35675966 EMT Electromagnetic Theory MODULE I (1)

download 35675966 EMT Electromagnetic Theory MODULE I (1)

of 197

Transcript of 35675966 EMT Electromagnetic Theory MODULE I (1)

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    1/197

    MODULE I

    VECTOR ALGEBRA, VECTOR CALCULUS, COORDINATE SYSTEMS, VECTOR FIELDS

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    2/197

    Syllabus Module IVector analysis: Vector algebra, Coordinate systems and transformations-Cartesian, cylindrical and spherical coordinates. Constant coordinate surfaces. Vector calculus-Differential length, area and volume. Line, surface and volume integrals. Del operator. Gradient of a scalar, Divergence of a vector, Divergence theorem, Curl of a vector. Stocks theorem, Laplacian of a scalar. Classification of vector fields.

    Compiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    3/197

    References1. 2. Text Books: Mathew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press Jordan and Balmain, Electromagnetic waves and radiating systems, Pearson Education PHI Ltd. References: Kraus Fleisch, Electromagnetics with applications, McGraw Hill William.H.Hayt, Engineering Electromagnetics, Tata McGraw Hill N.Narayana Rao, Elements of Engineering Electromagnetics, Pearson Education PHI Ltd. D.Ganesh Rao, Engineering Electromagnetics, Sanguine Technical Publishers. Joseph.A.Edminister, Electromagnetics, Schaum series-McGraw Hill

    1. 2. 3. 4. 5.

    Compiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    4/197

    Scalars and vectorsA scalar is a quantity that has only magnitude.Time Distance Temperature Speed

    A vector is a quantity that has both magnitude and direction.Force Displacement Velocity

    Compiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    5/197

    Unit vectorA vector

    A has both magnitude and direction.

    Magnitude of A = A = AA unit vector along A is defined as a vector whose magnitude is unity and whosedirection is along vector A . It is denoted by a A

    aA

    A A = = A A

    A = AaAVector A is completely specified in terms of its magnitude A and direction a A

    Compiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    6/197

    Vectors represented in rectangular coordinate systemsAny vector in space can be uniquely expressed in terms of x, y and z coordinatesusing a rectangular coordinate system.Z

    Az A = Ax a x + Ay a y + Az a z

    az ax AxX

    AAy ayY

    Compiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    7/197

    Vectors represented in rectangular coordinate systems A = Ax a x + Ay a y + Az a zAx , Ay , Az Components of A in the direction of x, y , z a x , a y , a z Unit vectors specifying the direction of x, y , z axes

    Compiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    8/197

    Position vector of a point in spaceA point P in Cartesian coordinate system may be expressed as its x,y,z coordinates. The position vector of a point P is the directed distance from the origin Oto the point P. A point P (3,4,5) has the position vector rp = 3a x + 4a y + 5azZ

    AzP

    rp = OP = Ax a x + Ay a y + Az a zAy

    az ax AxX

    Y

    ay

    Compiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    9/197

    Vector addition and subtraction If A = Ax a x + Ay a y + Az a z and B = B x a x + B y a y + Bz a z

    C = A + B = ( Ax + Bx ) a x + ( Ay + B y ) a y + ( Az + Bz ) a z D = A B Bx ) a x + ( Ay B y ) a y + ( Az Bz ) a z

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    10/197

    Distance vectorDistance vector is the displacement from one point to another. If two points A (Ax,Ay,Az) and B (Bx,By,Bz) are given, the distance vector from A to B is given by

    rAB = ( Bx Ax ) a x + ( B y Ay ) a y + ( Bz Az ) a z

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    11/197

    Unit vector in the direction of given vectorLet

    A

    be a vector in space given by

    A = Ax a x + Ay a y + Az a z

    A unit vector in the direction of

    Ais given by

    aA =

    Ax a x + Ay a y + Az a z Ax 2 + Ay 2 + Az 2

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    12/197

    Example 1 If A = 10a x 4a y + 6a z and B = 2a x + a y find (i ) Component of A along a y (ii ) Magnitude of 3A B (iii ) A unit vector alongA + 2 B

    Answer : (ii ) 3A B = ( 30a x 12a y + 18a z ) ( 2a x + a y ) = 28a x 13a3A B = 282 + 132 + 182 = 35.74Compiled by: MKP for CEC S5 EC

    July 2008

    (i )

    4

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    13/197

    Example 1 (iii ) A + 2 B = 14a x 2a y + 6a z A unit vector c along A + 2 B = = 14a x 2a y + 6a z 142 + 2 2 + 62 A + 2B A +

    c = 0.9113a x 0.1302a y + 0.3906a z

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    14/197

    Vector multiplication

    dot productScalar product or dot product: It is defined as the product of magnitudes of thetwo vectors and the cosine of the angle between them.

    AB is the smaller angle between themProperties:

    A B = AB cos AB

    (i ) Commutative Property: A B = B A

    (ii ) When two vectors are perpendicular the angle between them is =90 cos90 = 0A B = AB cos90 = 0

    If the dot product of two vectors are zero, they are perpendicular.Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    15/197

    Vector multiplication

    dot product (iii ) Since a x , a y , a z are mutually perpendicular ax a y = a = 0(iv ) When two vectors are parallel the angle between them is either 0 or 180A B = AB cos0 = AB or A B = AB cos180 = AB

    ( v ) The s

    uare of a vector is the s

    uare of its magnitude.A A = AA cos0 = A2 A2 = A2Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    16/197

    Vector multiplication

    dot product( vi ) Scalar product is e

    ual to the sum of products of their corresponding components.

    If A = Ax a x + Ay a y + Az a z and B = B x a x + B y a y + Bz a z x + Ay a y + Az a z ) ( Bx a x + B y a y + Bz a z )

    = Ax Bx + Ay B y + Az Bz

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    17/197

    Vector Product or cross productVector Product or cross product: Vector product of two vectors A and B is denoted as A

    B and is defined as

    A

    B = A B sin AB an Where an is a unit vector perpendicular to A and B such that A, B and an forms aright handed system. Geometrically the cross product can be defined as a vectorwhose magnitude is e

    ual to the area of the parallelogram formed by A and B andwhose direction is in the direction of advance of a right handed screw as A isturned in to B through the smaller angle.

