s + Ta,s+1Ta,s−1

Some arguments of the proof (combinatorial): [Kazakov Vieira 08]∑s≥0 z

sT1,s(u + i s−12

) = (u + D̂)⊗Lw(z), w(z) ≡∑

s≥0 zsχ1,s(g)

D̂⊗3w(z) =

(+ + + + +

)w(z)

(1+ D̂)⊗3w(z) =

(+ + + + +

)w(z)

where = g z1−g z and = 1

1−g z

[(1 + D̂)⊗Lw(z1)

]·[D̂⊗Lw(z2)

]= z2

z1

[D̂⊗Lw(z1)

]·[(1 + D̂)⊗Lw(z2)

]Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 11 / 23

Page 39:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation

Hirota equation

Ta,s(u + i/2)Ta,s(u − i/2) = Ta+1,sTa−1,s + Ta,s+1Ta,s−1

Some arguments of the proof (combinatorial): [Kazakov Vieira 08]∑s≥0 z

sT1,s(u + i s−12

) = (u + D̂)⊗Lw(z), w(z) ≡∑

s≥0 zsχ1,s(g)

D̂⊗3w(z) =

(+ + + + +

)w(z)

(1+ D̂)⊗3w(z) =

(+ + + + +

)w(z)

where = g z1−g z and = 1

1−g z

[(1 + D̂)⊗Lw(z1)

]·[D̂⊗Lw(z2)

]= z2

z1

[D̂⊗Lw(z1)

]·[(1 + D̂)⊗Lw(z2)

]Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 11 / 23

Page 40:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Contents

1 Integrability and Bethe equationsCoordinate Bethe ansatzNested Bethe equations for rational spin chains

2 Coderivative approach to rational spin chainsCoderivative formalismHirota equation ↔ Wronskian determinantsNon-twisted limitHirota equation ↔ spectrum

3 Finite size spectrum of sigma modelsThermodynamic Bethe Ansatz�Quantum Spectral Curve� for AdS/CFT

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 12 / 23

Page 41:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Classical integrabilityτ -functions of the MKP hierarchy

A τ -function of the MKP hierarchy is a function of a variable n and anin�nite set t = (t1, t2, · · · ) of �times�, such that ∀n, t, z1, z2 :

Characteristic property

z2τn+1

(t− [z−1

2])τn(t− [z−1

1])− z1τn+1

(t− [z−1

1])τn(t− [z−1

2])

+ (z1 − z2)τn+1(t)τn(t− [z−1

1]− [z−1

2])

= 0.

where t± [z−1] =(t1 ± z−1, t2 ± z−2

2, t3 ± z−3

3, · · ·

)Example: expectation value

τn(t) = 〈n| eJ+(t)G |n〉over an in�nite set of fermionic oscillators ({ψi , ψ†j } = δij),

where G = exp(∑

i ,k∈Z Bikψ†i ψk

)and J+ =

∑k≥1 tkJk ,

where Jk =∑

j∈Z ψjψ†j+k . (and ψn |n〉 = |n + 1〉)

Smooth n dependence u = in ∈ C τ(u, t) ≡ τ−iu(t)Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 13 / 23

Page 42:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Classical integrabilityτ -functions of the MKP hierarchy

A τ -function of the MKP hierarchy is a function of a variable n and anin�nite set t = (t1, t2, · · · ) of �times�, such that ∀n, t, z1, z2 :

Characteristic property

z2τn+1

(t− [z−1

2])τn(t− [z−1

1])− z1τn+1

(t− [z−1

1])τn(t− [z−1

2])

+ (z1 − z2)τn+1(t)τn(t− [z−1

1]− [z−1

2])

= 0.

where t± [z−1] =(t1 ± z−1, t2 ± z−2

2, t3 ± z−3

3, · · ·

)Example: expectation value

τn(t) = 〈n| eJ+(t)G |n〉over an in�nite set of fermionic oscillators ({ψi , ψ†j } = δij),

where G = exp(∑

i ,k∈Z Bikψ†i ψk

)and J+ =

∑k≥1 tkJk ,

where Jk =∑

j∈Z ψjψ†j+k . (and ψn |n〉 = |n + 1〉)

Smooth n dependence u = in ∈ C τ(u, t) ≡ τ−iu(t)Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 13 / 23

Page 43:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Classical integrabilityτ -functions of the MKP hierarchy

A τ -function of the MKP hierarchy is a function of a variable n and anin�nite set t = (t1, t2, · · · ) of �times�, such that ∀n, t, z1, z2 :

Characteristic property

z2τn+1

(t− [z−1

2])τn(t− [z−1

1])− z1τn+1

(t− [z−1

1])τn(t− [z−1

2])

+ (z1 − z2)τn+1(t)τn(t− [z−1

1]− [z−1

2])

= 0.

where t± [z−1] =(t1 ± z−1, t2 ± z−2

2, t3 ± z−3

3, · · ·

)Example: expectation value

τn(t) = 〈n| eJ+(t)G |n〉over an in�nite set of fermionic oscillators ({ψi , ψ†j } = δij),

where G = exp(∑

i ,k∈Z Bikψ†i ψk

)and J+ =

∑k≥1 tkJk ,

where Jk =∑

j∈Z ψjψ†j+k . (and ψn |n〉 = |n + 1〉)

Smooth n dependence u = in ∈ C τ(u, t) ≡ τ−iu(t)Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 13 / 23

Page 44:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Classical ↔ quantum integrabilityT -operators form a τ -function:

