Experiment Multi Pump Test Rig

55
UNIVERSITI KUALA LUMPUR MALAYSIAN INSTITUTE OF CHEMICAL & BIO-ENGINEERING TECHNOLOGY FLUID MECHANICS CLB 11003 TITLE : Experiment 6 : Multi Pump Test Rig Lecturer’s Name :  En.Eddyazuan  Name / Section ID Number 1)SURENDRAN BALAKRISHNAN 5520111344 5 2)MUHAMMAD AKMAL HAKIN BIN RAMLAN 55201113557 3)AHMAD IKHRAM ROSLAN 55201113682 Due Date : 13 APRIL 2016

Transcript of Experiment Multi Pump Test Rig

Page 1: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 1/55

UNIVERSITI KUALA LUMPUR

MALAYSIAN INSTITUTE OF CHEMICAL &

BIO-ENGINEERING TECHNOLOGY

FLUID MECHANICS

CLB 11003

TITLE :

Experiment 6 : Multi Pump Test Rig

Lecturer’s Name : 

En.Eddyazuan

 Name / Section ID Number

1)SURENDRAN BALAKRISHNAN 55201113445

2)MUHAMMAD AKMAL HAKIN BIN RAMLAN 55201113557

3)AHMAD IKHRAM ROSLAN 55201113682

Due Date :

13 APRIL 2016

Page 2: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 2/55

OBJECTIVES 

  Determine the operating characteristic of different pumps in a contained unit.

  Understand the types of pumps in principle and design, and the selection of the

appropriate pump for a particular application for optimal operation.

SUMMARY

The objective of this experiment is to determine the operating characteristic of

different pumps in a contained unit. In addition, this experiment was conducted to

understand the types of pumps in principle and design and the selection of the appropriate

 pump for a particular application for optimal operation. The results for this experiment

were obtained for pump 1, pump 2 and pump 3 according to different types of

characteristics for each of the pump. This experiment is divided into four parts. First

experiment is rotational speed vs volumetric flow rate, which is for a performance curve

for a centrifugal pump. The second experiment is other performance curve for a

centrifugal pump. The third experiment is rotational speed vs output pressure, which is

 performance curve for a positive displacement pump. Finally, the last experiment is other

 performance curve for a positive displacement pump. For each part of experiment, the

respective graphs were plotted for different types of characteristics. In the discussion, the

characteristics curves for each part of experiment was plotted according the pump 1,

 pump 2 and pump 3. In the each characteristics curves for pump 1, pump 2 and pump 3,

the relationships between each characteristics have been discussed. In short, as a

conclusion, students were able to determine the operating characteristics of different

Page 3: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 3/55

 pumps in a contained unit. Besides, students understood the types of pumps in principle

and design and the selection of the appropriate pump for a particular application for

optimal operation. Thus, the objectives of this experiment were achieved.

Page 4: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 4/55

RESULTS

Data Collected for Experiment 1:

Table 1 : Rotational Speed and Flow rate for P1

Speed (RPM) Flow rate (%)

2800 59.3

2600 57.0

2400 53.9

2200 49.1

2000 44.6

1800 40.1

1600 35.7

1400 30.8

1200 26.2

1000 21.7

800 17.3

600 12.8

Volume of Q was calculated using formula :

a) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 59.4

hr 

mQ

Q

3

04.4

1000

6056.113

100

3.59

 

 b) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 57.0

hr 

mQ

Q

3

88.3

1000

6056.113

100

0.57

 

Page 5: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 5/55

c) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 53.9

hr 

mQ

Q

3

67.3

1000

6056.113

100

9.53

 

d) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 49.1

hr 

mQ

Q

3

35.3

1000

6056.113

100

1.49

 

e) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 44.6

hr 

mQ

Q

3

04.3

1000

6056.113

100

6.44

 

f) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 40.1

hr 

mQ

Q

3

73.2

1000

6056.113

100

1.40

 

g) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 35.7

hr 

mQ

Q

3

43.2

1000

6056.113

100

7.35

 

h) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 30.8

hr 

mQ

Q

3

10.2

1000

6056.113

100

8.30

 

Page 6: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 6/55

 

i) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 26.2

hr 

mQ

Q

3

79.1

1000

6056.113

100

2.26

 

 j) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 21.7

hr 

mQ

Q

3

48.1

1000

6056.113

100

7.21

 

k) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 17.3

hr 

mQ

Q

3

18.1

1000

6056.113

100

3.17

 

l) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 12.8

hr 

mQ

Q

3

87.0

1000

6056.113

100

8.12

 

Page 7: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 7/55

 

Flow rate (%) Volume Flow, Q (m3/hr)Rotational Speed , N

(RPM)

59.3 4.04 2800

57.0 3.88 2600

53.9 3.67 2400

49.1 3.35 2200

44.6 3.04 2000

40.1 2.73 1800

35.7 2.43 1600

30.8 2.10 1400

26.2 1.79 1200

21.7 1.48 1000

17.3 1.18 800

12.8 0.87 600

Figure 1: Rotational Speed (N) vs Volume Flow rate (Q)

y = 667.63x - 0.2371

R² = 0.997

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

   R  o   t  a   t   i  n  a   l   S  p  e  e   d ,   N   (   R   P   M   )

Volume Flow Rate, Q ( m3/hr)

Rotational Speed (N) vs Volume Flow rate (Q)

Page 8: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 8/55

Data Collected for Experiment 2 :

Table 2: Flow rate, Speed, Differential Pressure and Power for P1

Flow rate

%

Speed

RPM

Diff. Pressure

%

Power

kW

60 2800 16.4 0.53

50 2799 30.4 0.50

40 2807 42.9 0.48

30 2822 55.2 0.46

20 2836 61.5 0.42

10 2851 65.4 0.40

Volume of Flow rate , Q wac calculate using formula :

a) 1000

6056.113

100

qQ  

q = Flow rate (%)When q is 60

hr 

mQ

Q

3

09.4

1000

6056.113

100

60

 

 b) 1000

6056.113

100

qQ  

q = Flow rate (%)When q is 50

hr 

mQ

Q

3

41.3

1000

6056.113

100

50

 

c) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 40

hr 

mQ

Q

3

73.2

1000

6056.113

100

40

 

d) 1000

6056.113

100

qQ  

q = Flow rate (%)

When q is 30

hr 

mQ

Q

3

04.2

1000

6056.113

100

30

 

e) 1000

6056.113

100

qQ  

q = Flow rate (%)When q is 20

hr 

mQ

Q

3

36.1

1000

6056.113

100

20

 

f) 1000

6056.113

100

qQ  

q = Flow rate (%)When q is 10

hr 

mQ

Q

3

68.0

1000

6056.113

100

10

 

Page 9: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 9/55

 

P M i  is calculated as below :-

a).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

530

1

100053.0

53.0

1000)(

  b).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

500

1

100050.0

50.0

1000)(

 

c). 