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    18/197

    Vector Product or cross productA

    B

    AB sin

    B

    an

    A

    AB sin

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    19/197

    Vector Product or cross productProperties:

    (i ) Anti commutative : A

    B = B

    A(ii ) Distributive : A

    B + C = A

    B + A

    C (iii ) Not Associative : A

    B

    C A

    v ) Vector product of two parallel vectors is zero. A

    B = A B sin AB an = A B sin 0an = 0 ( v ) A

    A = A A sin 0an = 0Compiled by: MKP for CEC S5 EC

    July 2008

    (

    () (

    ) (

    ) (

    )

    )

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    20/197

    Vector Product or cross productProperties:

    ( vi ) a x

    a x = a y

    a y = a z

    a z = 0 ( vii ) a x

    a y = 1.1.sin 90 a z = a z and

    a y

    az = ax az

    ax = a y a y

    a x = a z az

    a y = a x a x

    a z = a yCompiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    21/197

    Vector Product or cross productProperties:

    ay

    ax

    az

    a y

    ax az

    az

    az

    ay ax a x

    ay

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    22/197

    Vector Product or cross product ( viii ) If A = Ax a x + Ay a y + Az a z and B = B x a x + B y a y + Bz a z

    ax A

    B = Ax Bx

    ay Ay By

    az Az Bz

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    23/197

    Projection of a vector on another vectorScalar component of A along B is called projection of A on B and is given by

    AB = A cos AB

    = A aB cos AB = A aBA AB

    aB

    A cos AB

    BCompiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    24/197

    Projection of a vector on another vectorVector component of A along B is the scalar component multiplied by a unit vector along B

    AB = AB aB = A aB aB

    (

    )

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    25/197

    Scalar triple productGiven three vectors A, B and C the scalar triple product is defined as

    A B

    C = B C

    A = C A

    Band is represented as A B C

    (

    )

    (

    )

    (

    )

    Geometrically the scalar triple product is e

    ual to the volume of a parallelepiped having A, B and C as sides Properties:

    (i )

    A B C = B C A = C A B i.e. A B

    C = B C

    A = C A

    B

    (

    )

    (

    )

    (

    )

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    26/197

    Scalar triple product(ii) A change in the cyclic order of vectors changes the sign of scalar triple product.

    A B C = B A C

    (iii ) If A = Ax a x + Ay a y + Az a z and B = B x a x + B y a y + Bz a z a x + C y a y + Cz azAx A B C = Bx Cx Ay By Cy Az Bz CzCompiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    27/197

    Vector triple productFor any three vectors A, B, CA

    B

    C = B AC C A Bbac

    cab rule

    (

    )

    (

    )(

    )

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    28/197

    Cylindrical Coordinate SystemsAny point in space is considered to be at the intersection of three mutually perpendicular surfaces:A circular cylinder (=constant) A ve

    tical plane (=constant) A ho

    izontal plane (z=constant)

    Any point in space is

    ep

    esented by th

    ee coo

    dinates P(,,z) denotes the

    adius of an imagina

    y cylinde

    passing th

    ough P, o

    the

    adial distance f

    om z axis to the point P. denotes azimuthal angle, measu

    ed f

    om x axisto a ve

    tical inte

    secting plane passing th

    ough P. z denotes distance f

    om xy-plane to a ho

    izontal inte

    secting plane passing th

    ough P. It is the same as in

    ectangula

    coo

    dinate system.Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    29/197

    Cylind

    ical Coo

    dinate SystemsZ z=constant =constant z P(,,z) Y

    Ranges : 0 < 0 < 2 =constant

    X

    < z < Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    30/197

    Cylindrical Coordinate SystemsP(3,45,8) Z =3

    z=8 P(3,45,8) Y =45

    XCompiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    31/197

    Cylind

    ical Coo

    dinate SystemsZ

    a z az

    a z a a

    a

    Y

    XCompiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    32/197

    Cylind

    ical Coo

    dinate SystemsA vecto

    in cylind

    ical coo

    dinate system may be specified using th

    ee mutuallype

    pendicula

    unit vecto

    s a , a , a z fo

    m a

    ight handed system because an RH sc

    ew when

    otated f

    om a to a moves towa

    ds a z These unit vecto

    s specify di

    eons along , and z axes. Using these unit vecto

    s any vecto

    A may be exp

    essed as

    a , a , a z

    A = A a + A a + Az a zThe magnitude of the vecto

    is given by

    A =A 2 + A 2 + A z 2Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    33/197

    Cylind

    ical Coo

    dinate Systems

    a a = a a = a z a z = 1 a a = a a z = a z Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    34/197

    Relationship between cylind

    ical and

    ectangula

    coo

    dinate systemsz Z

    = x2 + y2 = tan 1 z=z y x

    P(,,z) o

    (x,y,z)

    z y x

    x = cos y = sin

    z=zY

    x = cos

    y = sin X

    a z a aCompiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    35/197

    Relationship between cylind

    ical and

    ectangula

    coo

    dinate systemsY

    a a

    ax a

    a cos

    a

    a sin X

    a x = a cos a sin Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    36/197

    Relationshi

    between cylindrical and rectangular coordinate systemsY

    a a

    ay

    a sin a a cos

    X

    a y = a cos + a sin Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    37/197

    Relationship between cylind

    ical and

    ectangula

    coo

    dinate systemsY

    ay

    a

    ax

    X

    a = a x cos + a y sin Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    38/197

    Relationship between cylind

    ical and

    ectangula

    coo

    dinate systemsY

    a a x

    ay

    a

    ax

    X

    a = a y cos a x sin Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    39/197

    Relationshi

    between cylindrical and rectangular coordinate systems a x = a cos a sin

    a y = a cos + a sin equations (2) az = az a = a x cos + a y sin a = a y cos a x sin az = az

    equations (3) Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    40/197

    T

    ansfo

    mation of vecto

    s between cylind

    ical and

    ectangula

    coo

    dinate systemsSubstituting the equations (2) in the gene

    al equation fo

    a vecto

    in

    ectangula

    coo

    dinates,

    A = Ax ( a cos a sin ) + Ay ( a cos + a sin ) + Az a z A Ax sin + Ay cos ) a + Az a zA = Ax cos + Ay sin