Set of times t! representations λ :

τ(u, t) =∑λ

sλ(t)︸︷︷︸Schur polynomial

τ(u, λ) sλ(t) = det (hλi−i+j(t))1≤i ,j≤|λ|

where eξ(t,z) =∑

k≥0 hk(t)zk , ξ(t, z) =∑

k≥1 tkzk

If τ(u, λ) = T λ(u) = (u + i D̂)⊗L χλ(g), we get

τ(u, t) = (u + i D̂)⊗L e∑

k≥1 tktr(gk)

Then τ(u, t + [z ]) = (u + i D̂)⊗L w(z)e∑

k≥1 tktr(gk)

where w(z) ≡∑

s≥0 χ1,szs = det 1

1−g z

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 14 / 23

Page 45:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Classical ↔ quantum integrabilityT -operators form a τ -function: τn(t) is a τ -function

Set of times t! representations λ :

τ(u, t) =∑λ

sλ(t)︸︷︷︸Schur polynomial

τ(u, λ) sλ(t) = det (hλi−i+j(t))1≤i ,j≤|λ|

where eξ(t,z) =∑

k≥0 hk(t)zk , ξ(t, z) =∑

k≥1 tkzk

If τ(u, λ) = T λ(u) = (u + i D̂)⊗L χλ(g), we get

τ(u, t) = (u + i D̂)⊗L e∑

k≥1 tktr(gk)

Then τ(u, t + [z ]) = (u + i D̂)⊗L w(z)e∑

k≥1 tktr(gk)

where w(z) ≡∑

s≥0 χ1,szs = det 1

1−g z

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 14 / 23

Page 46:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Classical ↔ quantum integrabilityT -operators form a τ -function: τn(t) is a τ -function

Set of times t! representations λ :

τ(u, t) =∑λ

sλ(t)︸︷︷︸Schur polynomial

τ(u, λ) sλ(t) = det (hλi−i+j(t))1≤i ,j≤|λ|

where eξ(t,z) =∑

k≥0 hk(t)zk , ξ(t, z) =∑

k≥1 tkzk

If τ(u, λ) = T λ(u) = (u + i D̂)⊗L χλ(g), we get

τ(u, t) = (u + i D̂)⊗L e∑

k≥1 tktr(gk)

Then τ(u, t + [z ]) = (u + i D̂)⊗L w(z)e∑

k≥1 tktr(gk)

where w(z) ≡∑

s≥0 χ1,szs = det 1

1−g z

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 14 / 23

Page 47:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinant (quantum integrability)

Generic solution of Hirota equation[Krichever Lipan Wiegmann Zabrodin 97]

Tλ(u) =det(xλk−k+1

j Qj(u + i(λk − k + 1)))1≤j ,k≤N

∆(x1, · · · , xN)

where g = diag(x1, · · · xN); ∆(x1, · · · , xN) = det(x1−kj

)1≤j ,k≤N

where Q1, Q2, . . . commute among themselves and with T .

T =

∣∣∣∣∣∣∣∣∣Q1(. . . ) Q2(. . . ) . . . QN(. . . )Q1(. . . ) Q2(. . . ) . . . QN(. . . )

......

. . ....

Q1(. . . ) Q2(. . . ) . . . QN(. . . )

∣∣∣∣∣∣∣∣∣ Ta,s = Q[+s](a) ∧ Q

[−s](N−a)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 15 / 23

Page 48:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinant (quantum integrability)

Generic solution of Hirota equation[Krichever Lipan Wiegmann Zabrodin 97]

Tλ(u) =det(xλk−k+1

j Qj(u + i(λk − k + 1)))1≤j ,k≤N

∆(x1, · · · , xN)

Q's are solution of∣∣∣∣∣∣∣∣∣∣∣∣

Qi xiQ[+2]i x2i Q

[+4]i . . . xNi Q

[2N]i

T1,0 T[−1]1,1 T

[−2]1,2 . . . T

[−N]1,N

T[−1]1,1 T

[−2]1,2 T

[−3]1,3 . . . T

[−N−1]1,N+1

......

.... . .

...

T[−N+1]1,N−1 T

[−N]1,N T

[−N−1]1,N+1

. . . T[−2N+1]1,2N−1

∣∣∣∣∣∣∣∣∣∣∣∣= 0

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 15 / 23

Page 49:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinant (classical integrability)

General rational τ -function [Krichever 78]

Polynomial τ -functions of this MKP hierarchy

τ(u, t) = det (Aj(u − i k , t))1≤j ,k≤N

where Aj(u, t) =

dj∑m=0

aj ,m∂mz

(z−i ueξ(t,z)

)∣∣∣∣∣∣z=pj

parameterized by : the integer N ≥ 0, the numbers {pj} and dj ,and the coe�cients {aj ,m}.

Singularities of τ(u, t + [z−1]) at pj⇒ for spin chains, pj = xj (eigenvalue of the twist)Aj = Res zk=pk

1≤k≤Nk 6=j

τ(u + i(N − 1), t +∑

k 6=j [z−1k ])

Qj = Aj(t = 0)Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 16 / 23

Page 50:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinant (classical integrability)

General rational τ -function [Krichever 78]

Polynomial τ -functions of this MKP hierarchy

τ(u, t) = det (Aj(u − i k , t))1≤j ,k≤N

where Aj(u, t) =

dj∑m=0

aj ,m∂mz

(z−i ueξ(t,z)

)∣∣∣∣∣∣z=pj

parameterized by : the integer N ≥ 0, the numbers {pj} and dj ,and the coe�cients {aj ,m}.