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

4800

1

100048.0

48.0

1000)(

  d).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

460

1

100046.0

46.0

1000)(

 

e).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

420

1

100042.0

42.0

1000)(

  f).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

400

1

100040.0

40.0

1000)(

 

Page 10: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 10/55

i.  Motor Input Power (PMI) Vs. Volume Flow rate (Q)

Flow rate (%)Volume Flow rate,

Q (m3/hr)Power (kW)

Motor Input

Power, PMi, (W)

60 4.09 0.53 530

50 3.41 0.50 500

40 2.73 0.48 480

30 2.04 0.46 460

20 1.36 0.42 420

10 0.68 0.40 400

Figure 1: Motor Input Power vs Volume Flow Rate

y = 38.089x + 374.16

R² = 0.9898

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

   M  o   t  o  r   I  n  p  u   t   P  o

  w  e  r ,   P   M   i   (   W   )

Volume Flow Rate , Q (m3/hr)

Motor Input Power (PMi) vs Vol Flow Rate (Q)

Page 11: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 11/55

ii.  Pump Total Head (H) Vs. Volume Flow rate (Q)

Pump Total Head is calculated by using formula as below :-

2

3

1

2

4

12

81.9

1000

,%Pr 

18.0180)(tan

86.0860)(tan

,

102.103

100

 s

mGravity g 

m

kg 

water  Density

essureal  Differenti DP 

mmmwater  Datum Fromce Dis Inlet  Z 

mmmwater  Datum Fromce DisOutlet  Z 

m Head Total  Pump H 

where

 g 

 DP  Z  Z  H 

w

c

c

w

cc

 

  

   

 

  

 

  

  

 

i). Differential Pressure, % = 16.4

m H 

mkg 

 s N 

 s

m

m

kg 

bar m N bar 

m H 

 sm

mkg 

bar m N bar 

mm H 

 DP when

80.5

.

.181.91000

/102.103

100

4.1668.0

81.91000

/102.103

100

4.16)18.086.0(

4.16

2

23

24

23

24

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Page 12: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 12/55

ii). Differential Pressure, % = 30.4

m H 

mkg 

 s N 

 s

m

m

kg 

bar m N bar 

m H 

 s

m

m

kg bar 

m N bar mm H 

 DP when

16.10

.

.181.91000

/102.103

100

4.3068.0

81.91000

/102.103

100

4.30)18.086.0(

4.30

2

23

24

23

24

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

iii). Differential Pressure, % = 42.9

m H 

mkg 

 s N 

 s

m

m

kg 

bar m N bar 

m H 

 s

m

m

kg bar m N bar 

mm H 

 DP when

06.14

.

.181.91000

/102.103

100

9.4268.0

81.91000

/102.103

100

9.42)18.086.0(

9.42

2

23

24

23

2

4

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

iv). Differential Pressure, % = 55.2

m H 

mkg 

 s N 

 s

m

m

kg 

bar m N bar 

m H 

 s

m

m

kg bar 

m N bar mm H 

 DP when

06.14

.

.181.91000

/102.103

100

9.4268.0

81.91000

/102.103

100

9.42)18.086.0(

2.55

2

23

24

23

24

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

Page 13: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 13/55

v). Differential Pressure, % = 61.5

m H 

mkg 

 s N 

 s

m

m

kg 

bar m N bar 

m H 

 s

m

m

kg bar 

m N bar mm H 

 DP when

86.19

.

.181.91000

/102.103

100

5.6168.0

81.91000

/102.103

100

5.61)18.086.0(

5.61

2

23

24

23

24

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

vi). Differential Pressure, % = 65.4

m H 

mkg 

 s N 

 s

m

m

kg 

bar m N bar 

m H 

 s

m

m

kg bar m N bar 

mm H 

 DP when

08.21

.

.181.91000

/102.103

100

4.6568.0

81.91000

/102.103

100

4.65)18.086.0(

4.65

2

23

24

23

2

4

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

Page 14: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 14/55

 

Volume Flow rate, Q

(m3/hr)

Zc2-Zc1

(m)

Diff. Pressure, D

(%)

Pump Total Head, H

(m)

4.09 0.68 16.4 5.80

3.41 0.68 30.4 10.16

2.73 0.68 42.9 14.06

2.04 0.68 55.2 17.90

1.36 0.68 61.5 19.86

0.68 0.68 65.4 21.08

Figure 2 : Pump Total Head (H) Vs Volumetric Flow Rate (Q)

y = -4.5772x + 25.727

R² = 0.9611

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

   P  u  m  p   T  o   t  a   l   H

  e  a   d ,

   H   (  m   )

Volume Flow Rate, Q (m3/hr)

Pump Total Head (H) vs Vol Flow Rate (Q)

Page 15: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 15/55

iii.  Pump Power Output (Po) Vs. Volume Flow rate (Q)

Pump Power Output was obtained by calculate using formula as below :-

hr 

mrate FlowVolumeQ

m Head Total  Pump H  s

mGravity g 

m

kg water  Density

W Output  Power  Pump P 

where

 s

hr  gHQ P 

w

o

wo

3

2

3

,

,

81.9

1000

,

3600

1

  

  

 

Page 16: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 16/55

1.

W  P 

 s

m N  P 

mkg 

 s N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

hr 

mQm H when

o

o

o

o

64.64

.64.64

.

.1.64.64

3600

109.480.581.91000

09.4,80.5

2

3

2

3

23

3

 

  

 

 

2.

W  P 

 s

m N  P 

mkg 

 s N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

hr 

mQm H when

o

o

o

o

41.94

.41.94

.

.1.41.94

3600

141.316.1081.91000

41.3,16.10

2

3

2

3

23

3

 

 

 

 

 

3.

