EMT NOTES 1

35
UNITI Static Electric fields In this chapter we will discuss on the followings: • Coulomb's Law • Electric Field & Electric Flux Density • Gauss's Law with Application • Electrostatic Potential, Equipotential Surfaces • Boundary Conditions for Static Electric Fields • Capacitance and Capacitors • Electrostatic Energy • Laplace's and Poisson's Equations • Uniqueness of Electrostatic Solutions • Method of Images • Solution of Boundary Value Problems in Different Coordinate Systems.

description

emt unit 1

Transcript of EMT NOTES 1

  • UNITI

    StaticElectricfields

    Inthischapterwewilldiscussonthefollowings:

    Coulomb'sLaw

    ElectricField&ElectricFluxDensity

    Gauss'sLawwithApplication

    ElectrostaticPotential,EquipotentialSurfaces

    BoundaryConditionsforStaticElectricFields

    CapacitanceandCapacitors

    ElectrostaticEnergy

    Laplace'sandPoisson'sEquations

    UniquenessofElectrostaticSolutions

    MethodofImages

    SolutionofBoundaryValueProblemsinDifferentCoordinateSystems.

  • IntroductionInthepreviouschapterwehavecoveredtheessentialmathematicaltoolsneededtostudyEM

    fields.Wehavealreadymentionedinthepreviouschapterthatelectricchargeisa

    fundamentalpropertyofmatterandchargeexistinintegralmultipleofelectroniccharge.

    Electrostaticscanbedefinedasthestudyofelectricchargesatrest.Electricfieldshavetheir

    sourcesinelectriccharges.

    (Note:Almostallrealelectricfieldsvarytosomeextentwithtime.However,formany

    problems,thefieldvariationisslowandthefieldmaybeconsideredasstatic.Forsomeother

    casesspatialdistributionisnearlysameasforthestaticcaseeventhoughtheactualfieldmay

    varywithtime.Suchcasesaretermedasquasistatic.)

    Inthischapterwefirststudytwofundamentallawsgoverningtheelectrostaticfields,viz,(1)

    Coulomb'sLawand(2)Gauss'sLaw.Boththeselawhaveexperimentalbasis.Coulomb's

    lawisapplicableinfindingelectricfieldduetoanychargedistribution,Gauss'slawiseasier

    tousewhenthedistributionissymmetrical.

    Coulomb'sLaw

    Coulomb'sLawstatesthattheforcebetweentwopointchargesQ1andQ2isdirectly

    proportionaltotheproductofthechargesandinverselyproportionaltothesquareofthe

    distancebetweenthem.

    Pointchargeisahypotheticalchargelocatedatasinglepointinspace.Itisanidealized

    modelofaparticlehavinganelectriccharge.

    Mathematically, ,wherekistheproportionalityconstant.

    InSIunits,Q1andQ2areexpressedinCoulombs(C)andRisinmeters.

    ForceFisinNewtons(N)and , iscalledthepermittivityoffreespace.

    (Weareassumingthechargesareinfreespace.Ifthechargesareanyotherdielectric

  • medium,wewilluse insteadwhere iscalledtherelativepermittivityorthe

    dielectricconstantofthemedium).

    Therefore .......................(1)

    AsshownintheFigure1letthepositionvectorsofthepointchargesQ1andQ2aregivenby

    and .Let representtheforceonQ1duetochargeQ2.

    Fig1:Coulomb'sLaw

    Thechargesareseparatedbyadistanceof .Wedefinetheunitvectorsas

    and ..................................(2)

    canbedefinedas .

    SimilarlytheforceonQ1duetochargeQ2canbecalculatedandif representsthisforcethenwecan

    write

    Whenwehaveanumberofpointcharges,todeterminetheforceonaparticularcharge

  • duetoallothercharges,weapplyprincipleofsuperposition.IfwehaveNnumberof

    chargesQ1,Q2,.........QNlocatedrespectivelyatthepointsrepresentedbytheposition

    vectors , ,...... ,theforceexperiencedbyachargeQlocatedat isgivenby,

    .................................(3)

    ElectricField:

    Theelectricfieldintensityortheelectricfieldstrengthatapointisdefinedastheforce

    perunitcharge.Thatis

    or, .......................................(4)

    TheelectricfieldintensityEatapointr(observationpoint)dueapointchargeQlocated

    at (sourcepoint)isgivenby:

    ..........................................(5)

    ForacollectionofNpointchargesQ1,Q2,.........QNlocatedat , ,...... ,theelectric

    fieldintensityatpoint isobtainedas

    ........................................(6)

    Theexpression(6)canbemodifiedsuitablytocomputetheelectricfiledduetoa

    continuousdistributionofcharges.

