ESA ITT AO/1-3970/02/NL/ECemits.sso.esa.int/emits-doc/ESTEC/AO6131hybridlpresfinal.pdfESA ITT...

55
Radiometric performance enhancement of Active Pixel Sensors ESA ITT AO/1-3970/02/NL/EC Koen De Munck, Deniz Sabuncuoglu Tezcan, Kiki Minoglou, Piet De Moor, Jean Roggen, Chris Van Hoof – IMEC Jan Bogaerts Fillfactory/Cypress Iacopo Ficai Veltroni, Cinzia Toccafondi Galileo Avionica

Transcript of ESA ITT AO/1-3970/02/NL/ECemits.sso.esa.int/emits-doc/ESTEC/AO6131hybridlpresfinal.pdfESA ITT...

  • Radiometric performance enhancement of

    Active Pixel Sensors

    ESA ITT AO/1-3970/02/NL/EC

    Koen

    De Munck, Deniz

    Sabuncuoglu

    Tezcan, Kiki Minoglou,

    Piet De Moor, Jean Roggen, Chris Van Hoof

    IMEC

    Jan Bogaerts

    Fillfactory/Cypress

    Iacopo

    Ficai

    Veltroni, Cinzia

    Toccafondi

    Galileo Avionica

  • Piet De Moor imec 2008 2

    Outline

    Introduction

    CMOS APS/readout design

    Technological developments

    Characterization

    Conclusions & outlook

  • Piet De Moor imec 2008 3

    ITT by the European Space Agency in 2002

    Aim:

    snapshot shutter CMOS APS demonstrator for high-performance spaceborne

    imaging (BI CCD replacement)

    Application:

    Earth observation

    Hyperspectral

    imaging

    Partners:

    FillFactory/Cypress: design

    IMEC: technology development

    Galileo Avionica: radiometric characterization

    Introduction: Aim & collaboration

  • Piet De Moor imec 2008 4

    Array size: 1024x1024

    Pixel pitch: 22.5 micron

    Filling Factor: > 0.95

    Spectral range: 0.39

    1 micron

    Quantum efficiency:

    > 80% in 0.39

    0.80 micron

    > 50% in 0.8

    0.9 micron

    Dark current < 1500 e-/(pix.s) @ -15C

    Read noise < 50 e-

    Full well capacity: > 8 105

    e-

    Non-linearity: < 1% p-p

    Cross-talk < 10-4

    Snapshot, windowing

    Introduction: Requirements

    backside illuminated imager

    CMOS active pixel sensor

  • Piet De Moor imec 2008 5

    Introduction: Approach: monolithic & hybridMonolithic approach

    backside thinned CMOS APS mounted on MCM substrate

    using Au stud bumps MCM substrate

    backside thinned diode arrayinterconnected pixel-by pixel

    to CMOS ROICby In bumps

    Hybrid approach

    ROIC

    CMOS APS (mono) = ROIC (hybrid):

    designed by FF/Cypress, manufactured in XFAB 0.35 um technology

    Diode array: manufactured in IMEC

  • Piet De Moor imec 2008 6

    Outline

    Introduction:

    CMOS APS/readout design:

    Imager and pixel architecture

    Readout modes

    Output stage

    Technological developments

    Characterization

    Conclusions & outlook

  • Piet De Moor imec 2008 7

    Design: ROIC architecture

    synchronous pipelined shutter

    22.5 m pixel pitch

    stitched design:

    512 x 512 pixels stitch blocks

    up to 2048 x 2048 pixels

    pseudo-differential output

    per 256 columns

    20 Mpixels/s

    per output

    SPI interface for upload:

    addressing, gain & offset, NDR, non-linear amplifier,

    etc.

    radiation tolerant design

  • Piet De Moor imec 2008 8

    20

    48

    x 2

    04

    8

    8 o

    utp

    uts

    Design: Read-out speed

    Frame rate is determined by output speed and window size

    Multiple window read-out limited by row overhead time

    frame time (ms)

    Frame rate (/s)

    Full frame 36.7 27.3

    Horizontal band of 150 lines 2.87 3484

    10 windows of 30x300 pixels 2.26 442

    1 row read-out 0.0178 56180

    Full frame 18.43 54.3

    Horizontal band of 150 lines 2.07 348.4

    10 windows of 30x300 pixels 2.83 354

    1 row read-out 0.0178 5618010

    24

    x 1

    02

    4

    4 o

    utp

    uts

  • Piet De Moor imec 2008 9

    Design: Pixel architecture

    monolithic hybrid

    in-pixel storage capacitance (fF) 350 350

    full well charge (x 1000 electrons) (FWC)