W  P 

 s

m N  P 

mkg 

 s N 

 s

mkg  P 

 s

hr 

hr 

mm s

m

m

kg  P 

hr 

mQm H when

o

o

o

o

60.104

.60.104

.

.1.60.104

3600

1

73.206.1481.91000

73.2,06.14

2

3

2

3

23

3

 

 

 

 

 

Page 17: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 17/55

4.

W  P 

 s

m N  P 

mkg 

 s N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

hr 

mQm H when

o

o

o

o

51.99

.51.99

.

.1.51.99

3600

104.290.1781.91000

04.2,90.17

2

3

2

3

23

3

 

  

 

 

5.

W  P 

 s

m N  P 

mkg 

 s N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

hr 

mQm H when

o

o

o

o

60.73

.60.73

.

.1.60.73

3600

136.186.1981.91000

36.1,86.19

2

3

2

3

23

3

 

 

 

 

 

6.

W  P 

 s

m N  P 

mkg 

 s N 

 s

mkg  P 

 s

hr 

hr 

mm s

m

m

kg  P 

hr 

mQm H when

o

o

o

o

06.39

.06.39

.

.1.06.39

3600

1

68.008.2181.91000

68.0,08.21

2

3

2

3

23

3

 

 

 

 

 

Page 18: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 18/55

 

Volume Flow rate, Q(m3 /hr)

Pump Total Head, H(m)

Pump Power Output, Po(W)

4.09 5.80 64.64

3.41 10.16 94.41

2.73 14.06 104.60

2.04 17.90 99.51

1.36 19.86 73.60

0.68 21.08 39.06

Figure 3 : Pump Power Output vs Volume Flow Rate

y = 8.1807x + 59.792

R² = 0.1736

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

   P  u  m  p   P  o  w  e  r   O  u   t  p  u   t ,   P   0   (   W   )

Volume Flow Rate, Q (m3/hr)

Pump Power Output (P0) vs Vol Flow rate (Q)

Page 19: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 19/55

iv.  Pump Power Input (Pi) Vs. Volume Flow rate (Q)

Pump Power Input, Pi was calculated by using formula below :-

W  Hz  Load  Noat  Power  Pump P 

W  Power  Input  Motor  P 

W nput  PumpPowerI  P 

where

 P  P  P 

 p

 Mi

i

 p Mii

70)50(1

,

,

min1

min1

 

a).

W  P 

W  P 

 P when

i

i

 Mi

460

)70530(

530

 

b).

W  P 

W  P 

 P when

i

i

 Mi

430

)70500(

500

 

c).

W  P 

W  P 

 P when

i

i

 Mi

410

)70480(

480

 

d).

W  P 

W  P 

 P when

i

i

 Mi

390

)70460(

460

 

e).

W  P 

W  P 

 P when

i

i

 Mi

350

)70420(

420

 

f).

W  P 

W  P 

 P when

i

i

 Mi

330

)70400(

400

 

Page 20: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 20/55

 

Volume Flow rate, QMotor Input

Power, PMi Pp1min 

Pump Power Input,

Pi 

(m3/hr) (W) (W) (W)

4.09 530 70 460

3.41 500 70 430

2.73 480 70 410

2.04 460 70 390

1.36 420 70 350

0.68 400 70 330

Figure 4 : Pump Power Input vs Volume Flow rate

y = 38.089x + 304.16

R² = 0.9898

0

50

100

150

200

250

300

350

400450

500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

   P  u  m  p   P  o  w  e  r   I  n  p  u   t ,   P   i   (   W   )

Volume Flow rate, Q (m3/hr)

Pump Power Input (Pi) vs Vol Flow Rate (Q)

Page 21: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 21/55

v.  Pump Efficiency (ETA) Vs. Volume Flow rate (Q)

Pump Efficiency was obtained by calculation:-

a).

%05.14

%100460

64.64

460,64.64

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

b).

%96.21

%100430

41.94

430,41.94

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

c).

%51.25

%100410

60.104

410,60.104

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

d).

%52.25

%100390

51.99

390,51.99

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

e).

%03.21

%100350

60.73

350,60.73

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

f).

%84.11

%100330

06.39

330,06.39

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

Page 22: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 22/55

 

Volume Flow rate,

Q

Pump Power

Output, Po 

Pump Power

Input, Pi Pump Efficiency, ETA

(m3/hr) (W) (W) %

4.09 64.64 460 14.05

3.41 94.41 430 21.96

2.73 104.60 410 25.51

2.04 99.51 390 25.52

1.36 73.60 350 21.03

0.68 39.06 330 11.84

Figure 5 : Pump Efficiency (ETA) vs Volume of Flow Rate (Q)

y = 0.5786x + 18.605

R² = 0.0163

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

   P  u  m  p   E   f   f   i  c   i  a  n  c  y ,   E   T   A

Volume of Flow rate, Q ( m3/hr)

Pump Efficiency (ETA) vs Vol Flow rate (Q)

Page 23: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 23/55

vi) Overall Efficiency (ETAgr) Vs. Volume Flow rate (Q)

Overall Efficiency was obtained by calculate using formula at below :-

a).

%20.12

%100530

64.64

530,64.64

%100

 gr 

 gr 

 Mio

 Mi

o

 gr 

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

 

b).

%88.18

%100500

41.94

500,41.94

%100

 gr 

 gr 

 Mio

 Mi

o

 gr 

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

 

c).

%80.21

%100480

60.104

480,60.104

%100

 gr 

 gr 

 Mio

 Mi

o

 gr 

 ETA

W  ETA

W  P W  P when P 

 P  ETA

 

d).

%63.21

%100460

51.99

460,51.99

%100

 gr 

 gr 

 Mio

 Mi

o

 gr 

 ETA

W  ETA

W  P W  P when P 

 P  ETA

 

e).

%52.17

%100420

60.73

420,60.73

%100

 gr 

 gr 

 Mio

 Mi

o

 gr 

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

 

f).

