Evaluation of Fire Performance of RC Slabs with Half-D...

8

Transcript of Evaluation of Fire Performance of RC Slabs with Half-D...

  • 30 4A 2010 7 391

    30 4A2010 7

    pp. 391 ~ 398

    RC

    Evaluation of Fire Performance of RC Slabs with Half-Depth Precast Panels

    **********

    Chung, Chul-HunIm, Cho-RongKim, Hyun-JunJoo, Sang-Hoon

    Abstract

    The fire performance of RC slabs with half-depth precast panel after exposure to the ISO-834 fire standard without loading

    has been experimentally investigated. During heating, according to the ISO 834 fire curve, concrete spalling was observed for

    concrete without PP(polypropylene) fibers. No spalling occurred when heating concrete containing PP fibers. The maximum

    temperature of RC slabs with PP fibers with half-depth precast panel was lower than that of concrete without PP fibers. The

    ultimate load after cooling of the RC slabs that were not loaded during the furnace tests was evaluated by means of 3 points

    bending tests. The ultimate load of the RC slabs without PP fibers showed a considerable reduction (around 32.5%) of the ulti-

    mate load after cooling if compared with of RC slabs with PP fibers. The ultimate load of the RC slabs with half-depth precast

    panel with PP fibers is higher than that of a full-depth RC slabs with PP fibers. Also, the addition of PP fibers and the use of

    half-depth precast panel improve fire resistance.

    Keywords : fire performance, PP(polypropylene) fiber, explosive spalling, fire curve, half-depth precast panel, ultimate load

    RC ISO-834

    . PP , PP

    . PP RC PP

    . RC

    3 . , PP RC PP 32.5%

    . , PP RC

    PP RC . PP

    .

    : , (PP) , , , ,

    1.

    ,

    .

    ,

    ,

    .

    .

    (Ali, 1992; , 2009).

    , (polypropylene)(Nishida ,

    1995; Atkinson, 2004) (Purkiss, 1984; Lie ,

    1996; Suhaendi , 2006)

    . (2007)

    , .

    * (E-mail : [email protected])

    ** (E-mail : [email protected])

    *** (E-mail : [email protected])

    ****() (E-mail : [email protected])

  • 392

    Poon (2004) (2009)

    ,

    .

    ,

    - .

    ISO 834 (ISO, 1975; Yang ,

    2008) ,

    .

    (KS F 2257, 2005)

    ISO 834 .

    ()

    ,

    ,

    .

    ISO 834

    .

    ,

    RC

    . ,

    PP

    , PP

    . RC

    RC

    .

    PP

    . PP

    , PP

    .

    1.

    2.

  • 30 4A 2010 7 393

    RC

    ,

    .

    .

    2.

    2.1

    ,

    .

    1

    2

    .

    . 2 (b)

    20, 50(), 100

    ( : 90 mm), 150(), 180 mm

    5 (K-type) .

    2 (a) 2 .

    1 ,

    PP .

    2 .

    1 RC

    3 (200 mm)

    ,

    4

    ( 1/2) (90 mm)

    .

    2.2

    PP 2

    , 35 MPa 3

    . 28 PP

    30 MPa .

    .

    .

    30 MPa

    1.

    PP

    RC

    0.0 vol.% 2

    : 3 : 3

    0.10 vol.% 2

    RC

    0.10 vol.% 2

    3.

    4.

  • 394

    .

    2.3

    ISO 834 (ISO, 1975; Yang , 2008)

    ,

    ,

    2005-122 ISO 834 ()

    538oC, 649oC

    . 5 ISO 834 (1)

    .

    (1)

    t : (min)

    T(t) : (oC)

    To : (20oC)

    () (1) ISO 384

    180 .

    6 (a)

    , (b)

    , (d)

    . (e)

    .

    2.4

    7

    . (a) ,

    20 mm

    ,

    150 mm

    . PP 0.10 vol.%

    T t( ) 345 8t 1+( ) To

    +=

    2. PP

    Polypropylene fibers

    (g/cm3) 0.91

    (m) 21.6~39.4

    (mm) 5~10

    (MPa) 328.3~367.7

    (GPa) 3.0~3.2

    3. (kg/m3)

    W/C(%) S/a(%) Water Cement Sand Gravel Admixture PP fibers

    38.5 38.9 170 442 692 1113 3.49 0.45~1.82

    5. ISO 834

    6.

  • 30 4A 2010 7 395

    20 mm

    , 150 mm

    .

    PP 0.10vol.%

    8 .

    PP ,

    PP .

    ,

    . PP

    PP

    ( 7 (a) )

    . ,

    ( 7 (b))

    .

    PP PP

    .

    9 PP 0.10 vol.%

    . 150

    mm 150 mm

    .

    3.

    3.1

    ISO 834

    .

    .

    .

    7. ( )

    8. ( ) 9.

    10.

  • 396

    ,

    . 1000 kN

    ,

    10 .

    3.2

    3.2.1

    (PP

    : 0, 0.10 vol.%)

    (PP 0.10 vol.%)

    - 11

    . PP 0.10 vol.%

    (350.4 kN) PP

    (376.0 kN) 93.2% . PP

    . PP

    PP

    7% .

    3.2.2

    - 12 .

    PP

    253.8 kN PP

    (316.9 kN) 80% . PP

    350.6 kN

    PP (316.9 kN)

    111% .

