EVALUATION OF THE INFLUENCE OF ICING ON WINGS ON … · 3 The aircraft icing definition: The...

14
EVALUATION OF THE INFLUENCE OF ICING ON WINGS ON AIRCRAFT FLIGHT PARAMETERS Poznan University of Technology Institute of Combustion Engines and Transport Faculty of Transport Engineering Damian Olejniczak, Marcin Nowacki E-mail address: [email protected]

Transcript of EVALUATION OF THE INFLUENCE OF ICING ON WINGS ON … · 3 The aircraft icing definition: The...

EVALUATION OF THE INFLUENCE OF ICING ON

WINGS ON AIRCRAFT FLIGHT PARAMETERS

Poznan University of Technology

Institute of Combustion Engines and Transport

Faculty of Transport Engineering

Damian Olejniczak, Marcin Nowacki

E-mail address: [email protected]

2 Presentation plan:

Introduction

the aircraft icing definition

conditions conductive to icing of the aircraft structure

the shape and structure of icing on the surface of the aircraft wing

the effect of icing on the aircraft's flight characteristics

Methodology

wing models

CFD simulation conditions

Results

values of drag and lift force

Values of drag and lift force coefficient

Conclusions

3 The aircraft icing definition:The phenomenon of aircraft icing is defined as the process of changing

the concentration of water contained in the air in the form of steam into

a solid form accumulating on the elements of the aircraft structure

Two types of aircraft icing:

engine icing aircraft structure icing

The most common cause of air

accidents in the category of

accidents caused by bad weather

conditions

4 Conditions conductive to aircraft icing

Two types of aircraft icing:

engine icing aircraft structure icing

air temperature air temperature

< 10°C < 0°Chigh air humidity

presence of water in the atmosphere in all forms,

clouds, precipitation, overflowing water

5 The shape and structure of icing on the surface

of the aircraft wing

Solid

Profile

Mixed

+

6 The effect of icing on the aircraft's flight

characteristics

Mass of aircraft G increase

Drag force PX increase

Lift force coefficient CL reduction

Mass flow rate in engine inlet reduction

Engine power, engine thrust FC reduction

7 Methodology: wing models

airfoil: NACA2410

chord: c=2.1 m

length: l=5 m

ice layer thickness: i=1 cm

ice density: ρi = 916 kg/m3

volume of ice coating: V1= 0.057041 m3

volume of ice coating: V2= 0.061021 m3

mass of ice: m1=52.29 kg

mass of ice: m2=55.94 kg

solid icing wing model

clean wing model

profile icing wing modelii Vm

8 Methodology: simulation conditions

Clean wing for:α=5o, α=7o, α=9o Profile icing wing for: α=5o, α=7o, α=9o Solid icing wing for: α=5o, α=7o, α=9o

model mesh density: automaticaly 0.5

altitude flight: H=5000 m

standard atmosphere: ambient temperature: 256 K (-17°C), ambient pressure: Pa=53994 Pa

flight speed: v=150 m/s

three variants of the angle of attack: α=5°, α=7° and α=9°

k-epsilon external turbulent flow model

the forces acting in individual axes: x – drag force PX, y – lift force PL, z – perpendicular force PZ

9 ResultsNACA 2410 clean:

v=150 [m/s], ρa=0.7361 [kg/m3]

α=5o α=7o α=9o

S − Wing surface [m2] 16.47 16.47 16.47

PX – Resistance force [N] 4630.27 4349.82 3688.56

PL – Lift force [N] 24826.4 31560.8 37887

PZ – Perpendicular force [N] 248.12 245.47 209.2

CX – Resistance force coefficient 0.03395 0.03189 0.02704

CL – Lift force coefficient 0.18202 0.2314 0.27778

NACA 2410 profile icing:

v=150 [m/s], ρa=0.7361 [kg/m3]

α=5o α=7o α=9o

S − Wing surface [m2] 21.96 21.96 21.96

PX – Resistance force [N] 6089.19 5530.48 4983.69

PL – Lift force [N] 23835.7 31084.2 37976.9

PZ – Perpendicular force [N] 4207.29 4149.18 4100.37

CX – Resistance force coefficient 0.04464 0.04055 0.03654

CL – Lift force coefficient 0.17476 0.2279 0.27844

NACA 2410 solid icing:

v=150 [m/s], ρa=0.7361 [kg/m3]

α=5o α=7o α=9o

S − Wing surface [m2] 22.26 22.26 22.26

PX – Resistance force [N] 8911.86 8282.44 7860.52

PL – Lift force [N] 20872.3 27710.9 34033

PZ – Perpendicular force [N] 4139.18 4078.76 4043.4

CX – Resistance force coefficient 0.06534 0.06072 0.05763

CL – Lift force coefficient 0.15303 0.20317 0.24952

2

2vSCP LL

2

2vSCP XXX

2

2vS

PC L

L

2

2vS

PC

X

XX

where:

PL – lift force [N]

CL – lift force coefficient [N]

PX – drag force [N]

CX – drag force coefficient [N]

ρ – air density [kg/m3]

S – wing surface [m2]

SX – surface of the projection of the body on a

plane perpendicular to the vector of the speed

of the body relative to the fluid [m2]

v – flight speed [m/s]

10 Values of drag and lift force

4630.274349.82

3688.56

6089.19

5530.48

4983.69

8911.86

8282.44

7860.52

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 7 9

PX[N]

α [°]