%77.9

%100400

06.39

400,06.39

%100

 gr 

 gr 

 Mio

 Mi

o

 gr 

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

 

Page 24: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 24/55

 

Volume Flow rate,

Q

(m3/hr)

Pump Power

Output, Po

(W)

Motor Input

Power, PMi

(W)

Overall Efficiency,

ETAgr

(%) 

4.09 64.64 530 12.203.41 94.41 500 18.88

2.73 104.60 480 21.80

2.04 99.51 460 21.63

1.36 73.60 420 17.52

0.68 39.06 400 09.77

Figure 6 : Overall Efficiency (ETAgr) vs Volume of Flow rate, Q

y = 0.6863x + 15.33

R² = 0.0311

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

   O  v  e  r  a   l   l   E   f   f   i  c   i  e

  n  c  y ,   E   T   A  g  r   (   %   )

Volume of Flow rate, Q ( m3/hr)

Overall Efficiency (ETAgr) vs Vol Flow rate (Q)

Page 25: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 25/55

Table 3 b: Rotational Speed and Flow rate for P3

Speed (RPM) Flow rate (%) Volume flow rate, Q

(m3/hr)

1400 29.2 0.497

1300 27.0 0.460

1200 24.9 0.424

1100 22.5 0.383

1000 20.2 0.344

900 17.9 0.305

800 15.6 0.266

700 13.3 0.227

600 11.1 0.189

500 08.8 0.150

400 06.6 0.112

Volume Flow, Q was calculated by using formula :

Q =

× 28.39 ÷ 103× 60 

When q = 29.2,

Q =.

× 28.39 ÷ 103× 60 

= 0.497 m3/hr

When q = 27.0,

Q =7.

× 28.39 ÷ 103× 60 

= 0.460 m3/hr  

When q = 24.9,

Q =4.

× 28.39 ÷ 103× 60 

= 0.424 m3/hr  

When q = 22.5,

Q =.5

× 28.39 ÷ 103× 60 

= 0.383 m3/hr  

Page 26: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 26/55

When q = 20.2,

Q =.

× 28.39 ÷ 103× 60 

= 0.344 m3/hr  

When q = 17.9,

Q =7.

× 28.39 ÷ 103× 60 

= 0.305 m3/hr  

When q = 15.6,

Q =5.

× 28.39 ÷ 103× 60 

= 0.266 m3/hr  

When q = 13.3,

Q =.

× 28.39 ÷ 103× 60 

= 0.227 m3/hr  

When q = 11.1,

Q =.

× 28.39 ÷ 103× 60 

= 0.189 m3/hr

When q = 8.8,

Q =.

× 28.39 ÷ 103× 60 

= 0.150 m3/hr

When q = 6.6,

Q =.

× 28.39 ÷ 103× 60 

= 0.112 m3/hr

Figure 2 :Graph of Rotational Speed (N) Vs Volume Flow Rate (Q) for pump 3

y = 2582x + 112.03

R² = 0.9999

0

200

400

600

800

1000

1200

1400

1600

0 0.1 0.2 0.3 0.4 0.5 0.6

   R  o   t  a   t   i  o  n  a   l   S  p  e  e   d   (   N   )

Volume Flow Rate (Q), m3/hr 

Rotational Speed (N) Vs Volume Flow Rate (Q)

Page 27: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 27/55

Data Collected for Experiment 4

Table 4 b: Pressure, Flow rate, Speed and Power for P3

Pressure

%

Flow rate

%

Speed

RPM

Power

kW

60 29.6 1400 0.56

55 30.0 1407 0.51

50 30.3 1413 0.49

45 30.7 1419 0.47

40 31.0 1426 0.44

35 31.3 1432 0.43

30 31.6 1438 0.40

25 32.0 1440 0.39

20 32.2 1447 0.37

10 33.9 1452 0.36

Motor

PowerInput,PMi

W

Volume

Flowrate, Q

m3/hr

Pump

TotalHead,H

m

Pump

PowerOutput,P0

W

Pump

PowerInput, Pi

W

Pump

Efficiency(ETA)

Overall

Efficiency(ETAgr)

Volumetric

Efficiency(ETAV)

560 0.50 137.43 170.40 510 33.41 30.43 94.35

510 0.51 126.00 159.35 460 34.64 31.25 95.76

490 0.52 114.57 147.73 440 33.58 30.15 97.22

470 0.52 103.15 133.01 420 31.67 28.30 96.81

440 0.53 91.72 120.54 390 30.91 27.40 98.18

430 0.53 80.30 105.54 380 27.77 24.54 97.77

400 0.54 68.87 92.22 350 26.35 23.06 99.20

390 0.55 57.45 78.35 340 23.04 20.09 100.90

370 0.55 46.02 62.76 320 19.61 16.96 100.41

360 0.57 32.75 32.75 310 10.56 9.10 103.70

Page 28: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 28/55

 

i.  Motor Input Power (PMi) vs Output Pressure for P3

PMi was calculated as below :

a).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

560

1

100056.0

56.0

1000)(

 

b).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

510

1

100051.0

51.0

1000)(

 

c).

W  P  kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

490 1

100049.0

49.0

1000)(

 

d).

W  P  kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

470 1

100047.0

47.0

1000)(

 

e).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

440

1

100044.0

44.0

1000)(

 

f).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

430

1

100043.0

43.0

1000)(

 

g).

W  P 

kW W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

400

1100040.0

40.0

1000)(

 

h).

W  P 

kW W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

390

1100039.0

39.0

1000)(

 

i).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

370

1

100037.0

37.0

1000)(

 

 j).

W  P 

kW 

W kW  P 

 power when

kW  Power  P 

 Mi

 Mi

 Mi

360

1

100036.0

36.0

1000)(

 

Page 29: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 29/55

 

Output Pressure

%

Motor Power Input,PMi

W

60 560

55 51050 490

45 470

40 440

35 430

30 400

25 390

20 370

10 360

Table 4.1 : Output Pressure (Pr) , Motor Power Input (PMi) for P3 

Figure 2 : Motor Input Power vs Output Pressure for P3

y = 3.9654x + 295.28

R² = 0.9519

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

   M  o   t  o  r   I  n  p  u   t   P  o  w  e  r ,   P   M   i   (   W   )

Output Pressure, Pr (%)