    Infigure2weconsideracontinuousvolumedistributionofcharge(t)intheregion

    denotedasthesourceregion.

    Foranelementarycharge ,i.e.consideringthischargeaspointcharge,

  • wecanwritethefieldexpressionas:

    .............(7)

    Fig2:ContinuousVolumeDistributionofCharge

    Whenthisexpressionisintegratedoverthesourceregion,wegettheelectricfieldatthepointPduetothisdistributionofcharges.Thustheexpressionfortheelectricfield

    atPcanbewrittenas:

    ..........................................(8)

    Similartechniquecanbeadoptedwhenthechargedistributionisintheformofaline

    chargedensityorasurfacechargedensity.

    ........................................(9)

    ........................................(10)

    Electricfluxdensity:

    AsstatedearlierelectricfieldintensityorsimplyElectricfield'givesthestrengthofthe

    fieldataparticularpoint.Theelectricfielddependsonthematerialmediainwhichthe

    fieldisbeingconsidered.Thefluxdensityvectorisdefinedtobeindependentofthe

  • materialmedia(aswe'llseethatitrelatestothechargethatisproducingit).Foralinear

    isotropicmediumunderconsiderationthefluxdensityvectorisdefinedas:

    ................................................(11)

    Wedefinetheelectricfluxas

    .....................................(12)

    Gauss'sLaw:Gauss'slawisoneofthefundamentallawsofelectromagnetismandit

    statesthatthetotalelectricfluxthroughaclosedsurfaceisequaltothetotalcharge

    enclosedbythesurface.

    Fig3:Gauss'sLaw

    LetusconsiderapointchargeQlocatedinanisotropichomogeneousmediumof

    dielectricconstant.Thefluxdensityatadistanceronasurfaceenclosingthechargeis

    givenby

    ...............................................(13)

    Ifweconsideranelementaryareads,theamountoffluxpassingthroughthe

    elementaryareaisgivenby

    .....................................(14)

  • But ,istheelementarysolidanglesubtendedbythearea atthe

    locationofQ.Thereforewecanwrite

    Foraclosedsurfaceenclosingthecharge,wecanwrite

    whichcanseentobesameaswhatwehavestatedinthedefinitionofGauss'sLaw.

    ApplicationofGauss'sLaw:

    Gauss'slawisparticularlyusefulincomputing or wherethechargedistributionhassomesymmetry.WeshallillustratetheapplicationofGauss'sLawwithsome

    examples.

    1.Aninfinitelinecharge

    AsthefirstexampleofillustrationofuseofGauss'slaw,letconsidertheproblemof

    determinationoftheelectricfieldproducedbyaninfinitelinechargeofdensityLC/m.Let

    usconsideralinechargepositionedalongthezaxisasshowninFig.4(a)(nextslide).

    Sincethelinechargeisassumedtobeinfinitelylong,theelectricfieldwillbeoftheform

    asshowninFig.4(b)(nextslide).

    IfweconsideraclosecylindricalsurfaceasshowninFig.2.4(a),usingGauss'stheorm

    wecanwrite,

    .....................................(15)

    ConsideringthefactthattheunitnormalvectortoareasS1andS3areperpendicularto

    theelectricfield,thesurfaceintegralsforthetopandbottomsurfacesevaluatestozero.

    Hencewecanwrite,

  • Fig4:InfiniteLineCharge

    .....................................(16)

    2.InfiniteSheetofCharge

    AsasecondexampleofapplicationofGauss'stheorem,weconsideraninfinitecharged

    sheetcoveringthexzplaneasshowninfigure5.Assumingasurfacechargedensityof

    fortheinfinitesurfacecharge,ifweconsideracylindricalvolumehavingsidesplacedsymmetricallyasshowninfigure5,wecanwrite:

  • ..............(17)

    Fig5:InfiniteSheetofCharge

    Itmaybenotedthattheelectricfieldstrengthisindependentofdistance.Thisistruefor

    theinfiniteplaneofchargeelectriclinesofforceoneithersideofthechargewillbe

    perpendiculartothesheetandextendtoinfinityasparallellines.Asnumberoflinesof

    forceperunitareagivesthestrengthofthefield,thefieldbecomesindependentof

    distance.Forafinitechargesheet,thefieldwillbeafunctionofdistance.