    A = Ax a x + Ay a y + Az a z

    A = Ax sin + Ay cos

    Az = Az equations (4) Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    41/197

    T

    ansfo

    mation of vecto

    s between cylind

    ical and

    ectangula

    coo

    dinate systemsSubstituting the equations (3) in the gene

    al equation fo

    a vecto

    in cylind

    ical coo

    dinates,

    A = A ( a x cos + a y sin ) + A ( a x sin + a y cos ) + Az a z x + ( A sin + A cos ) a y + Az a z

    A = A a x + A a y + Az a z

    Ax = A cos A sin

    Ay = A sin + A cos Az = Az

    equations (5) Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    42/197

    T

    ansfo

    mation of vecto

    s between cylind

    ical and

    ectangula

    coo

    dinate systemsT

    ansfo

    mation of a vecto

    exp

    essed in

    ectangula

    coo

    dinates (Ax.Ay,Az) to cylind

    ical coo

    dinates (A.A,Az) can be achieved using equations (4). The set of equations (4) can be exp

    essed in mat

    ix fo

    m as

    A cos sin 0 Ax A = sin cos 0 A y 0 1 Az

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    43/197

    Transformation of vectors between cylindrical and rectangular coordinate systemsTransformation of a vector expressed in cylindrical coordinates (A.A,Az) to

    ectangula

    coo

    dinates (Ax.Ay,Az) can be achieved using equations (5). The set of equations (5) can be exp

    essed in mat

    ix fo

    m as

    Ax cos sin 0 A A = sin cos 0 A y 0 1 Az

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    44/197

    Example

    2Convert the following points expressed in cylindrical coordinates to rectangularcoordinate system. (i) P(2,5/6,3) x = cos (ii) Q(4,4/3,

    1)

    y = sin

    z=z(i ) x = cos = 2cos 5 = 1.732 6 5 y = sin = 2sin =1 6P(2, (ii ) P(4, 5 ,3) P( 1.732,1,3) 6 4 , 1) P( 2, 3.464, 1) 3Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    45/197

    Exam

    le

    1Convert the following

    oint ex

    ressed in rectangular coordinate system to cylindrical coordinates and sketch the location of the

    oint. P(x=3,y=4,z=5) Z = x2 +y2 = x 2 + y 2 = 32 + 42 = 5 = tan 1 y 4 = tan 1 = 53.1 x 3=5

    = tan 1 z=z

    y x

    P(3, 4,5) P(5, 53.1 ,5)

    z=5 P(5,53.1,5) Y X =53.1Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    46/197

    Exam

    le

    3Convert the vector

    = 4a x 2a y 4a z located at A(2,3,5) in to cylindrical cdinates.

    A cos sin 0 Ax A = sin cos 0 A y 0 1 Az

    cos sin 0 4 = sin cos 0 2 0 1 4 0

    A = 4cos 2sin At the

    oint P(2,3,5)A = 4cos56.3 2sin 56.3

    A = 4sin 2cos Az = 4 = tan 1 y 3 = tan 1 = 56.3 x 2

    A = 4sin 56.3 2cos56.3

    Az = 4

    = ( 4cos56.3 2sin 56.3) a + ( 4sin 56.3 2cos56.3) a 4a z

    = 0.556a 4.44a 4a zCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    47/197

    Example

    4Exp

    ess the vecto

    coo

    dinates.

    xy 2 za x + x 2 yza y + xyz 2a z

    in cylind

    ical

    x = cos

    y = sin

    A cos

    sin 0 Ax A = sin

    cos 0 A

    y 0 1 Az 2 A cos sin 0 xy z A = sin cos 0 x 2 yz 0

    Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    48/197

    Example

    4 (Contd)A = xy 2 z cos + x 2 yz sin A = xy 2 z sin + x 2 yz cos

    Az = xyz 2Put x = cos y = sin

    A = 3 z cos2 sin 2 + 3 z sin 2 cos2 = 2 3 z cos2 sin 2 A = 3 z 3 sin Az = 2 z 2 sin cos Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    49/197

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    50/197

    Sphe

    ical coo

    dinate systemZ Z

    Y

    Y

    =constant X

    =constant X

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    51/197

    Sphe

    ical coo

    dinate systemZ

    P(

    , , )

    Y

    Ranges : 0

    < 0 X

    0 < < 2

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    52/197

    S

    herical coordinate systemZ

    ar

    ar a a

    a aY

    r

    Ranges : 0 r < 0 X

    0 < < 2Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    53/197

    S

    herical coordinate systemThree unit vectors of the s

    herical coordinate system are shown in the figure. Unit vector ar lies along the radially outward direction to the s

    herical surface. It lies on the cone =constant and the lane =constant The unit vector a is normato the conical surface and lies in =constant

    lane and is tangential to the s

    herical surface. Unit vector a is the same as in cylindrical coordinate system. Itis normal to =constant

    lane and is tangential to both the cone and the s

    here. The unit vectors are mutually

    er

    endicular and forms a right handed set. An RH screw when rotated from ar to a will move it towards a direction.