Motor Input Power vs Output Pressure

Page 30: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 30/55

Volume Flow (Q) vs Output Pressure (Pr) for P3

Volume Flow (Q) was calculated as below :

a).60100039.28

100

qQ

 

hr 

mQ

Q

3

50.0

60100039.28100

6.29

 

b).60100039.28

100

qQ

 

hr 

mQ

Q

3

51.0

60100039.28100

0.30

 

c).60100039.28

100

qQ

 

hr 

mQ

Q

3

52.0

60100039.28100

3.30

 

d).60100039.28

100

qQ

 

hr 

mQ

Q

3

52.0

60100039.28100

7.30

 

e).60100039.28

100

qQ

 

hr 

mQ

Q

3

53.0

60100039.28100

0.31

 

f).60100039.28

100

qQ

 

hr 

mQ

Q

3

53.0

60100039.28100

3.31

 

g).60100039.28

100

qQ

 

hr 

mQ

Q

3

54.0

60100039.28100

6.31

 

h).60100039.28

100

qQ

 

hr 

mQ

Q

3

55.0

60100039.28100

0.32

 

i).60100039.28

100

qQ

 

hr 

mQ

Q

3

55.0

60100039.28100

2.32

 

 j).60100039.28

100

qQ

 

hr 

mQ

Q

3

57.0

60100039.28100

9.33

 

Page 31: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 31/55

Page 32: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 32/55

ii.  Pump Power Output (P0) vs Output Pressure (Pr) for P3

Pump Total Head is calculated by using formula as below :-

2

3

1

2

4

12

81.9

910

,%Pr 

064.064)(tan

38.0380)(tan

,

102.1020

100

Pr 

 s

mGravity g 

m

kg oil  Density

essureal  Differenti DP 

mmmoil  Datum Fromce Dis Inlet  Z 

mmmoil  Datum Fromce DisOutlet  Z 

m Head Total  Pump H 

where

 g  Z  Z  H 

oil 

G

G

oil 

GG

 

  

   

 

  

 

  

  

 

a). Output Pressure, % = 60 b). Output Pressure, % = 55

m H 

 s

m

m

kg mm H 

when

43.137

81.9910

102.1020

100

60

)064.038.0(

60Pr 

23

4

 

 

 

 

 

 

 

 

 m H 

 s

m

m

kg mm H 

when

00.126

81.9910

102.1020

100

55

)064.038.0(

55Pr 

23

4

 

 

 

 

 

 

 

 

 

c). Output Pressure, % = 50 d). Output Pressure, % = 45

m H 

 s

m

m

kg mm H 

when

57.114

81.9910

102.1020

100

50)064.038.0(

50Pr 

23

4

 

 

 

 

 

  

 

 m H 

 s

m

m

kg mm H 

when

15.103

81.9910

102.1020

100

45)064.038.0(

45Pr 

23

4

 

 

 

 

 

  

 

 

e). Output Pressure, % = 40 f). Output Pressure, % = 35

Page 33: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 33/55

m H  s

m

m

kg mm H 

when

72.91

81.9910

102.1020

100

40)064.038.0(

40Pr 

23

4

 

 

 

 

 

  

 

 m H 

 s

m

m

kg mm H 

when

30.80

81.9910

102.1020

100

35)064.038.0(

35Pr 

23

4

 

 

 

 

 

  

 

 

g). Output Pressure, % = 30 h). Output Pressure, % = 25

m H 

 s

m

m

kg mm H 

when

87.68

81.9910

102.1020

100

30)064.038.0(

30Pr 

23

4

 

 

 

 

 

  

 

 m H 

 s

m

m

kg mm H 

when

45.57

81.9910

102.1020

100

25)064.038.0(

25Pr 

23

4

 

 

 

 

 

  

 

 

i). Output Pressure, % = 20 j). Output Pressure, % = 10

m H 

 s

m

m

kg mm H 

when

02.46

81.9910

102.1020

100

20)064.038.0(

20Pr 

23

4

 

 

 

 

 

  

 

 m H 

 s

m

m

kg mm H 

when

17.23

81.9910

102.1020

100

10)064.038.0(

10Pr 

23

4

 

 

 

 

 

  

 

 

Pump Power Output was obtained by calculate using formula as below :-

hr 

mrate FlowVolumeQ

m Head Total  Pump H 

 s

m

Gravity g 

m

kg oil  Density

W Output  Power  Pump P 

where

 s

hr  gHQ P 

oil 

o

oil o

3

2

3

,

,

81.9

910

,

3600

1

  

  

 

Page 34: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 34/55

1.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

40.170.

40.170.

40.170

3600

150.043.13781.9910

3

2

3

23

 

  

 

 

2.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

35.159.

35.159.

35.159

3600

151.000.12681.9910

3

2

3

23

 

  

 

 

3.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

73.147.

73.147.

73.147

3600

152.057.11481.9910

3

2

3

23

 

  

 

 

4.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

01.133.

01.133.

01.133

3600

152.015.10381.9910

3

2

3

23

 

  

 

 

5.

 s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

54.120.

54.120.

54.120

3600

153.072.9181.9910

3

2

3

23

 

  

 

 6.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

54.105.

54.105.

54.105

3600

153.030.8081.9910

3

2

3

23

 

  

 

 

7.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

22.92.

22.92.

22.92

3600

154.087.6881.9910

3

2

3

23

 

 

 

 

 

Page 35: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 35/55

8.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

35.78.

35.78.

35.78

3600

155.045.5781.9910

3

2

3

23

 

  

 

 

9.

W  s

m N 

 s

mkg  P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

76.62.

76.62.

76.62

3600

155.002.4681.9910

3

2

3

23

 

  

 

 10.

W  s

m N 

 s

mkg 

 P 

 s

hr 

hr 

mm

 s

m

m

kg  P 

o

o

75.32.

75.32.

75.32

3600

157.07.2381.9910

3

2

3

23

 

  

 

 

Figure 3 :Pump Power Output (P0) vs Output Pressure (Pr) for P3

y = 1.2258x + 58.205R² = 0.4116

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

   P  u  m  p   P  o  w  e  r   O  u   t  p  u   t   (   P  o   )

Output Pressure (Pr)

Pump Power Output Vs Output Pressure

Page 36: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 36/55

 

iii.  Pump Power Input (Pi) vs Output Pressure (Pr) for P3

Pi was calculated was below :

Pi = PMi  - P3min

= PMi  - 50W

= 560 - 50

= 510 W

Pi = PMi  - P3min

= PMi  - 50W

= 510 - 50

= 460 W 

Pi = PMi  - P3min

= PMi  - 50W

= 490 - 50

= 440 W 

Pi = PMi  - P3min

= PMi  - 50W

= 470 - 50

= 420 W 

Pi = PMi  - P3min

= PMi  - 50W

= 440 - 50

= 390 W 

Pi = PMi  - P3min

= PMi  - 50W

= 430 - 50

= 380 W 

Pi = PMi  - P3min

= PMi  - 50W

= 400 - 50

= 350 W 

Pi = PMi  - P3min

= PMi  - 50W

= 390 - 50

= 340 W 

Pi = PMi  - P3min

= PMi  - 50W

= 370 - 50

= 320 W 

Pi = PMi  - P3min

= PMi  - 50W

= 3600 - 50

= 310 W 

Page 37: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 37/55

 

Figure 4 :Pump Power Input (Pi) vs Output Pressure (Pr) for P3 

iv.  Pump Efficiency (ETA) vs Output Pressure (Pr) for P3

ETA was calculated was below :

1.

