ENAE 788X Overview and Introduction - UMD

60
Course Overview ENAE 788X - Planetary Surface Robotics U N I V E R S I T Y O F MARYLAND ENAE 788X Overview and Introduction Course Overview – Goals Web-based Content – Syllabus – Policies Project Content Term Design Project Overview of Planetary Robot Mobility 1 © 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Transcript of ENAE 788X Overview and Introduction - UMD

Page 1: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

ENAE 788X Overview and Introduction• Course Overview

– Goals– Web-based Content– Syllabus– Policies– Project Content

• Term Design Project• Overview of Planetary Robot Mobility

1

© 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Page 2: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Contact Information

Dr. Dave AkinNeutral Buoyancy Research Facility/Room [email protected] http://spacecraft.ssl.umd.edu

2

Page 3: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Goals of ENAE 788X

• Learn the underlying fundamentals of mobility in extraterrestrial environments

• Learn the principles of mechanism design relevant to mobility systems

• Understand mobility trade-offs in the context of planetary surface robotics

• Perform an open-ended design task for a planetary surface rover

3

Page 4: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Web-based Course Content• Data web site at http://spacecraft.ssl.umd.edu

– Course information– Syllabus– Lecture notes– Problems and solutions

• Interactive web site at https://elms.umd.edu/– Communications for team projects– Lecture videos

4

Page 5: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Syllabus - Mobility Overview• Free-space mobility• Orbital maneuvering (proximity operations)• Atmospheric flight

– Lifting– Buoyant

• Liquid mobility• Subsurface mobility• Surface mobility

5

Page 6: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Syllabus - Rover Hardware• Terramechanics• Wheel drive systems• Wheel design• Suspension systems• Motors and gear trains• Steering systems• Tracked systems• Legged locomotion

6

Page 7: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Syllabus - Rover Software• Software engineering• Robot control• Sensors• Manipulation• Navigation and mapping• Path planning• Obstacle detection and avoidance

7

Page 8: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Grading Scheme• 30% homework• 30% midterm (take-home)• 40% team project (individual)

8

Page 9: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Term Design Project• Near-term rover design, focusing on chassis and

supporting systems• 1-2 person teams• Single design focus, although receptive to other

proposals

9

Page 10: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

AAR Design Project Statement• Perform a detailed design of a small astronaut

assistance rover, emphasizing mobility systems– Chassis systems (e.g., wheels, steering, suspension…)– Support systems (e.g., energy storage)– Navigation and guidance system (e.g., sensors,

algorithms...)

• Design for Moon, then assess feasibility of systems for Mars, and conversion to Earth analogue rover

• This is not a hardware project - focus is on detailed design (but may be built later!)

10

Page 11: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

RAVEN in Telerobotic Sample Config

11

Page 12: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

RAVEN in EVA Transport Config

12

Page 13: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Objectives for Design Project (1)• UMd SSL is proposing to do month-long

simulations of lunar/Mars science exploration missions to examine impact of robotics

• Primary missions would be held at HI-SEAS in Hawaii

• Rover design should facilitate shipping to/from Hawaii– Minimal size and mass– Modular construction for packing (ideally each less than

50 lbs with packaging)

13

Page 14: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Objectives for Design Project (2)• Multiple individual rovers

– One rover/crew– Rover can carry two crew in contingency mode– Both responsive and unresponsive transport

• Operation on volcanic soils and terrains• Capable of bring brought through airlock for

repair or servicing

14

Page 15: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Level 1 Requirements (Performance)1. Rover shall have a maximum operating speed of

at least 15 km/hour on level, flat terrain2. Rover shall be designed to accommodate a 0.3

meter obstacle at minimal velocity3. Rover shall be designed to accommodate a 0.1 m

obstacle at a velocity of 7.5 km/hour4. Rover shall be designed to accommodate a 30°

slope in any direction at a speed of at least 5 km/hour with positive static and dynamic margins

15

Page 16: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Level 1 Requirements (Payload)5. Rover shall be be designed for an instrument

payload with a mass of 50 kg and volume of 0.25 m3

6. Rover shall also accommodate a Ranger-classs sample-collection manipulator system with a mass of 50kg

7. Rover shall be designed to nominally transport a 95th percentile American male crew in full pressure suit

8. Rover shall be capable of carrying two 95th percentile crew in a contingency

16

Page 17: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

SP Crater - 30° slope

17

Page 18: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Level 1 Requirements (GN&C)9. Rover shall be be capable of being controlled

directly, remotely, or automated10.Rover shall be capable of following an astronaut,

following an astronaut’s path, or autonomous path planning between waypoints

11.Rover shall be capable of operating during any portion of the lunar day/night cycle and at any latitude

18

Page 19: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Future Application: Hi-SEAS Testing

19

Page 20: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Robotic Mobility• Free space• Relative orbital motion• Micro-g environments (asteroids, comets)• Airless major bodies (larger moons)• Gaseous environments (Mars, Venus, Titan)