Singularities of τ(u, t + [z−1]) at pj⇒ for spin chains, pj = xj (eigenvalue of the twist)Aj = Res zk=pk

1≤k≤Nk 6=j

τ(u + i(N − 1), t +∑

k 6=j [z−1k ])

Qj = Aj(t = 0)Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 16 / 23

Page 51:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinant (classical integrability)

General rational τ -function [Krichever 78]

Polynomial τ -functions of this MKP hierarchy

τ(u, t) = det (Aj(u − i k , t))1≤j ,k≤N

where Aj(u, t) =

dj∑m=0

aj ,m∂mz

(z−i ueξ(t,z)

)∣∣∣∣∣∣z=pj

parameterized by : the integer N ≥ 0, the numbers {pj} and dj ,and the coe�cients {aj ,m}.

Singularities of τ(u, t + [z−1]) at pj⇒ for spin chains, pj = xj (eigenvalue of the twist)Aj = Res zk=pk

1≤k≤Nk 6=j

τ(u + i(N − 1), t +∑

k 6=j [z−1k ])

Qj = Aj(t = 0)Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 16 / 23

Page 52:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinant (classical integrability)

General rational τ -function [Krichever 78]

Polynomial τ -functions of this MKP hierarchy

τ(u, t) = det (Aj(u − i k , t))1≤j ,k≤N

where Aj(u, t) =

dj∑m=0

aj ,m∂mz

(z−i ueξ(t,z)

)∣∣∣∣∣∣z=pj

parameterized by : the integer N ≥ 0, the numbers {pj} and dj ,and the coe�cients {aj ,m}.

Singularities of τ(u, t + [z−1]) at pj⇒ for spin chains, pj = xj (eigenvalue of the twist)Aj = Res zk=pk

1≤k≤Nk 6=j

τ(u + i(N − 1), t +∑

k 6=j [z−1k ])

Qj = Aj(t = 0)Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 16 / 23

Page 53:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Construction of Q-operators

T-operators

Tλ(u) = (u + i D̂)⊗Lχλ(g) = g = g

Quantum integrability

T =

∣∣∣∣∣Q1(. . . ) Q2(. . . ) . . ....

.... . .

∣∣∣∣∣,Bäcklund �owTQ-relations

[Kazakov, SL, Tsuboi 12]

Classical integrability

τ =

∣∣∣∣∣A1(. . . ) A2(. . . ) . . ....

.... . .

∣∣∣∣∣Aj = Res τ(. . . )

[Alexandrov, Kazakov,SL, Tsuboi, Zabrodin 13]

Q-operators

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

Equivalently, T-operator for a complicated irrep in auxiliary spaceSébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 17 / 23

Page 54:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Construction of Q-operators

T-operators

Tλ(u) = (u + i D̂)⊗Lχλ(g) = g = g

Quantum integrability

T =

∣∣∣∣∣Q1(. . . ) Q2(. . . ) . . ....

.... . .

∣∣∣∣∣,Bäcklund �owTQ-relations

[Kazakov, SL, Tsuboi 12]

Classical integrability

τ =

∣∣∣∣∣A1(. . . ) A2(. . . ) . . ....

.... . .

∣∣∣∣∣Aj = Res τ(. . . )

[Alexandrov, Kazakov,SL, Tsuboi, Zabrodin 13]

Q-operators

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

Equivalently, T-operator for a complicated irrep in auxiliary spaceSébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 17 / 23

Page 55:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Construction of Q-operators

T-operators

Tλ(u) = (u + i D̂)⊗Lχλ(g) = g = g

Quantum integrability

Bäcklund �ow

[Kazakov, SL, Tsuboi 12]

Classical integrability

Aj = Res τ(. . . )

[Alexandrov, Kazakov,SL, Tsuboi, Zabrodin 13]

Q-operators

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

Equivalently, T-operator for a complicated irrep in auxiliary space

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 17 / 23

Page 56:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Contents

1 Integrability and Bethe equationsCoordinate Bethe ansatzNested Bethe equations for rational spin chains

2 Coderivative approach to rational spin chainsCoderivative formalismHirota equation ↔ Wronskian determinantsNon-twisted limitHirota equation ↔ spectrum

3 Finite size spectrum of sigma modelsThermodynamic Bethe Ansatz�Quantum Spectral Curve� for AdS/CFT

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 18 / 23

Page 57:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinants in the g → I limit

Twisted case:

under the rede�nition Qj = Qj x−i uj

Tλ(u) =det(xλk−k+1

jQj (u+i(λk−k+1))

)1≤j,k≤N

∆(x1,··· ,xN) det(Qj (u+i(λk−k+1)))

1≤j,k≤N∆(x1,··· ,xN)det g i u

g → I limit :

Denominator: disappears in H = L− 2i∂u logT (u)|u=0,g=1

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

has a j-independent limit when g → I. All lines of the determinant become equal

One should consider the limits of Q1, Q1 − Q2, . . .

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 19 / 23

Page 58:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinants in the g → I limit

Twisted case:

under the rede�nition Qj = Qj x−i uj

Tλ(u) =det(xλk−k+1

jQj (u+i(λk−k+1))

)1≤j,k≤N

∆(x1,··· ,xN) det(Qj (u+i(λk−k+1)))

1≤j,k≤N∆(x1,··· ,xN)det g i u

g → I limit :

Denominator: disappears in H = L− 2i∂u logT (u)|u=0,g=1

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

has a j-independent limit when g → I. All lines of the determinant become equal

One should consider the limits of Q1, Q1 − Q2, . . .