%41.33

%100510

40.70

510,40.170

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

2.

%64.34

%100460

35.159

460,35.159

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

y = 3.9654x + 245.28

R² = 0.9519

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

   P  u  m  p   P  o  w  e  r   I  n  p  u   t   (   P

   i   )

Output Pressure (Pr)

Pump Power Input Vs Output Pressure

Page 38: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 38/55

3.

%58.33

%100

440

73.147

440,73.147

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

4.

%67.31

%100

420

01.133

420,01.133

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

5.

%91.30

%100390

54.120

390,54.120

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

6.

%77.27

%100380

54.105

380,54.105

%100

 ETA

W  ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

7.

%35.26

%100350

22.92

350,22.92

%100

 ETA

W  ETA

W  P W  P when

 P 

 P 

 ETA

io

i

o

 

8.

%04.23

%100340

35.78

340,35.78

%100

 ETA

W  ETA

W  P W  P when

 P 

 P 

 ETA

io

i

o

 

9.

%61.19

%100320

76.62

320,76.62

%100

 ETA

 ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

10.

%56.10

%100310

75.32

310,75.32

%100

 ETA

 ETA

W  P W  P when

 P 

 P  ETA

io

i

o

 

Page 39: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 39/55

 

Figure 5 : Pump Efficiency (ETA) vs Output Pressure (Pr) for P3

v.  Overall Efficiency (ETAgr) vs Output Pressure (Pr) for P3

ETAgr was calculated as below :

1.

%45.30

%100560

40.170

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

2.

%25.31

%100510

35.159

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

y = 0.3612x + 14.55

R² = 0.9092

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70

   P  u  m  p   E   f   f   i  c   i  e  n  c  y   (   E   T   A   )

Output Pressure (Pr)

Pump Efficiency Vs Output Pressure

Page 40: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 40/55

3.

%15.30

%100490

73.147

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

4.

%3.28

%100470

01.133

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

5.

%40.27

%100440

54.120

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

6.

%54.24

%100430

54.105

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

7.

%06.23

%100400

22.92

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

8.

%09.20

%100390

35.78

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

9.

%96.16

%100370

76.62

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

10.

%10.9

%100360

75.32

%100

 gr 

 gr 

 Mi

o

 gr 

 ETA

W  ETA

 P 

 P  ETA

 

Page 41: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 41/55

 

Figure 6 : Overall Efficiency (ETAgr) vs Output Pressure (Pr) for P3

vi.  Volumetric Efficiency (ETAv) vs Output Pressure (Pr)for P3

Volumetric Efficiency (ETAV) was calculated as below :

1.ETAv =

100 

=.5

.  

4

x100

= 94.35

2.ETAv =

100 

=.5

.  

47

x100

= 95.76

3.ETAv =

100 

=.5

.  

4

x100

= 97.22

4.ETAv =

100 

=.5

.  

4

x100

= 96.81

5.ETAv =

100 

=.5

.  

4

3x100

= 98.18

6.ETAv =

100 

=.5

.  

4

x100

= 97.77

y = 0.351x + 11.758

R² = 0.93

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

   O  v  e  r  a   l   l   E   f   f   i  c   i  e  n  c  y   (   E   T   A  g  r   )

Output Pressure (Pr)

Overall Efficiency Vs Output Pressure

Page 42: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 42/55

7.ETAv =

100 

=.54

.  

4

x100

= 99.20

8.ETAv =

100 

=.55

.  

44

x100

= 100.90

9. ETAv =

100 

=.55

.  

447

x100

= 100.41

10. ETAv =

100 

=.57

.  

45

x100

= 103.70

Figure 7 : Volumetric Efficiency (ETAv) vs Output Pressure (Pr)for P3

y = -0.1486x + 103.79

R² = 0.9229

94

95

96

97

98

99

100

101

102

0 10 20 30 40 50 60 70

   V  o   l  u  m  e   t  r   i  c   E   f   f   i  c   i  e  n  c  y   (   E   T   A  v   )

Output Pressure (Pr)

Volumetric Efficiency Vs Output Pressure

Page 43: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 43/55

DISCUSSION

The main objective of this experiment is to determine the operating characteristic of different

 pumps in a contained unit. Besides that, it also helps to understand the types of pumps in

 principle and design, and the selection of the appropriate pump for a particular application for

optimal operation. In experiment 1, the reading that was recorded in the table shows that when

the speed is decrease the reading of flowrate also decreases. Then, the graph of Rotational Speed

(N) vs. Volume Flow rate (Q) is plotted, a straight line graph is produced. At speed = 2800 rpm,

the volume flowrate is 59.3% and when at the lowest speed = 600 rpm, the flowrate is lower

where its 12.8 %. Based on the theory, it can be said that when the rotational speed is increased,

the volume flow is also increased. The objective is achieved.

In experiment 3, the readings for flow rate when there is a decrease in the speed is recorded. The

formula of volumetric flow rate,

Q = x

is used to determine the volume flow (Q). From the table, it is known that once the values of

speed decreases, the values of flow rate and volume flow rate are also decreasing. A graph of

Rotational speed (N) vs. Volume Flow Rate (Q) is plotted and it shows a straight line graph

y = 667.63x - 0.2371

R² = 0.997

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5   R  o   t  a   t   i  n  a   l   S  p  e  e   d ,   N   (   R   P   M   )

Volume Flow Rate, Q ( m3/hr)

Rotational Speed (N) vs Volume Flow

rate (Q)

 

 

 

 

100

q

 

 

 

 

1000

6056.113   x

Page 44: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 44/55

which means that the speed is directly proportionally to the volume flow rate as said by the

theory.