    3.UniformlyChargedSphere

    Letusconsiderasphereofradiusr0havingauniformvolumechargedensityofrv

    C/m3.Todetermine everywhere,insideandoutsidethesphere,weconstructGaussiansurfacesofradiusrr0asshowninFig.6(a)andFig.6(b).

    Fortheregion thetotalenclosedchargewillbe

    .........................(18)

  • Fig6:UniformlyChargedSphere

    ByapplyingGauss'stheorem,

    ...............(19)

    Therefore

    ..............................................(20)

    Fortheregion thetotalenclosedchargewillbe

    ...........................................................(21)

    ByapplyingGauss'stheorem,

    .......................................(22)

    ElectrostaticPotentialandEquipotentialSurfaces

    Intheprevioussectionswehaveseenhowtheelectricfieldintensityduetoachargeor

    achargedistributioncanbefoundusingCoulomb'slaworGauss'slaw.Sinceacharge

    placedinthevicinityofanothercharge(orinotherwordsinthefieldofothercharge)

    experiencesaforce,themovementofthechargerepresentsenergyexchange.

    Electrostaticpotentialisrelatedtotheworkdoneincarryingachargefromonepointto

    theotherinthepresenceofanelectricfield.Letussupposethatwewishtomovea

  • positivetestcharge fromapointPtoanotherpointQasshownintheFig.8.Theforceatanypointalongitspathwouldcausetheparticletoaccelerateandmoveitout

    oftheregionifunconstrained.Sincewearedealingwithanelectrostaticcase,aforce

    equaltothenegativeofthatactingonthechargeistobeappliedwhile movesfrom

    PtoQ.Theworkdonebythisexternalagentinmovingthechargebyadistance isgivenby:

    .............................(23)

    Fig8:MovementofTestChargeinElectricField

    Thenegativesignaccountsforthefactthatworkisdoneonthesystembytheexternal

    agent.

    .....................................(24)ThepotentialdifferencebetweentwopointsPandQ,VPQ,isdefinedasthework

    doneperunitcharge,i.e.

    ...............................(25)Itmaybenotedthatinmovingachargefromtheinitialpointtothefinalpointifthe

    potentialdifferenceispositive,thereisagaininpotentialenergyinthemovement,

    externalagentperformstheworkagainstthefield.Ifthesignofthepotentialdifference

  • isnegative,workisdonebythefield.

    Wewillseethattheelectrostaticsystemisconservativeinthatnonetenergyis

    exchangedifthetestchargeismovedaboutaclosedpath,i.e.returningtoitsinitial

    position.Further,thepotentialdifferencebetweentwopointsinanelectrostaticfieldisa

    pointfunctionitisindependentofthepathtaken.Thepotentialdifferenceismeasured

    inJoules/CoulombwhichisreferredtoasVolts.

    LetusconsiderapointchargeQasshownintheFig.9.

    Fig9:ElectrostaticPotentialcalculationforapointcharge

    FurtherconsiderthetwopointsAandBasshownintheFig.9.Consideringthe

    movementofaunitpositivetestchargefromBtoA,wecanwriteanexpressionforthe

    potentialdifferenceas:

    ...................(26)Itiscustomarytochoosethepotentialtobezeroatinfinity.Thuspotentialatanypoint(

    rA=r)duetoapointchargeQcanbewrittenastheamountofworkdoneinbringinga

    unitpositivechargefrominfinitytothatpoint(i.e.rB=0).

    ..................................(27)

  • Or,inotherwords,

    ..................................(28)LetusnowconsiderasituationwherethepointchargeQisnotlocatedattheoriginas

    showninFig.10.

    Fig10:ElectrostaticPotentialdueaDisplacedCharge

    ThepotentialatapointPbecomes

    ..................................(29)Sofarwehaveconsideredthepotentialduetopointchargesonly.Asanyothertypeof

    chargedistributioncanbeconsideredtobeconsistingofpointcharges,thesamebasic

    ideasnowcanbeextendedtoothertypesofchargedistributionalso.Letusfirst

    considerNpointchargesQ1,Q2,.....QNlocatedatpointswithpositionvectors , ,

    ....... .Thepotentialatapointhavingpositionvector canbewrittenas:

    ..................................(30a)OR

    ...................................(30b)

  • Forcontinuouschargedistribution,wereplacepointchargesQnbycorresponding

    chargeelements or or dependingonwhetherthechargedistributionislinear,surfaceoravolumechargedistributionandthesummationisreplacedbyan

    integral.Withthesemodificationswecanwrite:

    Forlinecharge, (31)

    Forsurfacecharge, .................................(32)

    Forvolumecharge, .................................(33)

    Itmaybenotedherethattheprimedcoordinatesrepresentthesourcecoordinatesand

    theunprimedcoordinatesrepresentfieldpoint.