24826.4

31560.8

37887

23835.7

31084.2

37976.9

20872.3

27710.9

34033

15000

18000

21000

24000

27000

30000

33000

36000

39000

42000

5 7 9

PL[N]

α [°]

clean

profile

solid

clean

profile

solid

11

0.033950.03189

0.02704

0.04464

0.04055

0.03654

0.06534

0.06072

0.05763

5 7 9

CX

α [°]

0.18202

0.23140

0.27778

0.17476

0.22790

0.27844

0.15303

0.20317

0.24952

5 7 9

CL

α [°]

Values of drag and lift force coefficientclean

profile

solid

12 Relative percentage increases in the value

of the drag and lift force in relation to the

drag and lift force value of the clean wing

31,51%27,14%

35,11%

92,47% 90,41%

113,11%

0%

20%

40%

60%

80%

100%

120%

5 7 9

PX[%]

α [°]

-4.16%

-1.53%

0%

-18.94%

-13.89%

-11.32%

-20%

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

5 7 9

PL[%]

α [°]

profile

solid

profile

solid

13

Profile ice structure produces slightly lower values of lift force max -5 %

Profile icing leads to a significant increase in the value of drag force max 35 %

Solid icing significantly affects both the lift (max -19 %) and drag force (max113 %)

Already a centimeter of ice with a solid icing structure is the reason for the increase of the wing's drag force twice,

When increasing the value of the angle of attack for a profile ice wing, changes in the value of the generated lift force in relation

to the clean wing decreasing

Aircraft icing leading to increase the weight of the aircraft, increase the demand for the thrust force, which is tantamount to

increasing the fuel consumption of the aircraft engine

The icing phenomenon of the aircraft is a negative synergistic effect (the deterioration of the properties aerodynamic,

propulsion and pilot characteristics of the aircraft)

The results obtained during the simulation tests prove that 1 cm thick ice sheets effectively prevent further flight of the aircraft

and may cause an aircraft accident

Conclusions

14

Antonini, C., Innocenti, M., Horn, T., Marengo, M., Amirfazli, A., 2011. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold regions science and technology. Volume: 67. Issue: 1-2. Pages: 58-67. DOI: 10.1016/j.coldregions.2011.02.006.

Bragg, MB., Gregorek, GM., Lee, JD., 1986. Airfoil aerodynamics in icing conditions. Journal of aircraft. Volume: 23. Issue: 1. Pages: 76-81. DOI: 10.2514/3.45269.

Cebeci, T., Kafyeke, F., 2003. Aircraft icing. Annual review of fluid mechanics. Volume: 35. Pages: 11-21. DOI: 10.1146/annurev.fluid.35.101101.161217.

Chachurski R., Waślicki P., 2011. Instalacje przeciwoblodzeniowe i odladzające statków powietrznych. Prace Instytutu Lotnictwa 213. Warszawa.

Chachurski R., Waślicki P., 2011. Wykrywanie i sygnalizacja oblodzenia statków powietrznych. Prace Instytutu Lotnictwa 213. Warszawa.

Chen, J., Liu, J., He, M., Li, KY., Cui, DP., Zhang, QL., Zeng, XP., Zhang, YF., Wang, JJ., Song, YL., 2012. Superhydrophobic surfaces cannot reduce ice adhesion. Applied physics letters. Volume: 101. Issue: 11. Article Number: 111603. DOI: 10.1063/1.4752436.

Fortin, G., Laforte, JL., Ilinca, A., 2006. Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. International journal of thermal sciences. Volume: 45. Issue: 6. Pages: 595-606. DOI: 10.1016/j.ijthermalsci.2005.07.006.

Gębura A., Janusiak K., Paradowski M., 2014. Oblodzenie statku powietrznego – przyczyny, skutki, przeciwdziałanie. Journal of KONBiN 4(32)2014. ISSN 1895-8281. DOI 10.2478.

http://airfoiltools.com/airfoil. access 20.06.2018.

Lewitowicz J., Żyluk A., 2006. Podstawy eksploatacji statków powietrznych. TOM 5. Wydawnictwo Instytutu Technicznego Wojsk Lotniczych. Warszawa.

Liu, Y., Ma, LQ., Wang, W., Kota, AK., 2018. An experimental study on soft PDMS materials for aircraft icing mitigation. Applied surface science. Volume: 447. Pages: 599-609. DOI: 10.1016/j.apsusc.2018.04.032.

Milkiewicz A., Stepaniuk R., 2009. Praktyczna aerodynamika i mechanika lotu samolotu odrzutowego, w tym wysokomanewrowego. Wydawnictwo InstytutuTechnicznego Wojsk Lotniczych. Warszawa.

Pfitzenmaier, L., Unal, CMH., Dufournet, Y., Russchenberg, HWJ., 2018. Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data. Atmospheric chemistry and physics. Volume: 18. Issue: 11. Pages: 7843-7862. DOI: 10.5194/acp-18-7843-2018.

Szewczak, P., 2007. Meteorologia dla pilota samolotowego (PPL, CPL, ATPL, IR). Seria szkoleniowa ,,AVIA-TEST’’. Poznań.

Szutowski L., 2007. Poradnik pilota samolotowego. Seria szkoleniowa ,,AVIA-TEST’’. Poznań.

Wróbel M., 2008. Zjawisko i rodzaje oblodzenia profili łopat oraz struktury śmigłowca. Prace Instytutu Lotnictwa, Nr 3-4, Pages: 340-346, PZL Świdnik S. A.

Bibliography

Thank you for your attention