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    54/197

    S

    herical coordinate systemA vector

    A in s herical coordinate system may be ex ressed as A = Ar ar + A a + A a a

    , a , a a

    e unit vecto

    s along

    , , di

    ections

    Magnitude o

    the vecto

    is given by

    A =

    A

    2 + A 2 + A 2

    The unit vecto

    s

    a

    a

    = a a = a a = 1 a

    a = a a = a a

    = 0

    a

    , a , a

    a

    e mutually o

    thogonal. Thus

    a

    a = a a

    a = a

    a

    a

    = aCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    55/197

    , , in te

    ms o

    x, y , z

    = x2 + y2 + z2 = tan 1x2 + y2 z

    T

    ans

    o

    mation o

    va

    iablesZ

    =

    sin

    x, y , z in te

    ms o

    , , x =

    sin cos y =

    sin sin z =

    cos

    = tan

    1

    y x

    P(x,y,z) o

    (,,z) o

    (

    ,,) z

    z =

    cos y Y

    x

    x = cos

    y = sin XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    56/197

    T

    ans

    o

    mation o

    va

    iables

    = x2 + y2 + z2

    x =

    sin cos y =

    sin sin

    = tan 1

    x2 + y2 z

    z =

    cos

    = tan

    1

    y x

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    57/197

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    58/197

    T

    ans

    o

    mation o

    vecto

    s90

    a x = a

    sin cos + a cos cos a sin

    Z =

    sin

    a y = a

    sin sin + a cos sin + a cos a z = a

    cos a sin

    z

    a

    a

    a

    a

    z =

    cos

    a

    a

    y

    Y

    az ay

    xy = sin

    x = cos

    ax

    X

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    59/197

    T

    ans

    o

    mation o

    vecto

    s The unit vecto

    s a x , a y , a z a

    e to be exp

    essed in te

    ms o

    unit vectosphe

    ical coo

    dinates a

    , a , a a x consists o

    the p

    ojections o

    a

    , a he x axis. In o

    de

    to

    ind this p

    ojection,

    i

    st

    ind the p

    ojection on the xyplane and then on to the

    e

    ui

    ed unit vecto

    s. a x = sin cos a

    + cos c a a y = sin sin a

    + cos sin a + cos a equation (1)

    a z = cos a

    sin a

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    60/197

    T

    ans

    o

    mation o

    vecto

    s90

    a

    = a x cos sin + a y sin sin + a z cos a = a x cos cos

    Z =

    sin

    a = a x sin + a y cos

    a

    a

    z

    a

    90

    xy = sin

    z =

    cos

    y

    Y

    az ax ay

    x = cos

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    61/197

    T

    ans

    o

    mation o

    vecto

    s90

    a

    = a x cos sin + a y sin sin + a z cos

    Z =

    sin

    a = a x cos cos + a y sin cos a z sin a = a x sin + a y c

    z

    a

    a

    a

    a

    ax

    z =

    cos

    a

    y

    Y

    az ay

    xy = sin

    x = cos

    ax

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    62/197

    T

    ans

    o

    mation o

    vecto

    s The unit vecto

    s a

    , a , a a

    e to be exp

    essed in te

    ms o

    unit vecto

    s gula

    coo

    dinates a x , a y , a z a

    consists o

    the p

    ojections o

    a x , a y ,a z on the

    axis. In o

    de

    to

    ind this p

    ojection,

    i

    st

    ind the p

    ojection on the =constant plane and then on to the

    e

    ui

    ed unit vecto

    s. a

    = sin cos+ sin sin a y + cos a z a = cos cos a x + cos sin a y sin a z equation (2)

    a = sin a x + cos a y

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    63/197

    T

    ans

    o

    mation o

    vecto

    sSubstituting e

    (1) in the gene

    al e

    uation o

    a vecto

    in

    ectangula

    coo

    dinates,

    A = Ax a x + Ay a y + Az a z

    A = Ax ( sin cos a

    + cos cos a sin a )

    + Ay ( sin sin a

    + cos sin a + cos a )

    + Az ( cos a

    sin a ) A = ( Ax sin cos + Ay sin sin + Az cos ) a

    + ( Ax cos cos + Ay cos aCompiled by: MKP

    o

    CEC S5 EC

    July 2008

    + ( Ax sin + Ay cos ) a

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    64/197

    T

    ans

    o

    mation o

    vecto

    sA

    = Ax sin cos + Ay sin sin + Az cos A = Ax cos cos + Ay cos sin n + Ay cos This can be

    ep

    esented in mat

    ix

    o

    m as

    Ar sin cos sin sin cos Ax A = cos cos cos sin sin A Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    65/197

    Transformation of vectorsSubstituting e

    (2) in the general e

    uation of a vector in spherical coordinates,

    A = Ar ar + A a + A a A = A

    ( sin cos a x + sin sin a y + cos cos a y ) + A ( cos cos a x + cos sin a y sin a z )

    A = ( A

    sin cos + A cos cos sin A ) a x

    + ( A

    sin sin + A cos sin + A cos ) a y

    + ( A

    cos A sin ) a z

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    66/197

    T

    ans

    o

    mation o

    vecto

    sAx = A

    sin cos + A cos cos sin A Ay = A

    sin sin + A cos sin + in This can be

    ep

    esented in mat

    ix

    o

    m as

    Ax sin cos cos cos sin Ar A = sin sin cos sin cos A Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    67/197

    Example 1 Given the point P(

    2,6,3)and vector A = ya x + ( x + z )a y express P and A in Cartesian, cylindrical and spherical coordinates.

    Solution :At point P( x =

    2, y = 6, z = 3) = x 2 + y 2 = 4 + 36 = 6.32 6 y = tan 1 = tan 1 = 108.43 2 x

    z= z=3

    r = x 2 + y 2 + z 2 = 4 + 36 + 9 = 7 = tan

    1

    x2 + y2 40 1 = tan = 64.62 z 3Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    68/197

    Exam

    le 1 (Contd)P ( 2,6,3) = P (6.32,108.43,3) = P (7,64.62 ,108.43 ) A cos A = sin Az 0 sin cos 0 0 Ax 0 A cos A = sin Az 0

    sin cos 0

    0 y 0 x + z 1 0

    But x = cos , y = sin . Substituting , A cos A = sin Az 0 sin cos 0 0 sin

    A = { cos sin + ( cos + z ) sin }a

    + { sin 2 + ( cos + z ) cos } aCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    69/197

    Example 1 (Contd)At P, =6.32, =108.43 , z=3cos = 0.316 Substituting , sin = 0.9487

    A = 0.9487a 6.008aIn the sphe

    ical system, Ar sin cos sin sin cos Ax A = cos cos cos sin sin Compiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    70/197

    Example 1 (Contd) Ar sin cos sin sin cos y A = cos cos cos sin sin x +

    But x = r sin cos , y =

    sin sin , z =

    cos . Substituting ,

    sin sin Ar sin cos sin sin cos A = cos cos cos sin

    A = {r sin 2 cos sin +

    (sin cos + cos )sin sin } a

    +{

    sin cos sin cos +

    (sin cos + cos )cos sin}a +{

    sin sin2 +

    (sin cos + cos )cos} a

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    71/197

    Example 1 (Contd)At P,

    =7, =108.43 , =64.62cos = 0.316cos = 0.4286

    sin = 0.9487sin = 0.903

    Substituting ,

    A = 0.8571a

    0.4066a 6.008a

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    72/197

    Example 2Exp

    ess the vecto

    10 B = a

    +

    c os a + a

    in

    Ca

    tesian coo

    dinates.