    Further,inourdiscussionsofarwehaveusedthereferenceorzeropotentialatinfinity.

    Ifanyotherpointischosenasreference,wecanwrite:

    .................................(34)

    whereCisaconstant.Inthesamemannerwhenpotentialiscomputedfromaknown

    electricfieldwecanwrite:

    ..(35)Thepotentialdifferenceishoweverindependentofthechoiceofreference.

    .......................(36)

  • Wehavementionedthatelectrostaticfieldisaconservativefieldtheworkdonein

    movingachargefromonepointtotheotherisindependentofthepath.Letusconsider

    movingachargefrompointP1toP2inonepathandthenfrompointP2backtoP1

    overadifferentpath.Iftheworkdoneonthetwopathsweredifferent,anetpositiveor

    negativeamountofworkwouldhavebeendonewhenthebodyreturnstoitsoriginal

    positionP1.Inaconservativefieldthereisnomechanismfordissipatingenergy

    correspondingtoanypositiveworkneitheranysourceispresentfromwhichenergy

    couldbeabsorbedinthecaseofnegativework.Hencethequestionofdifferentworks

    intwopathsisuntenable,theworkmusthavetobeindependentofpathanddepends

    ontheinitialandfinalpositions.

    Sincethepotentialdifferenceisindependentofthepathstaken,VAB=VBA,andover

    aclosedpath,

    .................................(37)ApplyingStokes'stheorem,wecanwrite:

    ............................(38)fromwhichitfollowsthatforelectrostaticfield,

    ......................(39)Anyvectorfieldthatsatisfiesiscalledanirrotationalfield.

    Fromourdefinitionofpotential,wecanwrite

    .................................(40)fromwhichweobtain,

    ..........................................(41)

  • Fromtheforegoingdiscussionsweobservethattheelectricfieldstrengthatanypointis

    thenegativeofthepotentialgradientatanypoint,negativesignshowsthat is

    directedfromhighertolowervaluesof .Thisgivesusanothermethodofcomputingtheelectricfield,i.e.ifweknowthepotentialfunction,theelectricfieldmaybe

    computed.Wemaynoteherethatthatonescalarfunction containallthe

    informationthatthreecomponentsof carry,thesameispossiblebecauseofthefact

    thatthreecomponentsof areinterrelatedbytherelation .

    EquipotentialSurfaces

    An equipotential surface refers to a surface where the potential is constant. The

    intersection of an equipotential surface with an plane surface results into a path called

    an equipotential line. No work is done in moving a charge from one point to the other

    alonganequipotentiallineorsurface.

    In figure 12, the dashes lines show the equipotential lines for a positive point charge. By

    symmetry, the equipotential surfaces are spherical surfaces and the equipotential lines

    arecircles.Thesolidlinesshowthefluxlinesorelectriclinesofforce.

    Fig12:EquipotentialLinesforaPositivePointCharge

    MichaelFaradayasawayofvisualizingelectricfieldsintroducedfluxlines.Itmaybe

    seenthattheelectricfluxlinesandtheequipotentiallinesarenormaltoeachother.In

  • ordertoplottheequipotentiallinesforanelectricdipole,weobservethatforagivenQ

    andd,aconstantVrequiresthat isaconstant.Fromthiswecanwrite

    tobetheequationforanequipotentialsurfaceandafamilyofsurfacescanbegeneratedforvariousvaluesofcv.Whenplottedin2Dthiswouldgiveequipotential

    lines.