In experiment 2, the readings for flow rate, differential pressure, power and speed are recorded

from the speed and output flow rate are maximum. When the output flow rate is decreased, the

table shows that the values differential pressure and speed increase when the power is decreased.

A range of graph is plotted. The graph for Motor Input Power (PMI) vs. Volume Flow rate (Q))

shows an increasing curve.

y = 0.6863x + 15.33

R² = 0.0311

0

5

10

15

20

25

0 1 2 3 4 5

   O  v  e  r  a   l   l   E   f   f   i  c   i  e  n  c  y ,   E   T   A  g  r   (   %   )

Volume of Flow rate, Q ( m3/hr)

Overall Efficiency (ETAgr) vs Vol Flow

rate (Q)

y = 2582x + 112.03

R² = 0.9999

0

500

1000

1500

0 0.1 0.2 0.3 0.4 0.5 0.6   R  o   t  a   t   i

  o  n  a   l   S  p  e  e   d   (   N   )

Volume Flow Rate (Q), m3/hr 

Rotational Speed (N) Vs Volume

Flow Rate (Q)

Page 45: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 45/55

 

The graphs for Pump Power Output (Po) vs. Volume Flow Rate and Pump Power Input (Pi) vs.

Volume Flow Rate (Q) also shows increasing curve, which shows a directly proportional graph

to volumetric flow rate. The Pump Efficiency (ETA) vs. Volume Flow Rate (Q) and Pump Total

Head (H) vs. Volume Flow Rate (Q) graph shows a constant decrease. 

y = 38.089x + 374.16

R² = 0.9898

0

100

200

300

400

500

600

0 1 2 3 4 5

   M  o   t  o  r   I  n  p  u   t   P  o  w  e  r ,   P   M

   i   (   W   )

Volume Flow Rate , Q (m3/hr)

Motor Input Power (PMi) vs Vol Flow Rate

(Q)

y = -4.5772x + 25.727

R² = 0.9611

0

5

10

15

20

25

0 1 2 3 4 5

   P  u  m  p   T  o   t  a   l   H  e  a   d ,

   H

   (  m   )

Volume Flow Rate, Q (m3/hr)

Pump Total Head (H) vs Vol Flow Rate (Q)

Page 46: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 46/55

 

y = 8.1807x + 59.792

R² = 0.1736

0

20

40

60

80

100

120

0 1 2 3 4 5   P  u  m  p   P  o  w  e  r   O  u   t  p  u   t ,   P

   0   (   W   )

Volume Flow Rate, Q (m3/hr)

Pump Power Output (P0) vs Vol Flow rate

(Q)

y = 38.089x + 304.16

R² = 0.9898

050

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5

   P  u

  m  p   P  o  w  e  r   I  n  p  u   t ,   P   i   (   W   )

Volume Flow rate, Q (m3/hr)

Pump Power Input (Pi) vs Vol Flow Rate (Q)

Page 47: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 47/55

 

The last section of this experiment is experiment 4. In this experiment, the readings for

flow rate, differential pressure, power and speed are recorded from the speed and output flow

rate are maximum. When the pump head (pressure) is decreased, the table shows that the values

of volume flow rate increased and the power is decreased. Pump Efficiency, ETA and Overall

Efficiency (ETAgr) decreases when pressure is decreased. Volumetric Efficiency, % ETAVAdecreases when pressure is decreased. A range of graph is plotted. The graphs for Motor Input

Power (PMi) Vs Output Pressure (Pr) and Pump Power Input (Pi) Vs Output Pressure (Pr) show

increasing curves. While,

Pump Power Output (Po) Vs Output Pressure (Pr) gives a straight line graph. The

Volume Flow (Q) Vs Output Pressure (Pr)decreases, Pump Efficiency (ETA) Vs Output Pressure

(Pr)and Overall Efficiency (ETAgr) Vs Output Pressure (Pr) shows an increaese. The graph of

y = 0.5786x + 18.605

R² = 0.0163

0

5

10

15

20

25

30

0 1 2 3 4 5

   P  u  m  p   E   f   f   i  c   i  a  n

  c  y ,   E   T   A

Volume of Flow rate, Q ( m3/hr)

Pump Efficiency (ETA) vs Vol Flow rate (Q)

y = 0.6863x + 15.33

R² = 0.0311

0

5

10

15

20

25

0 1 2 3 4 5   O  v  e  r  a   l   l   E   f   f   i  c   i  e  n  c  y ,   E   T   A  g  r   (   %   )

Volume of Flow rate, Q ( m3/hr)

Overall Efficiency (ETAgr) vs Vol Flow rate

(Q)

Page 48: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 48/55

Volumetric Efficiency (ETAv) Vs Output Pressure (Pr) gives a constant straight line graph at

y≈100. 

y = 1.1167x + 541.94

R² = 0.9902

540

560

580

600

620

640

660

0 20 40 60 80 100   M  o   t  o  r   I  n  p  u   t   P  o  w  e  r   (   P   M   i   )

Output Pressure (Pr)

Motor Input Power Vs Output

Pressure

y = -0.0002x + 1.3121

R² = 0.8062

1.29

1.295

1.3

1.305

1.31

1.315

1.32

0 20 40 60 80 100

   V  o   l  u  m  e

   F   l  o  w   R  a   t  e   (   Q   )

Output Pressure (Pr)

Volume Flow Rate Vs Output Pressure

Page 49: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 49/55

 

y = 1.0973x + 2.6965

R² = 1

0

20

40

60

80

100

120

0 20 40 60 80 100

   P  u  m  p   P  o  w  e  r   O  u   t  p  u   t   (   P  o   )

Output Pressure (Pr)

Pump Power Output Vs Output Pressure

y = 1.1167x + 471.94

R² = 0.9902

460

480

500

520

540

560

580

0 20 40 60 80 100

   P  u  m  p   P  o  w  e  r   I  n  p  u   t   (   P   i   )

Output Pressure (Pr)

Pump Power Input Vs Output Pressure

Page 50: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 50/55

 

y = 0.1864x + 1.3208

R² = 0.9983

0

5

10

15

20

0 20 40 60 80 100

   P  u  m  p   E   f   f   i  c   i  e  n  c  y   (   E   T   A   )

Output Pressure (Pr)

Pump Efficiency Vs Output Pressure

y = 0.1668x + 1.0831

R² = 0.9987

0

5

10

15

20

0 20 40 60 80 100

   O  v  e  r  a   l   l   E   f   f   i  c   i  e  n  c  y   (   E   T   A  g  r   )

Output Pressure (Pr)

Overall Efficiency Vs Output Pressure

y = -0.0044x + 109.89

R² = 0.2115

109.2

109.4

109.6

109.8

110

110.2

110.4

0 20 40 60 80 100   V  o   l  u  m  e   t  r   i  c   E   f   f   i  c   i  e  n  c  y   (   E   T   A  v   )

Output Pressure (Pr)

Volumetric Efficiency Vs Output Pressure

Page 51: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 51/55

 

The characteristic curves for the experiment 2 and 4 were plotted in one graph.