– Lighter-than-”air” (balloons, dirigibles)– Heavier-than-”air” (aircraft, helicopters)

• Aquatic environments (Europa)• Surface mobility (wheels, legs, etc.)• Subsurface access (drills, excavation)

20

Page 21: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Comparison of Basic Characteristics

21

Quantity Earth Free Space

Moon Mars

Gravitational Acceleration

9.8 m/s2

(1 g)– 1.545 m/s2

(0.16 g)3.711 m/s2

(0.38 g)Atmospheric

Density101,350 Pa (14.7 psi)

– – 560 Pa(0.081 psi)

Atmospheric Constituents

78% N2

21% O2– – 95% CO2

3% N2

Temperature Range

120°F-100°F

150°F-60°F

250°F-250°F

80°F-200°F

Length of Day 24 hr 90 min-Infinite

28 days 24h37m22.6s

Page 22: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Overview of Robotic Mobility• Free Space• Lunar• Mars• Venus• Minor bodies• Technologies in development

22

Page 23: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

AERCam/SPRINT

23

Page 24: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Orbital Express

24

Page 25: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

SPHERES

25

Page 26: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Surveyor• Seven mission May

1966 - January 1968 (5 successful)

• Mass about 625 lbs• Surveyor 6

performed a “hop”– November 1967– 4 m peak altitude,

2.5 m lateral motion

26

Page 27: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Lunakhod 1 and 2• Soviet lunar rovers

– 2000 lbs– 3 month design lifetime

• Lunakhod 1– November, 1970– 11 km in 11 months

• Lunakhod 2– January, 1973– 37 km in 2 months

27

Page 28: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Lunar Roving Vehicle• Flown on Apollo 15, 16, 17• Empty weight 460 lbs• Payload 1080 lbs• Maximum range 65 km• Total 1 HP• Max speed 13 kph

28

Page 29: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Mars Pathfinder• Sojourner rover flown as

engineering experiment• 23 lbs, $25M• Design life 1 week• Survived for 83 sols

(outlived lander vehicle)• Total traverse ~100 m

29

Page 30: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Mars Exploration Rovers• Two rovers landed on

Mars in January 2004• Design lifetime 90 sols, 1

km (total)• Mission success defined

as 600 m total traverse• By August 28, 2012:

– Spirit 7731 m– Opportunity 35,017 m

30

Page 31: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Historical Comparison of Traverses

31

from James W. Head (Brown University), “Human-Robotic Partnerships in Apollo and Lessons for the Future” presentation to the NASA OSEWG Workshop on Robots Supporting Human Science and Exploration, Houston, TX, August 5, 2009

Page 32: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Current Status Based on Distance

32

• Opportunity: Sol 446843.1 km

• Spirit: Sol 2555 (dead)7.73 km

• Curiosity: Sol 144713.93 km

Page 33: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Mars Science Laboratory (and MER)

33

Page 34: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

MSL Mission Overview

34

Page 35: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

MSL Wheel Problems

35

Page 36: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Mars Aircraft• Deployed during EDL

phase• Glider or powered

36

Page 37: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

ARES - NASA LaRC Proposal

37

Page 38: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

ARES Deployment

38

Page 39: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

ARES Half-Scale Dropped from 100Kft

39

Page 40: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Mars Balloons

40

Page 41: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Huygens Probe• Titan entry January 2005• Descent imaging used to

survey surface at different scales

• Wind motion provided horizontal traverse of surface

41

Page 42: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Field Trials for New Mobility Technologies

42

Page 43: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

SCOUT (JSC)

43

Page 44: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Robonaut/Centaur (JSC)

44

Page 45: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

ATHLETE (JPL)

45

Page 46: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

ATHLETE With Larger Legs

46

Page 47: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Desert RATS 2008 - Moses Lake, WA

47

Page 48: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Drill Sampling Robot - CMU

48

Page 49: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

K-10 (NASA Ames)

49

Page 50: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

ATHLETE (JPL)

50

Page 51: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Chariot (NASA JSC)

51

Page 52: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Chariot with Plow Blade

52

Page 53: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Chariot B Climbs a Boulder Field

53

Page 54: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Space Exploration Vehicle

54

Page 55: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Walking Robots

55

Page 56: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Scorpion King (JSC)

56

Page 57: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Serpentine Mobility

57

Page 58: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Tetwalker (GSFC)

58

Page 59: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Sub (Solid) Surface Access

59

Page 60: ENAE 788X Overview and Introduction - UMD

Course Overview ENAE 788X - Planetary Surface Robotics

U N I V E R S I T Y O FMARYLAND

Future Human Planetary Exploration• Will involve mobility

platforms at multiple levels– Small explorers– Unpressurized crew-

carrying vehicles– Pressurized rovers– Specialized systems

• Need for robustness and repairability

60