    > 200 > 950

    read noise (electrons) < 38 < 180

    dynamic range (FWC/dark noise) (dB)

    75 75

    maximum SNR (dB) 53 60

    single pixel

    sample capacitors

    pad for hybridization

    photodiode

    Cph

    determines

    charge handling capacity (FWC) and conversion gain

    C1,2,3 determine read noise and dynamic range

  • Piet De Moor imec 2008 10

    Design: Normal readout mode

    synchronous shutter:all pixels integrate in parallel

    pipelined:readout while integrate

    correlated double sampling

    In both cases:

    C1 and C3: reset level

    C2: signal level

    Tint < Tread

    Tint > Tread

  • Piet De Moor imec 2008 11

    Design: Optimized readout modes I

    Non-destructive readout (NDR):

    Using the three in-pixel capacitors

    Read multiple times without resetting

    Advantages: low noise, high dynamic range

  • Piet De Moor imec 2008 12

    Design: Optimized readout modes II

    Line by line variable integration time:

    Integration time selectable per line

    Application:

    Matching of useful/optimal swing to irradiance

    i.e. observation of both bright and dark areas

    Reference: J. Bogaerts

    et al.: 2005 IEEE Workshop on CCD and Advanced Image Sensors, Nagano, Japan, June 2005

  • Piet De Moor imec 2008 13

    Design: Output stage

    Non-linear compensation:

    Provides inverse response of typical light-to-voltage signal

    Programmable settings (knee points offset and slopes)

    Gain stage:

    16 different gain settings, scaling with 1.1x

    Output driver:

    20 pF at 20 Mpix/s

    No ADCs on chip

  • Piet De Moor imec 2008 14

    Outline

    Introduction:

    CMOS APS/readout design:

    Technological developments

    Process flow

    Thin wafer handling

    Trenches

    Backside surface treatment & anti reflection coating

    Results

    Characterization

    Conclusions & outlook

  • Piet De Moor imec 2008 15

    Technological developments: Graded epi growth

    growth of of

    50 micron thick epitaxial Si with graded doping

    aim: enhanced charge collection due to built-in electrical field

    backside

    frontside

    built-in electric field 1x1016/cm3

    1x1014/cm3

    3x1015/cm3

    3x1014/cm3

    1x1015/cm3

    start wafer (highly doped)

    higher doping

    lower doping

    1x1016/cm3

    1x1014/cm3

    3x1015/cm3

    3x1014/cm3

    1x1015/cm3

    start wafer (highly doped)

    higher doping

    lower doping

  • Piet De Moor imec 2008 16

    Technological developments: Imager processing

    ROIC design: FillFactory/Cypress

    Hybrid diode array design: IMEC

    Different imager sizes possible through stitching

    Different imager sizes on a 200 mm wafer

    1x 20482

    16x 10242

    20x 5122

    on reticle

    on wafer

    512 x 512 1024 x 1024 2048 x 2048

  • Piet De Moor imec 2008 17

    Technological developments: Imager/ROIC processing

    Production:

    @ XFAB

    0.35 m technology

    on 200 mm wafers

  • Piet De Moor imec 2008 18

    Technological developments: Hybrid diode array processing

    Process in CMOS Pilot line IMEC (0.13 m technology baseline) on 200 mm wafers

    n-

    well implantation

    n+ contacts

    p+ substrate contacts

    W plugs

    Al metallization

    bulk Si

    graded doping epi

    n-well p+ contact

  • Piet De Moor imec 2008 19

    Technological developments: Trenches for reduced cross-talk

    Extra processing steps on hybrid diode arrays:

    Trench etching using DRIE, doped poly-Si deposition

    Aim: reduce electrical cross-talk

    Top view

    Cross-section of filled trenches

    Cross-section of unfilled trenches

    width :1.2 m depth: 50 m

    Doped poly-Si filled trenches

    np Built-in electric fields

    22.5 m

    >1e19 at/cm3

  • Piet De Moor imec 2008 20

    Technological developments: Imager post-processing: general approach

    Challenge: thin wafers are fragile and flexible

    Solution:

    Use of temporary carriers (Si, glass)

    Use of temporary glues

    Allows use of standard equipment

    50 micron thin 200 mm Si wafercarrier wafer

    thin device wafertemporary glue layer

  • Piet De Moor imec 2008 21

    Technological developments: Imager post-processing: process flow 1

    Process:

    Temporary glue layer deposition

    Wafer to wafer bonding

    Challenges:

    Uniform voidless wafer level bonding

    Results otherwise in wafer damage during grinding

    device wafer

    carrier wafer

    glue layer

  • Piet De Moor imec 2008 22

    Technological developments: Imager post-processing: process flow 2

    Ground 300 mm

    wafer

    False color image:

    TTV = 0.8 m

    Ground 300 mm

    wafer

    False color image:

    TTV = 0.8 m

    Process:

    Wafer thinning on carrier to a final thickness of ~35 micron

    3 steps: grinding, dry RIE etch, wet etch

    Challenges:

    Minimized damage at backside, resulting in bad blue response of imager

    Obtaining total thickness variation of < 2 micron on wafer level

    Measurement of device wafer thickness on carrier

  • Piet De Moor imec 2008 23

    Technological developments: Imager post-processing: process flow 3

    Process at backside of the wafer:

    Backside surface shield in order to repel carriers from surface states:

    B implantation at low energy

    Laser annealing for low temperature activation

    Aluminum shield around imager

    Challenge:

    Backside surface shield must be very thin in order not to block blue light

    Through carrier alignment front -

    back

    backside of imager with Al shield

  • Piet De Moor imec 2008 24

    Technological developments: Imager post-processing: process flow 4

    Challenge:

    Process thin wafer at the (buried) front side

    Solution= thin wafer flip:

    Second glue layer (with different release properties) deposition

    Second carrier wafer bonding

    Release first carrier

  • Piet De Moor imec 2008 25

    Technological developments: Imager post-processing: process flow 5 (hybrid only)

    Processing:

    Under bump metallization (UBM) deposition & patterning

    In deposition and patterning

    Dicing (including carrier wafer)

    Challenge:

    In bump uniformity & yield

    UBM

    In b

    um

    ps

    22.5 um

  • Piet De Moor imec 2008 26

    Technological developments: Imager post-processing: process flow 6 for monolithic

    Monolithic integration:

    Au stud bumping

    Au bumps deposited on MCM substrate

    Au thermo-compression on Al bonding pads of imager using flip-

    chip bonder

    Challenge:

    Flip-chip of thin die

    Solution:

    Use carrier die + release

    MCM substrate

    imager

    MCM substrate

    imager

    carrier

    carrier

    Au stud bump

  • Piet De Moor imec 2008 27

    Technological developments: MCM wafer process

    1 metal layer interconnect between landing pad Au stud bump and bonding pad

  • Piet De Moor imec 2008 28

    Technological developments: Imager post-processing: process flow 6 for hybrid

    Hybrid integration:

    UBM & In processed on both diode array and ROIC side

    Bumping using flip-chip bonder

    Carrier die release

    ROIC

    carrier

    diode array

    ROIC

    carrier

    diode array

    diode array

    RO

    IC

  • Piet De Moor imec 2008 29

    Technological developments: Imager post-processing: process flow 7

    Mounting on COB board

    Using wire bonding

    ARC deposition

    ZnS

    + MgF2

    Using shadow mask

  • Piet De Moor imec 2008 30

    Technological developments: Results: monolithic imagers

    Monolithic imagers:

    1024 x 1024

    40m

    MCM

    imager 40m

    MCM

    imager 40m

    MCM

    imager

  • Piet De Moor imec 2008 31

    Technological developments: Results: hybrid imagers

    50 um

    hybrid diode array

    ROIC

    50 um

    hybrid diode array

    ROIC

    ROIC

    hybrid diode array

    Hybrid imagers:

    512x512

    1024x1024

  • Piet De Moor imec 2008 32

    Technological developments: Results: special devices

    1024x1024 trenched hybrid imager

    Unthinned

    2kx2k read-out

  • Piet De Moor imec 2008 33

    Outline

    Introduction

    CMOS APS/readout design

    Technological developments

    Characterization:

    Functionality & yield

    Response & non-linearity

    Dark current & read noise

    PRNU & Quantum efficiency

    Cross talk

    Radiation hardness

    Conclusions & outlook

  • Piet De Moor imec 2008 34

    Characterization: functionality check

    2048x2048 direct imaging of

    hexagonal nut

    2048 x 2048:

    unthinned

    read-out

    front side illumination

    high yield:

    2 bad columns, 2 partial rows

    > 99.8 %

    1048 x 1048:

    Hybrid thinned device

    Monolithic thinned device

    Trenched Hybrid thinned device

    512 x 512:

    Test devices: hybrid, thinned & unthinned

    Hyb

    rid 1

    024x1

    024

  • Piet De Moor imec 2008 35

    0.01

    0.1

    1

    10

    100C

    umulative pixelcount (%

    )

    1.00.80.60.40.20.0Intensity (normalized scale)

    80x103

    60

    40

    20

    0

    #pix

    els

    (arb

    . sca

    le)

    Characterization: Pixel yield analysis of Hybrid

    Hybrid thinned 1024x1024 imager

    Yield in terms of light sensitivity: 99.93% < Y < 99.99%

    99.93%99.99%

    Interconnect yield

    Pixels with nominal dark

    current

    Analysis on differential image (Bright

    Dark)

  • Piet De Moor imec 2008 36

    Characterization: Pixel yield analysis of Monolithic

    Monolithic thinned 1024x1024 imager

    Yield in terms of light sensitivity > 99.999 %

    When removing 10 faulty lines (~ 1 %)

    10-1100101102103104105

    #pix

    els

    (arb

    . sca

    le)

    0.300.200.100.00Intensity (normalized scale)

    0.0001

    0.001

    0.01

    0.1

    1

    10

    100 Cumulative pixelcount(%

    )

  • Piet De Moor imec 2008 37

    Characterization: Response conversion factor

    Conversion factor CVF:

    Dependent on gain and NLA settings

    Mono: 6 -

    12 uV/e-

    Hybrid: 1.5

    3 uV/e-

    hybrid

    Full well capacity FWC:

    Mono: 1.8 105

    e-

    Hybrid: 7.57 105

    e-

    0.00

    10.00

    20.00

    30.00

    40.00

    50.00

    60.00

    0 2 4 6 8 10 12 14 16

    Gain settingC

    onve

    rsio

    n ga

    in [u

    V/e]

    1.05

    1.07

    1.09

    1.11

    1.13

    1.15

    1.17

    Gai

    n (x

    +) /

    Gai

    n (x

    )

    mono

  • Piet De Moor imec 2008 38

    Characterization: Non-linearity of response

    Non-linearity of monolithic device with non-linear amplifier OFF:

    1% peak-peak in the range 20%

    64% of full well capacity

    mono

    % d

    evia

    tion

    from

    line

    ar fi

    t

  • Piet De Moor imec 2008 39

    Characterization: Non-linearity of response

    Non-linearity of monolithic device with non-linear amplifier ON, using optimized settings:

    0.5% peak-peak in the range 8%

    87% of full well capacity

    Conclusion: excellent linearity using correction

    mono

    % FW

    % d

    evia

    tion

    from

    line

    ar fi

    t

  • Piet De Moor imec 2008 40

    Characterization: Dark current

    Dark current at -15C

    Mono: 330 e-/pix.s, corresponding to 0.01 nA/cm2

    Hybrid: 736 e-/pix.s, corresponding to 0.023 nA/cm2

    Temperature dependence: *2 every 8-9C

    Dark current non-uniformity: < 20

    50 %

    Temperature MonoDark current (e-/pix.s)

    HybridDark current (e-/pix.s)

    -20 218 875

    -15 330 736

    -10 484 1696

    0 1404 3838

    10 2552 9838

    20 6766 19690

    30 13513 45582

    mono

  • Piet De Moor imec 2008 41

    Characterization: Read noise

    Mono:

    @ 25C: 88 e-

    (715 uV)

    @ -15C: 80 e-

    (642 uV)

    Hybrid @25C:

    142

    264 e-

    (highest gain, unity gain)

    Corresponding to 794, 249 uV

    Remark on noise numbers:

    Including system noise !