    To determine the equation for the electric field lines, we note that field lines represent

    thedirectionof inspace.Therefore,

    ,kisaconstant.............................................(42)

    .................(43)

    Forthedipoleunderconsideration =0,andthereforewecanwrite,

    ..................................(44)ElectrostaticEnergyandEnergyDensity:

    We have stated that the electric potential at a point in an electric field is the amount of

    work required to bring a unit positive charge from infinity (reference of zero potential) to

    that point. To determine the energy that is present in an assembly of charges, let us first

    determine the amount of work required to assemble them. Let us consider a number of

    discrete charges Q1, Q2,......., QN are brought from infinity to their present position one

    by one. Since initially there is no field present, the amount of work done in bring Q1 is

    zero. Q2 is brought in the presence of the field of Q1, the work done W1= Q2V21 where

    V21 is the potential at the location of Q2 due to Q1. Proceeding in this manner, we can

    write, the total work done ....................(45)

    Hadthechargesbeenbroughtinthereverseorder,

  • ................(46)

    Therefore,

    ................(47)

    HereVIJrepresentvoltageattheIthchargelocationduetoJthcharge.Therefore,

    Or, ................(48)Ifinsteadofdiscretecharges,wenowhaveadistributionofchargesoveravolumev

    thenwecanwrite, ................(49)

    where isthevolumechargedensityandVrepresentsthepotentialfunction.

    Since, ,wecanwrite

    .......................................(50)

    Usingthevectoridentity,,wecanwrite

    ................(51)

    Intheexpression ,forpointcharges,sinceVvariesas andDvariesas

    ,thetermV variesas whiletheareavariesasr2.Hencetheintegralterm

  • variesatleastas andtheassurfacebecomeslarge(i.e. )theintegraltermtendstozero.

    ThustheequationforWreducesto

    ................(52)

    ,iscalledtheenergydensityintheelectrostaticfield.PoissonsandLaplacesEquations

    Forelectrostaticfield,wehaveseenthat

    ................................................................(53)Formtheabovetwoequationswecanwrite

    ................................................(54)

    Usingvectoridentitywecanwrite, ................(55)

    Forasimplehomogeneousmedium, isconstantand .Therefore,

    ................(56)ThisequationisknownasPoissonsequation.Herewehaveintroducedanewoperator

    ,(delsquare),calledtheLaplacianoperator.InCartesiancoordinates,

    ...............(57)Therefore,inCartesiancoordinates,Poissonequationcanbewrittenas:

    ...............(58)Incylindricalcoordinates,

  • ...............(59)Insphericalpolarcoordinatesystem,

    ...............(60)

    Atpointsinsimplemedia,wherenofreechargeispresent,Poissonsequationreducesto

    ...................................(61)

    whichisknownasLaplacesequation.

    Laplaces and Poissons equation are very useful for solving many practical electrostatic field

    problems where only the electrostatic conditions (potential and charge) at some boundaries are

    known and solution of electric field and potential is to be found hroughout the volume. We shall

    considersuchapplicationsinthesectionwherewedealwithboundaryvalueproblems.

  • Conventionandconductioncurrent:

  • CapacitanceandCapacitors

    We have already stated that a conductor in an electrostatic field is an Equipotential body and any

    charge given to such conductor will distribute themselves in such a manner that electric field

    inside the conductor vanishes. If an additional amount of charge is supplied to an isolated

    conductor at a given potential, this additional charge will increase the surface charge density

    . Since the potential of the conductor is given by , the potential of the

    conductor will also increase maintaining the ratio same . Thus we can write where

    the constant of proportionality C is called the capacitance of the isolated conductor. SI unit of

    capacitance is Coulomb/ Volt also called Farad denoted by F. It can It can be seen that if V=1, C

    = Q. Thus capacity of an isolated conductor can also be defined as the amount of charge in

    Coulombrequiredtoraisethepotentialoftheconductorby1Volt.

    Of considerable interest in practice is a capacitor that consists of two (or more) conductors

    carrying equal and opposite charges and separated by some dielectric media or free space. The

    conductorsmayhavearbitraryshapes.Atwoconductorcapacitorisshowninfigurebelow.

    Fig:CapacitanceandCapacitors

  • Whenadcvoltagesourceisconnectedbetweentheconductors,achargetransferoccurswhich

    resultsintoapositivechargeononeconductorandnegativechargeontheotherconductor.The

    conductorsareequipotentialsurfacesandthefieldlinesareperpendiculartotheconductor

    surface.IfVisthemeanpotentialdifferencebetweentheconductors,thecapacitanceisgivenby

    .Capacitanceofacapacitordependsonthegeometryoftheconductorandthe

    permittivityofthemediumbetweenthemanddoesnotdependonthechargeorpotential

    differencebetweenconductors.ThecapacitancecanbecomputedbyassumingQ(atthesame

    timeQontheotherconductor),firstdetermining usingGaussstheoremandthen

    determining .Weillustratethisprocedurebytakingtheexampleofaparallelplate

    capacitor.

