Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime...

48
Energy deposition Electrons Lattice P e r t u r b a t i o n Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades Classical radiolysis Radiation-induced material modifications nuclear, elastic energy deposition Ionising energy deposition Synergy? High LET effects Tracks regime

Transcript of Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime...

Page 1: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Energy deposition

ElectronsLattice

Per

turb

a tio

n

Strongnon -linear regime

Smalllinear regime Frenkel-pair creation

linear cascades

Non-linear cascades

Classical radiolysis

Radiation-induced material modifications

nuclear, elasticenergy deposition Ionising

energy deposition

Synergy?

High LET effectsTracks regime

Page 2: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

The displacement spectrum

1/2

d

D

1

T

1

T

D

N T d σ (E ,T)1 =2 σ (E )

d

T1

DD 1 T

1 d σ (E ,T)W(T) = N T dT

σ (E ) dT

! Nuclear reactions

Nuclear reactions

elastic

Abromeit C. JNM 216 (1994) 78

V. M Agramovich and V; V; KirsanovPhysics of rad effects in crystals R. A. Johnson and A; N Orlov Eds. N-H 1986

Page 3: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

The cascades: the mean free path

T >

-50

0

50

100

150

0 50 100 150 200 250

50 keV

5 keV

TRIM

(Å)

Averback R. S. JNM 216 (1994) 49

Page 4: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Linear-non linearCascades sub-cascades

-50

0

50

100

150

0 50 100 150 200 250

50 keV

5 keV

One dense cascade

Sub-cascades

LinearAll the atoms in movementcollide with atoms at rest

dpa makes sense

Non-linearAtoms in movement collide together

collective motion of atoms local melting

shock-wave generation

Page 5: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Recombinations:one dpa is not a defect

D

2D 0

2D 0 r

dc=σ

dΦdc

=σ (1-V c)d

linea

Φdc

=(σ (1-V c) -σ c)d

r regime:1 dpa = 1 de e

Φ

f ct

Low T, low T1/2

r Dσ 10 σ

Low T, high T1/2

1/2 dT T

=

“re

sist

ivit

y” d

efec

t/ “

Kin

chin

and

Pea

se”d

pa

High T

Radiation-enhanced diffusion

Transient and stationaryregimes

Influence of: permanent sinks

flux

Averback R. S. JNM 216 (1994) 49

0.000

0.001

0.002

0.003

0.004

0 5E+19 1E+20fluence

con

cen

trat

ion

Exemple : Cud 140 barnsn0 135 volumes atomiquesr 4000 barns

Page 6: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Recombinations:cascades

0.1 ps 0.3 ps

0.5 ps

2 ps

1 ps

6 ps

Au

NiAl

PKA 10 keV

0.62 ps 3.2 ps

5 ps

17.7 ps

11.5 ps

23 ps

Averback R. S. JNM 216 (1994) 49

Page 7: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.
Page 8: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Inelastic damage

Page 9: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

What happens to the projectile

What happens to the solid

Stopping powerrangestragglings

What happens to: the projectile : secondary particles: electrons

recoils

Page 10: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Projectile ion : the atomic processes

proton on hydrogen

p eV V

proton on aluminium

Page 11: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

2 4 21 1

2 21

4 2ln e

ee

Z e m vdE NZdx Im v

Bethe

0

200

400

600

800

0 20 40 60 80 100

mea

n io

niza

tion

pot

enti

al [

eV]

Z2

Ar

Kr

Xe

Rn

I=9,2 Z

Corrections :• Relativistic• Density• Deep levels• Effective charge

4 21 2

22 21

2

21ln

1

4 2lneff e

ee

e m vd CZ

E NZdx m v

Z

I

Projectile ion: the electronic stopping; high velocity

Page 12: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

U

U

K r

K r

A r

A r

HH

p o uvo ir d 'a rrê t nuc lé a ire

p o uvo ir d 'a rrê t é le c tro niq ue

1001010 ,10 ,001 0 ,01

é ne rg ie (M e V / um a )