    ind B ( 3,4,0)

    Solution : Ax sin cos cos cos sin Ar A = sin sin cos sin cos A

    Bx sin cos cos cos sin

    10 / r B = sin sin cos sin cos

    Compiled by: MKP for CEC S5 EC July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    73/197

    Example 2 (Contd) Bx sin cos cos cos sin 10 / r B = sin sin cos sin cos

    10 Bx = sin cos +

    sin2 cos sin

    10 By = sin sin +

    cos2 sin + cos

    10 Bz = cos

    cos sin

    = x + y + z = tan2 2 2

    1

    x2 + y2 z

    = tan 1

    y x

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    74/197

    Example 2 (Contd)sin =

    =

    x2 + y2 x2 + y2 + z2

    cos =

    z =

    z x2 + y2 + z2

    sin =

    y

    =

    y x2 + y2cos =

    x

    =

    x x2 + y2

    10 x 2 + y 2 x2 + y2 + z2 x z2 x y Bx = 2 + 2 x + y2 + z2 x2 + y2 x + y2 + z2 x2

    + y2 x2 + y2 10x xz 2 y = 2 + x + y2 + z2 ( x 2 + y 2 + z 2 )( x 2 + y 2 ) x 2+ y 210 x 2 + y 2 x2 + y2 + z2 y z2 y y By = 2 + 2 x + y2 + z2 x2 + y2 x + y2 + z2 x2+ y2 x2 + y2 10 y yz 2 x = 2 + + x + y2 + z2 x2 + y2 x 2 + y 2 + z 2 )( x 2 + y2 ) (Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    75/197

    Example 2 (Contd)z x2 + y2 10 z Bz = 2 2 2 x +y +z x2 + y2 + z2

    and B = Bx a x + B y a y + Bz a zAt ( 3,4,0) x = 3, y = 4, z = 030 4 B x = + 0 = 2 25 5 40 3 By = +0 = 1 25 5By = 0

    Substituting , B = 2a x + a y

    B = 2 a x + a y

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    76/197

    Constant coo

    dinate su

    acesI

    we keep one o

    the coo

    dinate va

    iables constant and allow the othe

    two to va

    y, constant coo

    dinate su

    aces a

    e gene

    ated in

    ectangula

    , cylind

    ical andsphe

    ical coo

    dinate systems. In the Ca

    tesian system, i

    we keep x constant andallow y and z to va

    y, an in

    inite plane x=constant is gene

    ated. Thus we can have in

    inite planesX=constant Y=constant Z=constant

    These su

    aces a

    e pe

    pendicula

    to x, y and z axes

    espectively. Inte

    section o

    two planes is a line. x=constant, y=constant is the line RPQ pa

    allel to z axis. Inte

    section o

    th

    ee planes is a point. x=constant, y=constant, z=constant is the point P(x,y,z). Any point P may be de

    ined as the inte

    section o

    th

    ee o

    thogonal planes.Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    77/197

    Constant coo

    dinate su

    acesZ

    x=constant

    Y

    z=constantX

    y=constantCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    78/197

    Constant coo

    dinate su

    acesZ

    x=constant

    Q P

    Y R

    z=constantX

    y=constantCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    79/197

    Constant coo

    dinate su

    acesO

    thogonal su

    aces in cylind

    ical coo

    dinate system can be gene

    ated as=constant =constant z=constant

    =constant is a ci

    cula

    cylinde

    , =constant is a semi in

    inite plane with its edgealong z axis, z=constant is an in

    inite plane as in the

    ectangula

    system. Theinte

    section o

    two su

    aces z=constant, =constant is the ci

    cle QPR o

    adius The inte

    section o

    su

    aces z=constant, =constant is a semi in

    inite line. The inte

    section o

    th

    ee su

    aces p

    oduces a point. =constant, =constant, z=constant isthe point P(,,z)Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    80/197

    Constant coo

    dinate su

    acesZ

    =constant z=constant

    p

    Y

    =constantX

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    81/197

    Constant coo

    dinate su

    acesZ

    =constant

    z=constantp

    Y

    X

    =constantCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    82/197

    Constant coo

    dinate su

    acesO

    thogonal su

    aces in sphe

    ical coo

    dinate system can be gene

    ated as

    =constant =constant =constant

    =constant is a sphe

    e with its cent

    e at the o

    igin, =constant is a ci

    cula

    cone with z axis as its axis and o

    igin at the ve

    tex, =constant is a semi in

    inite plane as in the cylind

    ical system. The inte

    section o

    two su

    aces

    =constant, =constant is a semi ci

    cle passing th

    ough Q an P The inte

    section o

    th

    ee su

    aces p

    oduces a point.

    =constant, =constant, =constant is the point P(

    ,, ) Anpoint P may be de

    ined as the inte

    section o

    these o

    thogonal planesCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    83/197

    Constant coo

    dinate su

    acesZ=constant

    =constant

    p

    =constant

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    84/197

    Di

    e

    ential elements in

    ectangula

    coo

    dinate systemsz ZAP

    dy QS

    B

    dzR

    D

    C

    dx

    z

    az axx

    ayy

    Y

    igu

    e(1)

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    85/197

    Di

    e

    ential length, a

    ea and volume in Ca

    tesian coo

    dinatesDi

    e

    ential displacement is given by

    dl = dxa x + dya y + dza zDi

    e

    ential no

    mal a

    ea is given by

    dS = dydza x = dxdza y Di

    e

    ential volume is given by

    = dzdya z

    dv = dxdydzdl and dSa

    e vecto

    s whe

    e as dv is a scala

    .