    Example:Parallelplatecapacitor

    Fig:ParallelPlateCapacitor

    Fortheparallelplatecapacitorshowninthefigureabout,leteachplatehasareaAandadistance

    hseparatestheplates.Adielectricofpermittivity fillstheregionbetweentheplates.The

    electricfieldlinesareconfinedbetweentheplates.Weignorethefluxfringingattheedgesof

    theplatesandchargesareassumedtobeuniformlydistributedovertheconductingplateswith

    densities and , .

    ByGaussstheoremwecanwrite, .......................(1)

    Aswehaveassumed tobeuniformandfringingoffieldisneglected,weseethatEis

  • constantintheregionbetweentheplatesandtherefore,wecanwrite .Thus,fora

    parallelplatecapacitorwehave,

    ........................(2)

    SeriesandparallelConnectionofcapacitors

    Capacitorsareconnectedinvariousmannersinelectricalcircuitsseriesandparallelconnections

    arethetwobasicwaysofconnectingcapacitors.Wecomputetheequivalentcapacitanceforsuch

    connections.

    SeriesCase:Seriesconnectionoftwocapacitorsisshowninthefigure1.Forthiscasewecan

    write,

    .......................(1)

    Fig1.:SeriesConnectionofCapacitors

  • Fig2:ParallelConnectionofCapacitors

    Thesameapproachmaybeextendedtomorethantwocapacitorsconnectedinseries.

    ParallelCase:Fortheparallelcase,thevoltagesacrossthecapacitorsarethesame.

    Thetotalcharge

    Therefore, .......................(2)

    ContinuityEquationandKirchhoffsCurrentLaw

    Let us consider a volume V bounded by a surface S. A net charge Q exists within this region. If a

    net current I flows across the surface out of this region, from the principle of conservation of

    charge this current can be equated to the time rate of decrease of charge within this volume.

    Similarly, if a net current flows into the region, the charge in the volume must increase at a rate

    equaltothecurrent.Thuswecanwrite,

    .....................................(3)

    or, ......................(4)

    Applyingdivergencetheoremwecanwrite,

    .....................(5)

    It may be noted that, since in general may be a function of space and time, partial derivatives

    are used. Further, the equation holds regardless of the choice of volume V , the integrands must

  • beequal.

    Thereforewecanwrite,

    ................(6)

    The equation (6) is called the continuity equation, which relates the divergence of current density

    vectortotherateofchangeofchargedensityatapoint.

    Forsteadycurrentflowinginaregion,wehave

    ......................(7)

    Consideringaregionboundedbyaclosedsurface,

    ..................(8)

    whichcanbewrittenas,

    ......................(9)

    whenweconsidertheclosesurfaceessentiallyenclosesajunctionofanelectricalcircuit.

    The above equation is the Kirchhoffs current law of circuit theory, which states that algebraic

    sumofallthecurrentsflowingoutofajunctioninanelectriccircuit,iszero.

    Questionbank:

    1stunit

  • Bits:

    1. Displacementcurrentinaconductorisgreaterthanconductioncurrent(yes/no)2. Electricdipolemomentisavector (yes/no)3. Electricsusceptibilityhastheunitofpermittivity(yes/no)4. Capacitancedependsondielectricmaterialbetweentheconductors(yes/no)5. TheunitofpotentialisJoule/coulomb(yes/no)

    6. (yes/no)

    7. Coulombsforceisproportionalto 8. Theunitofelectricfluxiscoulombs

    9. Theelectricfieldonxaxisduetoalinechargeextendingfrom 10.Potentialatallpointsonthesurfaceofaconductoristhesame11.Laplaceequationhasonlyonesolution12.Exampleofnonpolartypeofdielectricisoxygen13.Theelectricsusceptabilittyofadielectricis4,itsrelativepermittivityis514.BoundaryconditionforthenormalcomponentofEontheboundaryofadielectricis

    = 15.Potentialduetoachargeatapointsituatedatinfinityis0

  • 16.Relationtimeis 17.Theforcemagnitudeb/wQ1=1CandQ2=1Cwhentheyareseparatedby1minfree

    spaceis9*109N

    18. =0isinpointform =019.Directionofdipolemomentisindirectionofappliedelectricfield20. Ifaforce,F=4ax+ay+2aZmoves1 Cchargethroughadisplacementof4ax+2ay

    6aZtheresultantworkdoneis6 J