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 19 / 23

Page 59:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinants in the g → I limit

Twisted case:

under the rede�nition Qj = Qj x−i uj

Tλ(u) =det(xλk−k+1

jQj (u+i(λk−k+1))

)1≤j,k≤N

∆(x1,··· ,xN) det(Qj (u+i(λk−k+1)))

1≤j,k≤N∆(x1,··· ,xN)det g i u

g → I limit :

Denominator: disappears in H = L− 2i∂u logT (u)|u=0,g=1

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

has a j-independent limit when g → I. All lines of the determinant become equal

One should consider the limits of Q1, Q1 − Q2, . . .

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 19 / 23

Page 60:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinants in the g → I limit

Twisted case:

under the rede�nition Qj = Qj x−i uj

Tλ(u) =det(xλk−k+1

jQj (u+i(λk−k+1))

)1≤j,k≤N

∆(x1,··· ,xN) det(Qj (u+i(λk−k+1)))

1≤j,k≤N∆(x1,··· ,xN)det g i u

g → I limit :

Denominator: disappears in H = L− 2i∂u logT (u)|u=0,g=1

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

has a j-independent limit when g → I. All lines of the determinant become equal

One should consider the limits of Q1, Q1 − Q2, . . .

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 19 / 23

Page 61:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Wronskian determinants in the g → I limit

Twisted case:

under the rede�nition Qj = Qj x−i uj

Tλ(u) =det(xλk−k+1

jQj (u+i(λk−k+1))

)1≤j,k≤N

∆(x1,··· ,xN) det(Qj (u+i(λk−k+1)))

1≤j,k≤N∆(x1,··· ,xN)det g i u

g → I limit :

Denominator: disappears in H = L− 2i∂u logT (u)|u=0,g=1

Qj = (u + i(N − 1) + i D̂)⊗L∏k 6=j

det 1

1−g tk

∣∣∣tk→1/xk

has a j-independent limit when g → I. All lines of the determinant become equal

One should consider the limits of Q1, Q1 − Q2, . . .

�Rotational symmetry�

Wronskian determinant invariant underQj Hj

kQk

where the coe�cients Hjk are i-periodic functions of u

(up to the normalization detH)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 19 / 23

Page 62:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Contents

1 Integrability and Bethe equationsCoordinate Bethe ansatzNested Bethe equations for rational spin chains

2 Coderivative approach to rational spin chainsCoderivative formalismHirota equation ↔ Wronskian determinantsNon-twisted limitHirota equation ↔ spectrum

3 Finite size spectrum of sigma modelsThermodynamic Bethe Ansatz�Quantum Spectral Curve� for AdS/CFT

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 20 / 23

Page 63:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(u − i2

)L = Q1(u) Q2(u − i)− Q2(u)Q1(u − i)

(u + i2

)L = Q1(u + i)Q2(u)− Q2(u + i) Q1(u)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 64:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(u − i2

)L = Q1(u) Q2(u − i)− Q2(u)Q1(u − i)

(u + i2

)L = Q1(u + i)Q2(u)− Q2(u + i) Q1(u)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 65:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(u − i2

)L = Q1(u) Q2(u − i)− Q2(u)Q1(u − i)

(u + i2

)L = Q1(u + i)Q2(u)− Q2(u + i) Q1(u)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 66:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(u − i2

)L = Q1(u) Q2(u − i)− Q2(u)Q1(u − i)

(u + i2

)L = Q1(u + i)Q2(u)− Q2(u + i) Q1(u)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 67:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(θj − i2

)L = Q1(θj) Q2(θj − i)− Q2(θj)Q1(θj − i)

(θj + i2

)L = Q1(θj + i)Q2(θj)− Q2(θj + i) Q1(θj)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 68:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(θj − i2

)L = Q1(θj) Q2(θj − i)− Q2(θj)Q1(θj − i)

(θj + i2

)L = Q1(θj + i)Q2(θj)− Q2(θj + i) Q1(θj)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 69:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(θj − i2

)L = Q1(θj) Q2(θj − i)− Q2(θj)Q1(θj − i)

(θj + i2

)L = Q1(θj + i)Q2(θj)− Q2(θj + i) Q1(θj)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 70:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chain Q1(u) =∏

j(u − θj)

(θj − i2

)L = Q1(θj) Q2(θj − i)− Q2(θj)Q1(θj − i)

(θj + i2

)L = Q1(θj + i)Q2(θj)− Q2(θj + i) Q1(θj)

∏k(θj−θk+i)∏k(θj−θk−i)

= −(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 71:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Hirota equation ↔ Spectrum

Three conditions �x the twisted spectrum

x i uj Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uLdet g i u

H = L− 2i ddu

logT�(u)∣∣u=0

Example for periodic SU(2) spin chainQ1(u) = x−i uj

∏j(u − θj)

det g−12−i u(θj − i

2)L = Q1(θj) Q2(θj − i)− Q2(θj)Q1(θj − i)

det g12−i u(θj + i

2)L = Q1(θj + i)Q2(θj)− Q2(θj + i) Q1(θj)

∏k(θj−θk+i)∏k(θj−θk−i)