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    86/197

    Di

    e

    ential length, a

    ea and volume in Ca

    tesian coo

    dinatesI

    we move

    om P to Q, dl = dya y I

    we move

    om Q to S, dl = dya + dza y z I

    we move

    om D to Q, dl = dxa + dya + dza x y z In gene

    al the di

    e

    ential su

    acea

    ea is de

    ined as dS = dsa n whe

    e dS is the a

    ea o

    the su

    ace element and an is a unit vecto

    no

    mal to the su

    ace dS. The di

    e

    ent su

    aces in

    igu

    e(1)is desc

    ibed as

    ABCD dS = dydza x PQRS dS = dydza x BCRQ dS = dydza y

    ADSP dS = dydza y ABQP dS = dxdya z DCRS dS = dxdya zCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    87/197

    Di

    e

    ential no

    mal a

    eas in

    ectangula

    coo

    dinate systemsz Z

    dy

    dx dz dz

    aydy

    az

    ax

    dx

    Y

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    88/197

    Di

    e

    ential elements in cylind

    ical coo

    dinate systems

    Y

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    89/197

    Di

    e

    ential elements in cylind

    ical coo

    dinate systemsZ

    A dS

    D P

    Bdz

    R

    Q d

    CY

    azX

    a aCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    90/197

    Di

    e

    ential no

    mal a

    eas in cylind

    ical coo

    dinate systemsDi

    e

    ential displacement is given by

    dl = d a + d a + dza zDi

    e

    ential no

    mal a

    ea is given by

    dS = d dza = d dza Di

    e

    ential volume is given by

    = dd az

    dv = d d dz

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    91/197

    Di

    e

    ential no

    mal a

    eas in cylind

    ical coo

    dinate systemsz Z

    ddz

    dz

    a

    azd

    a

    d

    dY

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    92/197

    Di

    e

    ential elements in sphe

    ical coo

    dinate systemsZ

    sin d

    d

    d

    d

    d

    Y

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    93/197

    Di

    e

    ential elements in sphe

    ical coo

    dinate systemsZ

    d

    d

    d

    sin d

    d

    Y

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    94/197

    Di

    e

    ential no

    mal a

    eas in sphe

    ical coo

    dinate systemsZ

    sin d

    d

    a

    d

    sin d

    ad

    a

    dY

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    95/197

    Di

    e

    ential no

    mal a

    eas in sphe

    ical coo

    dinate systemsDi

    e

    ential displacement is given by

    dl = d

    a

    +

    d a +

    sin d a Di

    e

    ential no

    mal a

    ea is given by

    dS =

    2 sin d d a

    =

    sin d

    d a =

    d

    d a Di

    e

    ential volume is given by

    dv =

    2 sin d

    d d

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    96/197

    Example 1

    o

    the object shown below calculate: (i) The distance BC (ii) The distance CD (iii) The su

    ace a

    ea ABCD (iv) The su

    ace a

    ea ABO (v) The su

    ace a

    ea AO

    D D(5,0,10) (vi) The volume ABDC O

    (0,0,10)

    C(0,5,10)

    B(0,5,0) O(0,0,0) A(5,0,0)

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    97/197

    Example 1Solution:The object has cylind

    ical symmet

    y hence it is convenient to solve the p

    oblemusing cylind

    ical coo

    dinates. o

    this

    i

    st we have to conve

    t all the pointsto cylind

    ical coo

    dinates.

    A(5,0,0) A(5,0 ,0) B (0,5,0) B 5, ,0 2 C (0,5,10) C 5, ,10 D ( 5,0 ,10 )

    (0,0,10)

    C 5, ,10 2

    D (5,0,10) D ( 5,0 ,10 )

    O(0,0,0)

    B 5, ,0 2

    A(5,0 ,0)

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    98/197

    Exam

    le 1(Contd.)(i ) Along BC , dl = dz; hence

    (ii ) Along CD, dl = d , = 5. Hence CD = /20

    BC = dl = dz = 100

    10

    d = 5 0 = 2.5 /2 10

    /2

    (iii )

    or ABCD, dS = d dz; = 5. HenceA

    ea ABCD = dS = A

    ea ABO = dS = =0

    z =0

    d dz = 5

    /2

    0

    d dz = 250 5

    10

    (iv ) or ABO, dS = d d ; z = 0. Hence

    /2 =0 =0

    5

    d d =

    /2

    0

    d d = 6.250

    Com iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    99/197

    Exam

    le 1(Contd.)( v )

    or AO

    D, dS = d dz; = 0. Hence A

    ea AO

    D = dS = 5

    =0 z =0

    10

    d dz = 50

    ( vi )

    o

    volume ABDC

    O, dv = d dzd . Hence Volume ABDC

    O = dv = 5 0 5

    =0 =0 /2

    /2 10z =0

    dzd d

    = d 0

    d dz = 62.5z =0

    10

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    100/197

    Exam

    le 2The object given below is

    art of a s

    herical shell described as

    3 r 5

    60 90 45 60Calculate(i) The distance DH (ii) The distance

    G (iii) The su

    ace a

    ea AEHD (iv) The su

    ace a

    ea ABDC (v) The volume o

    the object

    EAB

    HG

    DC

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    101/197

    Example 2Solution :(i ) Along DH dl =

    sin d ;

    = 3, = 90DH =

    dl = 12

    60 = 45

    3 sin 90 d = 3 sin 90

    60 45

    d

    = 3

    = 0.785

    (ii ) Along G

    dl =

    d ;

    = 5, = 60 , 60 to90 90 G

    =

    dl = = 60

    5d = 5

    6

    = 2 .6 1 7

    Com iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    102/197

    Exam

    le 2 (Contd)(iii ) On AEHD dS = r 2 sin d d ;

    = 3 60 to 90 , 45 to 60

    Area AEHD = dS = = 960

    60

    = 45 = 6090

    90

    9 sin d d

    = 45

    d

    = 60

    sin d 90

    = 9

    12

    [ cos ]60

    = 1.178

    Com iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    103/197

    Exam

    le 2 (Contd)(iv ) On ABCD dS = rd dr ; = 45 60 to 90 , r 3 to 5

    Area ABCD = dS = 90 60

    5

    r =35

    5

    90 = 60

    d d

    = d

    d

    3

    r 4 = 4.186 = = 3 6 2 3

    2

    Com iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    104/197

    Exam

    le 2 (Contd)( v ) On Volume ABCDE

    GH dv = r 2 sin drd d

    3 to 5, 60 to 90 , 45 to 60

    Volume = dv = 5 2 3

    5

    r = 3 = 60 = 45

    90

    60

    2 sin d

    d d 60 45

    =

    d

    sin d d 60

    90

    r 90 60 = [ cos ]60 [ ]45 3 3 49 = = 4.276 363Com

    iled by: MKP for CEC S5 EC

    July 2008

    5

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    105/197

    Line integralsLine integral is defined as any integral that is to be evaluated along a line. Aline indicates a