    = upper limit

    hybrid

    hybrid

  • Piet De Moor imec 2008 42

    Characterization: Pixel response non-uniformity (PRNU)

    Mono:

    Zone A: 15.9 %

    Zone B: 5.01 %

    Zone C: 8.24 %

    Zone A: 9.13 %

    High frequency ~ 4.25 %

    Hybrid:

    Zone A: 11.8 %

    Zone B: 8.49 %

    Zone C: 8.23 %

    Zone A: 8.54 %

    High frequency ~ 7.4 %

    High PRNU most probably related to residues of temporary glue on device backside

    will be addressed in near future

    hybrid

    mono flat field

  • Piet De Moor imec 2008 43

    Characterization: Quantum efficiency: impact of backside passivation

    QE measured without anti-refection coating

    After backside passivation: increased blue response !

    Effective non-sensitive thickness layer ~ 10

    15 nm

    0

    10

    20

    30

    40

    50

    60

    70

    80

    300 400 500 600 700 800 900 1000 1100

    Wavelength [nm]

    Qua

    ntum

    effi

    cien

    cy [%

    ]

    measured 22 m thick

    15 nm

    20 nm

    100 nm

    10 nm

    50 nm

    0 nm

    dead layer thickness

    before laser annealing

    5 nm

    2 nm

  • Piet De Moor imec 2008 44

    Characterization: Anti Reflective Coating (ARC)

    Optimized broad band ARC

    Reflectivity

  • Piet De Moor imec 2008 45

    Characterization: Quantum efficiency: backside passivation + ARC

    Excellent broad band QE > 80% from 400 nm

    850 nm

    Similar results for both mono and hybrid devices

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100

    Wavelength [nm]

    Qua

    ntum

    effi

    cien

    cy [%

    ]

    measurement

    simulation: plain Si0 nm

    10 nm15 nm

    simulation: ARC limited

    0 nm15 nm simulation: ARC + implant

    0 nm10 nm

    15 nm

    dead layer thickness

    QE > 80 %

  • Piet De Moor imec 2008 46

    Characterization: Quantum efficiency: degradation of ARC

    Reduction of QE as a function of time

    = degradation of ARC probably due to humidity absorption

    will be addressed in near future

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100

    Wavelength [nm]

    Qua

    ntum

    effi

    cien

    cy [%

    ]

    back_1k_dev4 with ARC (may 9)

    back_1k_dev4 with ARC (june 19)

    back_1k_dev4 no ARC (april 4)

  • Piet De Moor imec 2008 47

    Characterization: Quantum efficiency: trenched hybrid imager

    QE of trenched hybrid imager is low after backside passivation

    This is probably due to:

    reduced fill factor

    recombination at trench sidewalls

    No trenches

    Trenched Trenched compensated for fill factor loss No ARC

  • Piet De Moor imec 2008 48

    Characterization: Cross - talk

    Knife edge measurement + MTF calculation

    Good MTF for trenched hybrid imager: 0.5 at Nyquist

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 10 20 30 40 50 60 70 80 90 100

    Knife edge position [um]

    Rel

    ativ

    e pi

    xel r

    espo

    nse

    [%]

    1k trenched - 550 nm1k trenched - 650 nm1k trenched - 450 nm512 no trench - 550 nm512 no trench - 650 nm512 no trench - 450 nmideal curvepixel border

    effect of trenches

    0.00 0.02 0.04 0.06 0.08 0.100.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    MTF

    spatial Frequency lp/um

    ampl

    itude

  • Piet De Moor imec 2008 49

    0.000 0 .0 05 0.01 0 0 .015 0.0 200.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Frequency (lp/um)

    MT

    FCharacterization: Cross - talk

    Point source illumination + MTF calculation

    Bad MTF for monolithic device:

    Close to 0 at Nyquist

    mono

    60x Microscope objective

    x-y-z translation stage

    Neutral density filter assembly

    Low power beam

    HeNe lasercollimator

    60x Microscope objective

    x-y-z translation stage

    Neutral density filter assembly

    Low power beam

    HeNe laserHeNe lasercollimatorcollimator

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

  • Piet De Moor imec 2008 50

    Characterization: Cross - talk

    Monolithic device:

    Signal leakage to neigbouring

    pixels = 88 %

    Caused by diffusion of carriers

    Trenched hybrid device:

    Signal leakage to neigbouring

    pixels = 0 %

    Diffusion of carriers to neigbouring

    pixels is

    blocked

    12

    3

    S1

    S2

    S3

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1

    2

    3

    4

    5

    S1S2

    S3S4

    S5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

  • Piet De Moor imec 2008 51

    Characterization: Radiation tests

    Proton irradiation

    5 x 1010

    60 MeV

    protons/cm2

    Additional 60Cogamma irradiation

    50 krad(Si)