= − x2x1

(θj+

i2

θj−i2

)L

E = −L + 2∑

j1

θ2j

+1/4

The same works for N > 2Nested Bethe ansatz

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 21 / 23

Page 72:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Contents

1 Integrability and Bethe equationsCoordinate Bethe ansatzNested Bethe equations for rational spin chains

2 Coderivative approach to rational spin chainsCoderivative formalismHirota equation ↔ Wronskian determinantsNon-twisted limitHirota equation ↔ spectrum

3 Finite size spectrum of sigma modelsThermodynamic Bethe Ansatz�Quantum Spectral Curve� for AdS/CFT

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 22 / 23

Page 73:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + polynomiality T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 74:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 75:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 76:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 77:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 78:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 79:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 80:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 81:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 82:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�Aj = Res τ(. . . )

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 83:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models

Key points

Key points to have in mind for TBA

Hirota + �nite rank T =

∣∣∣∣Q ....... . .

∣∣∣∣Analytic properties of Q spectrum

Finite set of equations

�Rotation symmetry�

Twist: Q-functions multiplied by x−i ui

degenerate g → I limit (degree of polynomials)

May help for �QSC from �rst principle� (?from a latticeregularization?)

g = gRepresentation factors out

More �classical�

Aj = Res τ(. . . ) Thanks for your attention

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 23 / 23

Page 84:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Appendices

Disclaimer : The following slides are additional material, notnecessarily part of the presentation

4 Master identity

5 Integral de�nition of τ -functions

6 Nested Bethe equations

7 Finite size spectrum of sigma modelsThermodynamic Bethe Ansatz�Quantum Spectral Curve� for AdS/CFT

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 24 / 23

Page 85:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Master IdentityCombinatorics of coderivatives

�Master Identity� [Kazakov, S.L, Tsuboi 10]

when Π =∏

j w(tj),

(t − z)[(u + 1 + D̂)⊗L w(z)w(t)Π

]·[(u + D̂)⊗L Π

]= t

[(u + D̂)⊗L w(z)Π

]·[(u + 1 + D̂)⊗L w(t)Π

]− z

[(u + 1 + D̂)⊗L w(z)Π

]·[(u + D̂)⊗L w(t)Π

]where w(z) = det 1

1−zg =∑∞

s=0zs χs(g)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 25 / 23

Page 86:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Integral de�nition of τ -functions

τ -functions are often de�ned as the functions such that ∀n ≥ n′, ∀t, t′

De�nition of τ -functions.∮Ceξ(t−t

′,z)zn−n′τn(t− [z−1])τn′(t

′ + [z−1])dz = 0

where t± [z−1] =(t1 ± z−1, t2 ± z−2

2, t3 ± z−3

3, · · ·

), and

ξ(t, z) =∑

k≥1 tkzk , and C encircles the singularities of

τn(t− [z−1])τn′(t′ + [z−1]) (typically �nite), but not the singularities of

eξ(t−t′,z)zn−n

′(typically at in�nity).

Baker-Akhiezer Ψ-functions:Ψn(t, z) = zneξ(t,z) τn(t−[z−1])

τn(t)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 26 / 23

Page 87:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Integral de�nition of τ -functions

τ -functions are often de�ned as the functions such that ∀n ≥ n′, ∀t, t′

De�nition of τ -functions.∮Ceξ(t−t

′,z)zn−n′τn(t− [z−1])τn′(t

′ + [z−1])dz = 0

where t± [z−1] =(t1 ± z−1, t2 ± z−2

2, t3 ± z−3

3, · · ·

), and

ξ(t, z) =∑

k≥1 tkzk , and C encircles the singularities of

τn(t− [z−1])τn′(t′ + [z−1]) (typically �nite), but not the singularities of

eξ(t−t′,z)zn−n

′(typically at in�nity).

Baker-Akhiezer Ψ-functions:Ψn(t, z) = zneξ(t,z) τn(t−[z−1])

τn(t)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 26 / 23

Page 88:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Hirota equation ↔ Spectrum (nested Bethe equations)

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

let

QI = Qi1i2...ik =

∣∣∣∣∣∣Qi1

(u+i k−12

) ... Qik(u+i k−1

2)

.... . .

...Qi1

(u−i k−12

) ... Qik(u−i k−1

2)

∣∣∣∣∣∣ = det(Qj(u+ i2

(|I |+1−2k))) j∈I1≤k≤|I |

QI ,j ,k(u)QI (u) = QI ,j(u + i2

) QI ,k(u− i2

)−QI ,j(u− i2

)QI ,k(u + i2

)

QI (u)QI ,j (u+3i2

)QI ,j,k(u)

QI (u+i)QI ,j (u−i2

)QI ,j,k(u+i)= −1

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 27 / 23

Page 89:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Hirota equation ↔ Spectrum (nested Bethe equations)

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

let

QI = Qi1i2...ik =

∣∣∣∣∣∣Qi1

(u+i k−12

) ... Qik(u+i k−1

2)

.... . .

...Qi1

(u−i k−12

) ... Qik(u−i k−1

2)

∣∣∣∣∣∣ = det(Qj(u+ i2

(|I |+1−2k))) j∈I1≤k≤|I |

QI ,j ,k(u − i2

)QI (u − i2

) = QI ,j(u) QI ,k(u − i)− QI ,j(u − i)QI ,k(u)

QI ,j ,k(u + i2

)QI (u + i2

) = QI ,j(u + i)QI ,k(u)− QI ,j(u) QI ,k(u + i)

QI (u−i2

)QI ,j (u+i)QI ,j,k(u− i2

)

QI (u+i2

)QI ,j (u−i)QI ,j,k(u+i2

)= −1

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 27 / 23

Page 90:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Hirota equation ↔ Spectrum (nested Bethe equations)

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

let

QI = Qi1i2...ik =

∣∣∣∣∣∣Qi1

(u+i k−12

) ... Qik(u+i k−1

2)

.... . .