For pump 1 :

Volume Flow,

Q (m3/hr)

Motor Input

Power, PMi,

(W)

Pump Total

Head, H

(m)

PumpPower

Output, Po(W)

Pump

Power

Input, Pi 

Pump

Efficiency,

ETA

Overall

Efficiency,

ETAgr

(%) 

4.09 530 5.80 64.64 460 14.05 12.20

3.41 500 10.16 94.41 430 21.96 18.88

2.73 480 14.06 104.60 410 25.51 21.80

2.04 460 17.90 99.51 390 25.52 21.63

1.36 420 19.86 73.60 350 21.03 17.52

0.68 400 21.08 39.06 330 11.84 09.77

y = 3.9654x + 295.28

R² = 0.9519

0

100

200

300

400

500

600

0 20 40 60 80

   M  o   t  o  r   I  n  p  u   t   P  o  w  e  r ,   P   M   i   (   W   )

Output Pressure, Pr (%)

Motor Input Power vs Output Pressure

Page 52: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 52/55

 

From the graph plotted for pump 1, the pressure head (H) increases when the volume flow rate

(Q) increases. In addition, the motor input power (Pmi), pump output (Po), pump input (Pi),

 pump efficiency (ETA), and overall pump efficiency (ETAgr ) decreases as the Q increases.

For pump 3: 

Motor

Power

Input,PMi

W

Volume

Flow rate,

Q

m3/hr

Pump

Total

Head,H

m

Pump

Power

Output,P0

W

Pump

Power

Input, Pi

W

Pump

Efficiency

(ETA)

Overall

Efficiency

(ETAgr)

Volumetric

Efficiency

(ETAV)

560 0.50 137.43 170.40 510 33.41 30.43 94.35

510 0.51 126.00 159.35 460 34.64 31.25 95.76

490 0.52 114.57 147.73 440 33.58 30.15 97.22

470 0.52 103.15 133.01 420 31.67 28.30 96.81

440 0.53 91.72 120.54 390 30.91 27.40 98.18

430 0.53 80.30 105.54 380 27.77 24.54 97.77

400 0.54 68.87 92.22 350 26.35 23.06 99.20390 0.55 57.45 78.35 340 23.04 20.09 100.90

370 0.55 46.02 62.76 320 19.61 16.96 100.41

360 0.57 32.75 32.75 310 10.56 9.10 103.70

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

       C       h     a     r     a     c      t     e     r       i     s      t       i     c     s

Volume Flow rate, Q 

Characteristics VS Volume Flow rate for P1

Pmi

H

P0

Pi

ETA

ETAgr

Page 53: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 53/55

 

From the graph plotted for pump 3, the volume efficiency (ETAv) and volume flowrate (Q)

increases when the output pressure (Pr) increases. In addition, the motor input power (Pmi),

 pump output (Po), pump input (Pi), pump efficiency (ETA), and overall pump efficiency (ETAgr )

decreases as the output pressure (Pr) increases.

CONCLUSION AND RECOMMENDATION

The main objective of this experiment is to determine the operating characteristic of

different pumps in a contained unit. Besides that, it also helps to understand the types of pumps

in principle and design, and the selection of the appropriate pump for a particular application for

optimal operation. This experiment allows the students to measure the operating characteristic of

different pump in a contained unit. The principles of the pump are different from each other.

Pump is a device use to move fluid such as liquid, gases by physical or mechanical action. The

results show different types of curve and line graphs according to different pumps. The function,

 principle and design of each pump vary according to its type. Different pumps hold different

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

       C       h     a     r     a     c      t     e     r       i     s      t       i     c     s

Output Pressure

Characteristics VS Output Pressure for P3

Pmi

P0

Pi

ETA

ETAgr

ETAv

Page 54: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 54/55

operating characteristics. From this experiment, it is proven that centrifugal pump, plunger pump

and gear pump has different working principle due to the type of fluid in which the pump is used

to move the fluid. The design of three pumps has a big difference as centrifugal pump and

 plunger pump need two motor to run the pump. While the gear pump only needs a motor.

To ensure the experiment successfully, before conducting this experiment, it is necessary

to do some check up towards the equipment to avoid any misuse and malfunction. Each valve

should be properly open/closed according to the type of pump. Next, the pump should not be

operating when there is no liquid in the pipeline to avoid serious damage to the equipment.

Besides that, adjust the potentiometer to its minimum setting before switch off the pump. Lastly,

make sure that HV2 is not completely closed when P2 is running.

REFERENCES

1)  Kirby, B.J. (2010).  Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic

 Devices.. Cambridge University Press . 

2)  Emulsions, Foams, and Suspensions:  Fundamentals and Applications, Laurier L.

Schramm, Publisher : Wiley VCH, 26 July 2005

3)  Cameron Tropea, Alexander L. Yarin, John F. Foss, Springer handbook of experimental

 fluid mechanics Publisher: Springer, 9 October 2007

4)  Falkovich, Gregory (2011),  Fluid Mechanics (A short course for physicists), Cambridge

University Press

Page 55: Experiment Multi Pump Test Rig

8/18/2019 Experiment Multi Pump Test Rig

http://slidepdf.com/reader/full/experiment-multi-pump-test-rig 55/55

5)  Batchelor, George K. (1967), An Introduction to Fluid Dynamics, Cambridge University

Press

6)  White, Frank M. (2003), Fluid Mechanics, McGraw – Hill