101

105

d E/d x(M e V / c m )

104

103

102

The Bragg peakThe Bragg peak

Projectile ion: the electronic stopping

0

200

400

600

800

1000

0 100 200 300 400 500 600 700

(dE

/dx)

e (keV

/µm

)

Parcours (µm)

C 12.5 MeV/A

Page 13: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.
Page 14: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Velocity effect

Projectile: Swift heavy ionsSecondary particles: electrons

Page 15: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

photons 60Co photons X 250 keV électrons 3H 5,5 keV

Projectile: photons electronsSecondary particles: electrons

Compton photoelectric

Page 16: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

The (dE/dx)e distributions

Fra

ctio

n of

the

dose

(dE/dx)e (keV/µm)

Bragg peakof electrons

(dE/dx)e of theprojectile over a given thickness

(dE/dx)e of thesecondary electrons

Page 17: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

The recoilsmakes

the inelastic energy deposition

Xe 100keV

Projectile: (100 to 50) keV (dE/dx)n ≈ 2.5 (dE/dx)e

Projectile: low energy heavy ionsSecondary particles: recoils

Page 18: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Radiolysis Low LET

Radiolysis is the creation of permanent defects due to the non-radiative recombination

of an elementary excitation (a hole-electron pair)

The radiolysis yield G

c (mol/kg)in a linear regime: G =

D(J/kg)

e-h i g

N Nη =

N E 3 EQuantum yield

i

N (mol)G =

E (J)

This is the “Kinchin and Pease” for inelastic damage

ie-h

g

EN

3 E

Page 19: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

The radiolysis yield G

Organic: a few 10-7 mol/J alkali halides (10-8 to 10-9) mol/J

Typical, yields (could be zero)

The yield concept is never use for elastic damageIf one dpa = one defect (=1)

A D

n

N σG =

dE dxFor ions (7 10-8 to 1.5 10-7) mol/J

100 eV 1 – 10 keV

Page 20: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

The available energy, Egap (in fact Ex < Egap) > the formation energy of the Frenkel pair.

the radiolysis can only occurs in insulators or wide band-gap semiconductors.

The excitation must be localised on one atomic (or molecular) site

Non-radiative transitions, allowing an efficient kinetic energy transfer to an atom, must prevail over radiative transitions

The low LET radiolysis conditions

Page 21: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Frenkel cation Frenkel anion Ex

Egap

Could work inalkali halides(anions and cations)alkaline-earth halides

Difficult in oxides

Page 22: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

1) Radiolysis is not universal, not easily predictable

2) Is in essence temperature dependent

3) Spans over a wide time scale

4) Occurs generally on one sub-lattice (anions)

5) Radiolysis occurs occasionally when it occurs, it is with a good energetic efficiency.

Elastic damage occurs every time but with a relatively poor energetic efficiency.

Low LET radiolysis versus ballistic damage

Page 23: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Charge-carriers self-trapping

STE:Se et chalcogenides

STE:BeO-YAGMgO, Al2O3

Self trapping of charge carriers results from a competition between deformation and polarisation of the lattice

Page 24: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Self trapped holes AgCl

CaF2

KCl

KCl

AgCl

CaF2

c-SiO2

STE

Page 25: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

STE Luminescence

STE have several luminescence statesa strong Stokes shift very variable lifetime: ns to ms

Page 26: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

STE-defect conversion

Page 27: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Correlation - anticorrelationSTE luminescence and defect creation

Correlation conversion thermalSTE triplet -> F +Hsmall S/D

Page 28: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Temporal dynamics

Elastic damage : 25 keV Cu cascade over at 10 psonly numerical simulations

Radiolysis: fast processes (ps) charge-carrier trappingconversion from STE highly excited stated

slow processes (µs to ms) from STE triplet statesAlso measurements!!metastable defects

Page 29: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Conversion STE-defects

c-SiO2

a-SiO2

Also in SrTiO3, MgO, Al2O3

Transient defects

Page 30: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Resistant and sensitive materials