    .

    7 8

    100 mm

    .

    3.2.3

    - 13 . 13

    - .

    PP 32.5%

    , PP 9.6%

    . PP

    ,

    .

    -

    , EUROCODE 2(2004)

    11. -

    12. -

    13. -

    14.

  • 30 4A 2010 7 397

    - (2)

    . (2) 14 -

    ,

    (2a) , (2b)

    .

    (2a)

    (2b)

    fc, : oC (MPa)

    fck : (MPa)

    c1, : oC fc,

    cu1, :

    14 20oC

    ,

    .

    PP

    -

    15 . -

    ,

    -

    ( 13 ) .

    4 ACI 216(1989)

    ()

    () . ACI 216(1989)

    (unstressed, stressed)

    (Abrams, 1971),

    .

    ,

    ,

    ,

    . ACI 216

    . 4

    ,

    46% ,

    47.5% . ACI 216

    . ACI 216

    .

    5 . PP

    253.8

    kN . PP

    316.9 kN 0.10 vol.% PP

    124%

    . PP

    350.6 kN PP

    253.8 kN

    138% . PP

    0.10 vol.%

    ,

    f3f

    c ,

    c1 ,

    2

    c1 ,

    ----------- 3+

    -------------------------------------------=

    1c ,

    c1 ,

    < cu1 ,

    15.

    -

    4.

    (vol.%)

    (kNm)

    (kNm)

    0.10 126.4 184.0

    0.10114.8 ( )124.8 ( )

    -

    184.1 ( )

    5.

    PP(vol.%)

    (kN)

    (mm) /

    0.0 376.0

    0.67539.54

    253.8 57.78

    0.10 350.4

    0.90437.89

    316.9 32.81

    0.10 350.4

    1.042.86

    350.6 43.92

  • 398

    . , PP

    PP

    .

    PP

    .

    4.

    PP

    RC

    .

    PP ,

    . PP 0.10 vol.%

    ,

    , .

    1. ISO 834 3 ,

    PP

    100 mm PP

    , PP

    PP

    .

    2. PP 100 mm

    , 100 mm

    PP

    .

    PP RC

    PP RC

    .

    3. PP

    32.5% , PP

    0.10 vol.% 9.6%

    PP

    .

    4. PP 0.10 vol.%

    , PP

    111%

    . ,

    ,

    -

    .

    PP

    PP

    ,

    .

    , , , (2007) Fiber Cocktail

    , ,

    , pp. 605-608.

    , , (2009)

    , ,

    , Vol. 21, No. 4, pp. 465-471.

    (2005) -

    KS F 2257-7, .Abrams, M.S. (1971) Compressive strength of concrete at tempera-

    tures to 1600F, Temperature and Concrete, SP-25, American

    Concrete Institute, Detroit, pp. 33-58.

    ACI Committee 216 (1989) Guide for Determining the Fire Endur-

    ance of Concrete Elements, ACI 216R-89, American Concrete

    Institute, Detroit.

    Ali, F. (2002) Is high strength concrete more susceptible to explo-

    sive spalling than normal strength concrete in fire, Fire and

    Materials, Vol. 26, pp. 127-130.

    Atkinson, T. (2004) Polypropylene fibers control explosive spalling

    in high-performance concrete, Concrete, Vol. 38, No. 10, pp.

    69-70.

    EUROCODE 2 (2004) Design of Concrete Structures-Part 1.2:

    General rules- Stuructural Fire Design, Brussels, July.

    ISO (1975) Fire Resistance Tests-Elements of Building Construc-

    tion, International Standard ISO 834, Geneva.

    Lie, T.T. and Kodur, V.K.R. (1996) Thermal and mechanical properties

    of steel-fibre-reinforced concrete at elevated temperatures, Cana-

    dian Journal of Civil Engineering, Vol. 23, pp. 511-517.

    Nishida, A., Ymazaki, N., Inoue, H., Schneider, U., and Dieder-

    ichs, U. (1995) Study on the properties of high-strength con-

    crete with short polypropylene fibre for spalling resistance,

    Proceedings of International Conference on Concrete under

    Severe Conditions, CONSEC'95, Vol. 2, Sapporo, Japan, pp.

    1141-1150.

    Poon, C.S., Shui, Z.H., and Lam, L. (2004) Compressive behavior

    of fiber reinforced high-performance concrete subjected to ele-

    vated temperatures, Cement and Concrete Research, Vol. 34,

    No. 12, pp. 2215-2222.

    Purkiss, J.A. (1984) Steel fibre reinforced concrete at elevated tem-

    peratures, International Journal of Cement Composites and

    Lightweight Concrete, Vol. 6, No. 3, pp. 179-184.

    Suhaendi, S.L. and Horiguchi, T. (2006) Effect of short fibers on

    residual permeability and mechanical properties of hybrid fibre

    reinforced high strength concrete after heat eposition, Cement

    and Concrete Research, Vol. 36, pp. 1672-1678.

    Yang, H., Han, L.H., and Wang, Y.H. (2008) Effects of heating

    loading histories on post-fire cooling behaviour of concrete-

    filled steel tubular columns, Journal of Constructional Steel

    Research, Vol. 64, pp. 556-570.

    (: 2010.2.11/: 2010.3.19/: 2010.5.5)