    Dark current measured before and after irradiation:

    512x512 hybrid device:

    Increase of dark current by factor 2.5 after proton irradiations

    Additional increase of dark current by a factor of 17 after gamma radiation

    512x512 mono device, unthinned, front side illumination

    No increase of dark current after proton irradiation, # dark current spikes increases

    Increase of dark current by a factor of 4 after gamma radiation

    0.001

    0.01

    0.1

    1

    10

    100

    0 200 400 600 800 1000 1200 1400 1600

    Dark current [mV/s]

    Cum

    ulat

    ive

    freq

    uenc

    y [%

    ]

    device 2 pre

    device 2 post 5x10^10protons/cm^2device 2 post 50 krad(Si)

    device 4 pre

    device 4 post 5x10^10protons/cm^2device 4 post 50 krad(Si)

    device 3 pre

  • Piet De Moor imec 2008 52

    Outline

    Introduction

    CMOS APS/readout design

    Technological developments

    Characterization

    Conclusions & outlook

    Conclusions

    Outlook

  • Piet De Moor imec 2008 53

    Conclusions

    Thinned backside illuminated imagers realized:

    Hybridized and monolithic

    CMOS APS: synchronous pipelined shutter with true CDS

    3D process technology for thin wafer handling and processing:

    Use of temporary carriers and glues

    200 mm thin wafer processing on carrier with standard equipment

    Performance enhancing concepts implemented:

    Graded EPI lower cross-talk and improved QE

    Poly-Si filled pixel separating trenches zero cross-talk (but QE )

    Results:

    Excellent broadband QE (but AR ageing )

    Zero cross-talk for trenched hybrid device

  • Piet De Moor imec 2008 54

    Outlook

    Further investigations planned

    Low cross talk while maintaining high QE

    Stabilize ARC

    Improve PRNU

    Process optimizations (i.e. monolithic imager yield)

    CCN on this contract under discussion

    Performance enhancement using 3D integration technology: through Si vias

    detection layer

    analog ROIC

    digital signal processing

    memory

    output drivers

  • Piet De Moor imec 2008 55

    Radiometric performance enhancement ofActive Pixel SensorsOutlineIntroduction:Aim & collaborationIntroduction:RequirementsIntroduction:Approach: monolithic & hybridOutlineDesign:ROIC architectureDesign:Read-out speedDesign:Pixel architectureDesign:Normal readout modeDesign:Optimized readout modes IDesign:Optimized readout modes IIDesign:Output stageOutlineTechnological developments:Graded epi growthTechnological developments:Imager processingTechnological developments:Imager/ROIC processingTechnological developments:Hybrid diode array processingTechnological developments:Trenches for reduced cross-talkTechnological developments:Imager post-processing: general approachTechnological developments:Imager post-processing: process flow 1Technological developments:Imager post-processing: process flow 2Technological developments:Imager post-processing: process flow 3Technological developments:Imager post-processing: process flow 4Technological developments:Imager post-processing: process flow 5 (hybrid only)Technological developments:Imager post-processing: process flow 6 for monolithicTechnological developments:MCM wafer processTechnological developments:Imager post-processing: process flow 6 for hybridTechnological developments:Imager post-processing: process flow 7Technological developments:Results: monolithic imagersTechnological developments:Results: hybrid imagersTechnological developments:Results: special devicesOutlineCharacterization:functionality checkCharacterization:Pixel yield analysis of HybridCharacterization:Pixel yield analysis of MonolithicCharacterization:Response conversion factorCharacterization:Non-linearity of responseCharacterization:Non-linearity of responseCharacterization:Dark currentCharacterization:Read noiseCharacterization:Pixel response non-uniformity (PRNU) Characterization:Quantum efficiency: impact of backside passivationCharacterization:Anti Reflective Coating (ARC)Characterization:Quantum efficiency: backside passivation + ARCCharacterization:Quantum efficiency: degradation of ARCCharacterization:Quantum efficiency: trenched hybrid imagerCharacterization:Cross - talkCharacterization:Cross - talkCharacterization:Cross - talkCharacterization:Radiation testsOutlineConclusionsOutlookSlide Number 55