Resistant:Metals, semi-conductors. crystalline Oxides. c-SiO2 (flux) NaAlSi3O8 :

metastables (SrTiO3, MgO, Al2O3, c-SiO2)Sensitive:

Alkali halides

Alkaline-earth halides CaF2, MgF2, SrF2 : Gmeta , Gstable very lowKMgF3, BaF1.1B 0.9, AlF3 (flux?), LiYF4: may be

Silver halides AgCl; AgBrAmorphous solids a-SiO2 , a-As2Se3, a-As2S3, a-Se, a-As

Water and organic mater (bio matter)

Page 31: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Energy deposition

ElectronsLattice

Per

turb

a tio

n

Strongnon -linear regime

Smalllinear regime Frenkel-pair creation

linear cascades

Non-linear cascades

Classical radiolysis

Radiation-induced material modifications

nuclear, elasticenergy deposition Ionising

energy deposition

Synergy?

High LET effectsTracks regime

Page 32: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

MICAYIG

LET threshold

Amorphisation

Etching of the amorphous core

M. Toulemonde et al. J. Appl Phys. 68 (1990) 1545

GSI image

S. Bouffard et al. Phil. Mag. A 81 (2001) 2841fluctuationscritical size

induced stress

M. Toulemonde, F. Studer Phil. Mag. A 58 (1988) 799

“Classical” track formation in insulators

Nanotechonology (ITT)

Page 33: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

0

50

100

150

200

250

300

350

400

450

1600 1650 1700 1750 1800 1850 1900 1950

Canaux

Nbe

de

coup

s

Vierge

1.0E+12

4.0E+12

1.0E+13

1.2E+13

1.6E+13

2.4E+13

(11-1)M(111)M

(101)Q

ZrO2

Crystal to crystal transformations can existmonoclinic-> tetragonalTwo process (incubation fluence)

Less common High LET effects

Page 34: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Unexpected High LET effects

Some metals are sensitive to high LET radiation

High Tc superconductors are sensitive to high LET radiation (pinning of vortices)

Page 35: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Unexpected High LET effects

Klaumünzer et al. Mat. Res. Proc. 93 (1987) 21

Co75Si15B10

1.7 1013 Xe/cm2; 2.8 MeV/A; 50K

Plastic instability of amorphous materials: the hammering effect

sample implanted at 1 · 1017 Co/cm2 at 873 K and irradiated at (a) 1013, (b) 3 · 1013, (c) 6 · 1013 and (d) 1014 I/cm2.

D'Orleans-C; Stouter-JP; Estournes-C; Grab-JJ; Muller-D; Guille-JL; Richard-Plouet-M; Cerruti-C; Haas-FNIM B 216: 372-8 2004

PHYSICAL REVIEW B 67, 220101 (2003)

Ion-aligned nanoparticle elongation

Fragmentation and grain rotation in NiO single crystals (Klaumuenzer REI-2007)

Polygonisation (UO2, CaF2)

Page 36: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Bibliography

CargèseSummer schoolsThe French summer school“Materials Under Irradiation”, Giens 1991, Trans Tech Publications, 1992 (in English)

The USA summer school “Fundamentals of Radiation Damage”, Urbana in 1993, J. Nucl. Mat., volume 216 (1994)

The French summer schools Lalonde les Maures 1999 et 2000, 2007 (PAMIR)Not published, but printed material (in French)

Page 37: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Bibliography

ClassicsChr. Lehmann, Interaction of Radiation with Solidsand Elementary Defect Production,Series on Defects in Crystalline solids, vol. 10. North-Holland, 1977

N. Nastasi, J. W. Mayer and J. K. Hirvonen, Ion-Solid Interaction, Fundamentals and Applications Cambridge Solid State Science Series, 1996

R. A. Johnson and A. N. Orlov EdsPhysics of Radiation Effects in Crystals,North-Holland, 1986

Specific to radiolysis

N. Itoh and A. M. StonehamMaterial Modification by Electronic Excitation,Cambridge University Press, 2001

Page 38: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.
Page 39: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