    ath along a curve in s

    ace. b a A d l

    ep

    esents a line integ

    al whe

    e each element o

    length d l on the cu

    ve is multiplied acco

    ding to scala

    dot p

    oduct

    ule by the local value o

    A and then these p

    oducts a

    e summedto get the value o

    the integ

    al. Let A be a vecto

    ield in space and ab a cu

    ve

    om point a to point b. Let the cu

    ve ab is subdivided in to in

    initesimallysmall vecto

    elements dl 1 , dl 2 , dl 3 ,........, dl

    Let the dot p

    oducts A1. d l 1 , A 2 . d l 2 , A 3 . d l 3 , ........, A

    . d l

    a

    e taken whe

    e A1, A2 , A3 ,........, A

    a

    e the value o

    the vecto

    ield at the junction pointso

    the vecto

    elements dl 1 , dl 2 , dl 3 ,........, dl

    b Then the sum o

    these p

    oducts A

    d l

    along the enti

    e length o

    the a cu

    ve is known as the line integ

    al o

    A along the cu

    ve ab.

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    106/197

    Line integ

    alsZ

    A

    A3 A2 A1

    bdl

    dl 4 dl 2 dl 3

    A

    a

    dl 1

    Y

    X

    b a

    A dl =a

    b

    A

    d l

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    107/197

    Line integ

    alsa

    A

    dl

    A

    b

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    108/197

    Line integ

    alsAs an example i

    ep

    esents the

    o

    ce acting on a moving pa

    ticle along a cu

    ve ab, then the line integ

    al o

    ove

    the path desc

    ibed by the pa

    ticle

    ep

    esents the wo

    k done by the

    o

    ce in moving the pa

    ticle

    om a to b. The line integ

    al a

    ound a closed cu

    ve is called closed line integ

    al

    a

    A dl

    b

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    109/197

    Su

    ace integ

    alsConside

    a vecto

    ield A continuous in a

    egion o

    space containing a smooth su

    ace S. The su

    ace integ

    al o

    A th

    ough S can be de

    ined as =

    s

    A dS

    ASurface S

    an

    dS

    Compiled b

    : MKP for CEC S5 EC - Jul

    2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    110/197

    Surface integralsConsider a small incremental surface area on the surface S denoted b

    dS. Let an be a unit normal to the surface dS. The magnitude of flux crossing the unit surface normall

    is given b

    A cos dS

    = A andS

    = A dSan

    = A dS

    Where dS denote the vector area having magnitude e

    ual to dS and whose directionis in the direction of the unit normal. d S = d Sa n The total flux crossing the surface is obtained b

    integrating A d S over the surface of interest.

    =

    s

    A dS

    Compiled b

    : MKP for CEC S5 EC - Jul

    2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    111/197

    Surface integralsFor a closed surface defining a volume the surface integral becomes closed surface integral and is denoted b

    =

    S

    A dS

    It represents the net outward flow of flux from surface S

    Compiled b

    : MKP for CEC S5 EC - Jul

    2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    112/197

    Volume integralsLet V be a volume bounded b

    the surface S. Let ( x,

    , z ) to n elements of volumes dV1 , dV2 , dV3 ,........, dVn In each part let us choose an arbitrar

    point ( xi ,

    i , zi ) be a function of position defined over V. If the volume V issubdivided in

    Then the limit of the sum

    called the volume integral of ( x,

    , z ) over V and is denoted b

    ( x ,

    , z )dVi i i

    i

    as n and dVi 0 is

    v

    dv

    Compiled b

    : MKP for CEC S5 EC - Jul

    2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    113/197

    Scalar and vector fieldsLet

    R

    be a region of space at each point of which a scalar

    = (x,y,z) is given, then is called a scala

    point

    unction and called a scala

    ield. Examples: Tempe

    atu

    e dist

    ibution in a medium Dist

    ibution o

    atmosphe

    icp

    essu

    e in space. given, then v is called a vecto

    point

    unction and scala

    ield. Examples: The velocity o

    a moving

    luid at any instant G

    avitational

    o

    ce in a

    egion.

    R

    is

    Let R be a

    egion o

    space at each point o

    which a vecto

    v = v(x, y, z) is

    R

    is called a

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    114/197

    DEL Ope

    ato

    The del ope

    ato

    is the vecto

    di

    e

    ential ope

    ato

    and is denoted by . In Ca

    tesian coo

    dinates

    = ax + a y + az x y zThe vecto

    di

    e

    ential ope

    ato

    is not a vecto

    in itsel

    , but when it ope

    ateson a scala

    unction the

    esult is a vecto

    . This ope

    ation is use

    ul in de

    iningThe g

    adient o

    a scala

    V The dive

    gence o

    a vecto

    .A The cu

    l o

    a vecto

    A 2The Laplacian o

    a scala

    V

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    115/197

    DEL Ope

    ato

    in cylind

    ical coo

    dinatesThe exp

    ession

    o

    del ope

    ato

    in othe

    coo

    dinate systems can be obtained using the t

    ans

    o

    mation e

    uations de

    ived ea

    lie

    .

    = x +y2

    2

    x = cos = cos x

    = sin + y

    y tan = x y = sin sin equation (1) cos

    Substituting in =

    ax + a y + az x y z

    sin cos a x + sin a y + a z (2) = cos +Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    116/197

    DEL O

    erator in cylindrical coordinatescos sin = ( cosax + sina y ) + ax + a y + z az + z az (4)

    a

    1 = a + a + a z (5) z 1 = a + a + az Compiled by: MKP

    o

    CEC S5 EC

    July 2008

    a

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    117/197

    DEL Ope

    ato

    in sphe

    ical coo

    dinatesThe exp

    ession

    o

    del ope

    ato

    in othe

    coo

    dinate systems can be obtained using the t

    ans

    o

    mation e

    uations de

    ived ea

    lie

    . x =

    sin cos

    = x 2 + y 2 + z2 = tan 1 y x y =

    sin sin 2 2 x +y z =

    cos = tan 1 z cos cos si cos sin cos = sin sin + + e

    uation (1) y

    s

    x + a y + az Substituting in = a x y z

    Compiled by: MKP fo

    CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    118/197

    DEL Ope

    ato

    in sphe

    ical coo

    dinates cos cos sin = sin cos + ax r r

    cos sin cos sin + sin sin + + + cos r r az = ( sin cos a x + sin sin a y + cos a z )