...Qi1

(u−i k−12

) ... Qik(u−i k−1

2)

∣∣∣∣∣∣ = det(Qj(u+ i2

(|I |+1−2k))) j∈I1≤k≤|I |

QI ,j ,k(θi− i2

)QI (θi− i2

) = QI ,j(θi ) QI ,k(θi− i)−QI ,j(θi− i)QI ,k(θi )

QI ,j ,k(θi +i2

)QI (θi +i2

) = QI ,j(θi + i)QI ,k(θi )− QI ,j(θi ) QI ,k(θi +i)

QI (θi−i2

)QI ,j (θi+i)QI ,j,k(θi−i2

)

QI (θi+i2

)QI ,j (θi−i)QI ,j,k(θi+i2

)= −1

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 27 / 23

Page 91:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Hirota equation ↔ Spectrum (nested Bethe equations)

Three conditions �x the spectrum

Qj is polynomial in u (for 1 ≤ j ≤ N)

T ∅(u) = uL

H = L− 2i ddu

logT�(u)∣∣u=0

let

QI = Qi1i2...ik =

∣∣∣∣∣∣Qi1

(u+i k−12

) ... Qik(u+i k−1

2)

.... . .

...Qi1

(u−i k−12

) ... Qik(u−i k−1

2)

∣∣∣∣∣∣ = det(Qj(u+ i2

(|I |+1−2k))) j∈I1≤k≤|I |

QI ,j ,k(θi− i2

)QI (θi− i2

) = QI ,j(θi ) QI ,k(θi− i)−QI ,j(θi− i)QI ,k(θi )

QI ,j ,k(θi +i2

)QI (θi +i2

) = QI ,j(θi + i)QI ,k(θi )− QI ,j(θi ) QI ,k(θi +i)

QI (θi−i2

)QI ,j (θi+i)QI ,j,k(θi−i2

)

QI (θi+i2

)QI ,j (θi−i)QI ,j,k(θi+i2

)= −1

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 27 / 23

Page 92:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Integrable �eld theories

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

The space is one-dimensional andthere are periodic boundary conditions.

The interactions are local.

A factorization formula holds

One can argue that it is su�cient to havein�nitely many conserved charges

[Zamolodchikov Zamolodchikov 79]j

k

�Locality� requires a large spatial period Question of the �nite size e�ects

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 28 / 23

Page 93:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Integrable �eld theories

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

The space is one-dimensional andthere are periodic boundary conditions.

The interactions are local.

A factorization formula holds

One can argue that it is su�cient to havein�nitely many conserved charges

[Zamolodchikov Zamolodchikov 79]j

k

�Locality� requires a large spatial period Question of the �nite size e�ects

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 28 / 23

Page 94:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Integrable �eld theories

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

The space is one-dimensional andthere are periodic boundary conditions.

The interactions are local.

A factorization formula holds:

One can argue that it is su�cient to havein�nitely many conserved charges

[Zamolodchikov Zamolodchikov 79]

= =

j

k

�Locality� requires a large spatial period Question of the �nite size e�ects

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 28 / 23

Page 95:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Integrable �eld theories

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

The space is one-dimensional andthere are periodic boundary conditions.

The interactions are local.

A factorization formula holds

One can argue that it is su�cient to havein�nitely many conserved charges

[Zamolodchikov Zamolodchikov 79]

= =

j

k

�Locality� requires a large spatial period Question of the �nite size e�ects

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 28 / 23

Page 96:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Integrable �eld theories

Bethe Ansatz of the form ψ(n1, n2, · · · , nM) ≡∑σ∈SM

Aσe i∑

k pσ(k)nk

wave-function of the eigenstates of several theories such that

The space is one-dimensional andthere are periodic boundary conditions.

The interactions are local.

A factorization formula holds

One can argue that it is su�cient to havein�nitely many conserved charges

[Zamolodchikov Zamolodchikov 79]

= =

j

k

�Locality� requires a large spatial period Question of the �nite size e�ects

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 28 / 23

Page 97:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Thermodynamic Bethe Ansatz

Matsubara Trick: �double Wick Rotation��nite size! �nite temperature

!

At �nite temperature, the Bethe equations giverise to several di�erent types of bound states introduce one density of excitations (as afunction of the rapidity) for each type of boundstate.

R

For vacuum, densities given by T -functions Ta,s(u) obeying the HirotaequationTa,s(u + i/2)Ta,s(u − i/2) = Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 29 / 23

Page 98:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Thermodynamic Bethe Ansatz

Matsubara Trick: �double Wick Rotation��nite size! �nite temperature

!

At �nite temperature, the Bethe equations giverise to several di�erent types of bound states introduce one density of excitations (as afunction of the rapidity) for each type of boundstate.

R

For vacuum, densities given by T -functions Ta,s(u) obeying the HirotaequationTa,s(u + i/2)Ta,s(u − i/2) = Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 29 / 23

Page 99:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Thermodynamic Bethe Ansatz

Matsubara Trick: �double Wick Rotation��nite size! �nite temperature

!