H. Kurtz et al, Phys. Rev. A49 (1994) 4693

Projectile: electron capture Very very slow HCI

proton on hydrogen

p eV V

Page 40: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.
Page 41: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Bibliography

Never go to the beach without a good book

More specific to radiolysis

N. Itoh and A. M. StonehamMaterial Modification by Electronic Excitation,Cambridge University Press, 2001

F. Agullo-Lopez, C. R. A. Catlow, P. D. TownsendPoint defects in materialsAcademic Press 1988

N. Itoh edDefects Processes induced by electronic excitation in insulatorsWorld Scientific 1989

K. S. Song, R. T. WilliamsSelf-trapped excitonsSpringer-Verlag 1993

P. D. Townsend, P. J. Chandler, L. ZhangOptical effects of ion implantation Cambridge 1994

Page 42: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

D

2D 0

2D 0 r

dc=σ

dΦdc

=σ (1-V c)d

linea

Φdc

=(σ (1-V c) -σ c)d

r regime:1 dpa = 1 de e

Φ

f ct

Low T, low T1/2

0.000

0.001

0.002

0.003

0.004

0 5E+19 1E+20fluence

con

cen

tra

tion

Exemple : Cud 140 barnsn0 135 volumes atomiquesr 4000 barns

20

20

20

20

(1 )

( (1 ) )

( (1 ) )

(1 )

d

d

d r

F

F d r

F d rF

c

c V c

c V c c

c

V c c

dV

d

0

1

2

3

4

5

6

7

8

0 2 4 6 8 .cm)

d/ d

.cm

3/e

-)

F ~ 1 µ.cm / % defect

J. Dural et al, J. de Physique 38 (1977) 1007

Page 43: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

The (dE/dx)e distributions

Fra

ctio

n of

the

dose

(dE/dx)e (keV/µm)

Bragg peakof electrons

(dE/dx)e of theprojectile over a given thickness

(dE/dx)e of thesecondary electrons

Page 44: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Fragmentation of H2O*

Fragmentation of H2O+

Hole migration

H3O+

OH

0.3 nm

dissociationHole migrationHole migration

H3O+

OH

0.3 nm

dissociation

H3O+

OH

0.3 nm

dissociation

0.8 nm

HO (3P)

0.8 nm

HO (3P)

0.8 nm

HO (3P)

The primary species

Distances empirically

*. 2 2; ;aqe HO HO

Low LET radiolysis: organics; water

Up to 60 reactions

< 10-12 s10-12 s < blobs and short tracks < 10-7 s

in bulk >10-7 s

Page 45: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

0

1

2

3

4

5

6

10-12 10-11 10-10 10-9 10-8 10-7 10-6

G m

olec

ules

/100

eV

t (s)

H 30 MeV/u

C 30 MeV/u

Kr 65 MeV/u

Rendement d'électrons solvatés

Low LET radiolysis: only role of heterogeneity

Page 46: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Double ionisation and superoxide OOH°

H

ArC

Gervais-B; Beuve-M; Oliver-GH; Galassi-MERadiation-Physics-and-Chemistry. 2006; 75(4): 493-513

Low LET radiolysis: specific role; multi-ionisation

Page 47: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

0

20

40

60

80

100

103 104 105 106 107

Fra

ctio

n

énergie initiale de l'électron (en eV)

lobes (E<100 eV)

traces courtes

lobes 100eV<E<500 eV

énergie photons 60Co

Projectile: photons electronsSecondary particles: electrons

E<100 eV

E> 5000 eVShort track

Primary electron

E< 5000 eV

Annex track

blobsE de 100 à 500 eV

spurs

Page 48: Energy deposition ElectronsLattice Perturbation Strong non -linear regime Small linear regime Frenkel-pair creation linear cascades Non-linear cascades.

Luminescence quenching

)(111 TNRR