At �nite temperature, the Bethe equations giverise to several di�erent types of bound states introduce one density of excitations (as afunction of the rapidity) for each type of boundstate.

R

For vacuum, densities given by T -functions Ta,s(u) obeying the HirotaequationTa,s(u + i/2)Ta,s(u − i/2) = Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 29 / 23

Page 100:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Thermodynamic Bethe Ansatz

Matsubara Trick: �double Wick Rotation��nite size! �nite temperature

!

At �nite temperature, the Bethe equations giverise to several di�erent types of bound states introduce one density of excitations (as afunction of the rapidity) for each type of boundstate.

R

For vacuum, densities given by T -functions Ta,s(u) obeying the HirotaequationTa,s(u + i/2)Ta,s(u − i/2) = Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 29 / 23

Page 101:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Boundary conditions for Hirota equation

Symmetry Group! boundary condition

s

a

N

SU(N) spin chain

s

a

N

SU(N) × SU(N)principal chiral model

s

a

AdS5/CFT4

PSU(2, 2|4)

T a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Additional information: analyticity properties

Singularities (poles, branch points, . . . )Large u behaviour (power-like, exponentially small, . . . )Analytic continuation around branch points.

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 30 / 23

Page 102:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Boundary conditions for Hirota equation

Symmetry Group! boundary condition

s

a

N

SU(N) spin chain

s

a

N

SU(N) × SU(N)principal chiral model

s

a

AdS5/CFT4

PSU(2, 2|4)

T a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Additional information: analyticity properties

Singularities (poles, branch points, . . . )Large u behaviour (power-like, exponentially small, . . . )Analytic continuation around branch points.

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 30 / 23

Page 103:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Boundary conditions for Hirota equation

Symmetry Group! boundary condition

s

a

N

SU(N) spin chain

s

a

N

SU(N) × SU(N)principal chiral model

s

a

AdS5/CFT4

PSU(2, 2|4)

T a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Additional information: analyticity properties

Singularities (poles, branch points, . . . )Large u behaviour (power-like, exponentially small, . . . )Analytic continuation around branch points.

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 30 / 23

Page 104:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Boundary conditions for Hirota equation

Symmetry Group! boundary condition

s

a

N

SU(N) spin chain

s

a

N

SU(N) × SU(N)principal chiral model

s

a

AdS5/CFT4

PSU(2, 2|4)

T a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Additional information: analyticity properties

Singularities (poles, branch points, . . . )Large u behaviour (power-like, exponentially small, . . . )Analytic continuation around branch points.

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 30 / 23

Page 105:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Analyticity requirements Quantum Spectral Curve

Functions Pa and Pa holomorphicon C \ [−2g , 2g ] (1 ≤ a ≤ 4)

where g =√λ

4π , λ = gYMN2c .

Pa

2g−2g

Denote by tilde the analyticcontinuation around ±2g .

Functions µab i-periodic andholomorphic onC \ ((]−∞,−2g ] ∪ [2g ,∞[) + iZ)µab = −µba 1 ≤ a, b ≤ 4µ12 µ34 − µ13 µ24 + µ14 µ23 = 1

−2g 2g

2g+i

2g−i

2g−2i

µab

Power-like asymptotics

µ̃ab − µab = PaP̃b − PbP̃a P̃a = µabPb PaP

a = 0

[Gromov Kazakov SL Volin 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 31 / 23

Page 106:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Analyticity requirements Quantum Spectral Curve

Functions Pa and Pa holomorphicon C \ [−2g , 2g ] (1 ≤ a ≤ 4)

where g =√λ

4π , λ = gYMN2c .

Pa

2g−2g

Denote by tilde the analyticcontinuation around ±2g .

Functions µab i-periodic andholomorphic onC \ ((]−∞,−2g ] ∪ [2g ,∞[) + iZ)µab = −µba 1 ≤ a, b ≤ 4µ12 µ34 − µ13 µ24 + µ14 µ23 = 1

−2g 2g

2g+i

2g−i

2g−2i

µab

Power-like asymptotics

µ̃ab − µab = PaP̃b − PbP̃a P̃a = µabPb PaP

a = 0

[Gromov Kazakov SL Volin 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 31 / 23

Page 107:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Analyticity requirements Quantum Spectral Curve

Functions Pa and Pa holomorphicon C \ [−2g , 2g ] (1 ≤ a ≤ 4)

where g =√λ

4π , λ = gYMN2c .

Pa

Pa

P̃a

Denote by tilde the analyticcontinuation around ±2g .

Functions µab i-periodic andholomorphic onC \ ((]−∞,−2g ] ∪ [2g ,∞[) + iZ)µab = −µba 1 ≤ a, b ≤ 4µ12 µ34 − µ13 µ24 + µ14 µ23 = 1

−2g 2g

2g+i

2g−i

2g−2i

µab

Power-like asymptotics

µ̃ab − µab = PaP̃b − PbP̃a P̃a = µabPb PaP

a = 0

[Gromov Kazakov SL Volin 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 31 / 23

Page 108:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Analyticity requirements Quantum Spectral Curve

Functions Pa and Pa holomorphicon C \ [−2g , 2g ] (1 ≤ a ≤ 4)

where g =√λ

4π , λ = gYMN2c .

Pa

Pa

P̃a

Denote by tilde the analyticcontinuation around ±2g .

Functions µab i-periodic andholomorphic onC \ ((]−∞,−2g ] ∪ [2g ,∞[) + iZ)µab = −µba 1 ≤ a, b ≤ 4µ12 µ34 − µ13 µ24 + µ14 µ23 = 1

−2g 2g

2g+i

2g−i

2g−2i

µab

Power-like asymptotics

µ̃ab − µab = PaP̃b − PbP̃a P̃a = µabPb PaP

a = 0

[Gromov Kazakov SL Volin 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 31 / 23

Page 109:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Analyticity requirements Quantum Spectral Curve

Functions Pa and Pa holomorphicon C \ [−2g , 2g ] (1 ≤ a ≤ 4)

where g =√λ

4π , λ = gYMN2c .

Pa

Pa

P̃a

Denote by tilde the analyticcontinuation around ±2g .

Functions µab i-periodic andholomorphic onC \ ((]−∞,−2g ] ∪ [2g ,∞[) + iZ)µab = −µba 1 ≤ a, b ≤ 4µ12 µ34 − µ13 µ24 + µ14 µ23 = 1

−2g 2g

2g+i

2g−i

2g−2i

µab

Power-like asymptotics

µ̃ab − µab = PaP̃b − PbP̃a P̃a = µabPb PaP

a = 0

[Gromov Kazakov SL Volin 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 31 / 23

Page 110:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Tests and generalizationsNon-exhaustive list

Tests and applications of the QSC

Weak coupling expansion [Marboe Velizhanin Volin 14]

Numeric resolution [Gromov Levkovich-Maslyuk Sizov 15]

BFKL regime [Al�mov Gromov Kazakov 15]

Generalisations of the QSC

Deformations of AdS5/CFT4 [Kazakov SL Volin in preparation]

ABJM [Cavaglià Fioravanti Gromov Tateo 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 32 / 23

Page 111:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Tests and generalizationsNon-exhaustive list

Tests and applications of the QSC

Weak coupling expansion [Marboe Velizhanin Volin 14]

Numeric resolution [Gromov Levkovich-Maslyuk Sizov 15]

BFKL regime [Al�mov Gromov Kazakov 15]

Generalisations of the QSC

Deformations of AdS5/CFT4 [Kazakov SL Volin in preparation]

ABJM [Cavaglià Fioravanti Gromov Tateo 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 32 / 23

Page 112:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Tests and generalizationsNon-exhaustive list

Tests and applications of the QSC

Weak coupling expansion [Marboe Velizhanin Volin 14]

Numeric resolution [Gromov Levkovich-Maslyuk Sizov 15]

BFKL regime [Al�mov Gromov Kazakov 15]

Generalisations of the QSC

Deformations of AdS5/CFT4 [Kazakov SL Volin in preparation]

ABJM [Cavaglià Fioravanti Gromov Tateo 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 32 / 23

Page 113:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Tests and generalizationsNon-exhaustive list

Tests and applications of the QSC

Weak coupling expansion [Marboe Velizhanin Volin 14]

Numeric resolution [Gromov Levkovich-Maslyuk Sizov 15]

BFKL regime [Al�mov Gromov Kazakov 15]

Generalisations of the QSC

Deformations of AdS5/CFT4 [Kazakov SL Volin in preparation]

ABJM [Cavaglià Fioravanti Gromov Tateo 14]

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 32 / 23

Page 114:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Interpretation of the QSC

Ambiguity in shifts

Ta,s(u + i/2)Ta,s(u − i/2) =

Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Ta,s(u)

u

u+i/2

SymmetriesT a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Invariant under

rotation Qj ! HjkQk

hodge duality:Qj ! Q j ≡ det(Qk(u + . . . ))k 6=j

Quantum spectral curve

P̃a = µabPb

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 33 / 23

Page 115:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Interpretation of the QSC

Ambiguity in shifts

Ta,s(u + i/2)Ta,s(u − i/2) =

Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Ta,s(u)

u

u+i/2

SymmetriesT a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Invariant under

rotation Qj ! HjkQk

hodge duality:Qj ! Q j ≡ det(Qk(u + . . . ))k 6=j

Quantum spectral curve

P̃a = µabPb

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 33 / 23

Page 116:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Interpretation of the QSC

Ambiguity in shifts

Ta,s(u + i/2)Ta,s(u − i/2) =

Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Ta,s(u)

u

u+i/2

SymmetriesT a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Invariant under

rotation Qj ! HjkQk

hodge duality:Qj ! Q j ≡ det(Qk(u + . . . ))k 6=j

Quantum spectral curve

P̃a = µabPb

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 33 / 23

Page 117:  · Integrability and Bethe equations Coderivative approach to rational spin chains Finite size spectrum of sigma models Outline 1 Integrability and Bethe equations ...

Master identity Integral de�nition of τ-functions Nested Bethe equations Finite size spectrum of sigma models

Interpretation of the QSC

Ambiguity in shifts

Ta,s(u + i/2)Ta,s(u − i/2) =

Ta+1,s(u)Ta−1,s(u) + Ta,s+1(u)Ta,s−1(u)

Ta,s(u)

u

u+i/2

SymmetriesT a,s(u) = det(Qj(u + . . . ))1≤j ,k≤...

Invariant under

rotation Qj ! HjkQk

hodge duality:Qj ! Q j ≡ det(Qk(u + . . . ))k 6=j

Quantum spectral curve

P̃a = µabPb

Sébastien Leurent, IMB, Dijon Hirota quantum spectrum Aug 12, 2015 33 / 23