    + cos cos cos sin sin sin cos ax + az +

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    119/197

    DEL O

    erator in s

    herical coordinates = ( sin cos a x + sin sin a y + cos a z )

    1 1 x + cos sin sin a z ) + + ( cos cos a ( sin a x + cos

    a

    a 1 1

    + + a a a (5) =

    1 1 a

    + a + a

    a

    =

    1 1 a

    + a + a

    sin Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    120/197

    G

    adient o

    a scala

    ieldZ

    V3 V2 = V1 + V V1Y

    V

    P 1dl X

    G

    P 1

    A Level Su

    ace

    V

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    121/197

    G

    adient o

    a scala

    ieldThe g

    adient o

    a scala

    ield V is a vecto

    that

    ep

    esents the magnitude and di

    ection o

    the maximum space

    ate o

    inc

    ease o

    V. Let V be a scala

    ield andlet V1,V2 and V3 be contou

    s on which V is constant. Conside

    the di

    e

    ence inthe

    ield dV between points P1 and P2dV = V V V dz dx + dy + x y z

    V V V = ax + ay + a z ( dxa x + d

    a

    + dza z )

    z x + az = G y z x

    Then dV = G dl

    = G cos dlCompiled b

    : MKP for CEC S5 EC - Jul

    2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    122/197

    Gradient of a scalar fielddV Then = G cos dl dV is maximum when = 0 i.e., when dl is in the direction of GdldV dl =GMAX

    Magnitude of G is e

    ual to the maximum space rate of change of V Direction of Gis along the maximum space rate of change of V

    G is defined as the gradient of V and is denoted b

    grad Vgrad V =V= V V V ax + ay + az x y zCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    123/197

    G

    adient o

    a scala

    ield

    o

    cylind

    ical coo

    dinates,V 1 V V g

    ad V =V= a + a + az z

    o

    sphe

    ical coo

    dinates,V 1 V 1 V g

    ad V =V= a

    + a + a

    sin

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    124/197

    G

    adient o

    a scala

    ield

    Impo

    tant Relations

    (V + U ) = V + U (VU ) = V U + U V V U V

    V U U = U 2n n 1

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    125/197

    G

    adient o

    a scala

    ield

    Impo

    tant Points1. Magnitude o

    V is e

    ual to the maximum space

    ate o

    change o

    V 2. Di

    ectiono

    V is along the maximum space

    ate o

    change o

    V 3. V at any point is pe

    pendicula

    to the constant V su

    ace that passes

    th

    ough that point.4. I

    A = V , V is called the scala

    potential o

    A 5. The p

    ojection o

    V in thedi

    ection o

    a given unit vecto

    a is V a

    It is called the di

    ectional de

    ivative o

    V along a It indicates the

    ate o

    change o

    V in the di

    ection o

    a

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    126/197

    Example 1

    ind g

    ad when = 3x 2 y y 3 z 2

    ind the di

    ectional de

    ivative in the di

    eo

    3a x + 4a y + 12a z at (2,

    1,0)

    Solution :

    ax + ay + az x y z (3x 2 y y 3 z 2 ) (3x 2 y y 3 z 2 ) (3x 2 yaz x y z g

    ad = = ( 6 xy ) ax + 3x 2 3 y 2 z 2 a y + 2 y 3 z az g

    ad

    (

    )

    (

    )

    At (2,

    1,0) = ( 12 ) ax + (12 ) a y

    Di

    ectional de

    ivative a = ( 12ax + 12a y ) = ( 12ax + 12a y )( 0.23ax + 0.31a y + 0.92az

    ( 3a

    x + 4a y + 12az

    )

    = 0.96

    )

    9 + 16 + 144

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    127/197

    Example 2

    ind g

    ad V when V = 10

    sin 2 cos

    Solution :V 1 V 1 V g

    ad V =V= a

    + a + a

    sin V = 10sin 2 cos a

    + 10sin 2 cos a 10sin sin a

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    128/197

    Dive

    gence o

    a vecto

    The dive

    gence o

    a vecto

    uantity A at a given point P is the outwa

    d

    lux pe

    unit volume ove

    a closed inc

    emental su

    ace as the volume sh

    inks about P.S

    divA = A = lim v 0

    A S

    S

    v A dS is the net out

    low o

    lux o

    a vecto

    ield A

    om

    a closed su

    ace S

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    129/197

    Dive

    gence o

    a vecto

    in Ca

    tesian coo

    dinatesZ

    dydxP( x0 , y0 , z0 )

    dz

    1

    2Y

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    130/197

    Dive

    gence o

    a vecto

    in Ca

    tesian coo

    dinates To evaluate the dive

    gence o

    a vecto

    ield A at point P( x0 , y0 , z0 )

    i

    st const

    uct a di

    e

    ential volume a

    ound point P

    The closed su

    ace integ

    al o

    S

    A is obtained as+TOP

    A dS =

    (

    RONT

    +

    BACK

    +LE

    T

    +

    RIGHT

    +

    BOTTOM

    )

    Ax about P isP

    A th

    ee dimensional Taylo

    s se

    ies expansion o

    Ax Ax ( x, y , z ) = Ax ( x0 , y0 , z0 ) + ( x x0 ) x Ax + ( y y0 ) y P

    Ax + ( z z0 ) z P

    + highe

    o

    de

    te

    ms

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    131/197

    Dive

    gence o

    a vecto

    in Ca

    tesian coo

    dinates

    o

    the

    ont side x = x0 + dx , A = Ax a x , dS = dydza x 2

    dx Ax RONT A S = Ax ( x0 , y0 , z0 ) + 2 x P dydz + higher order terms

    or the back side x = x0

    dx , A = Ax ( a x ) , dS = dydz ( a x ) 2

    dx Ax BACK A S = Ax ( x0 , y0 , z0 ) 2 x P dydz + higher order termAx

    RONT A S + BACK A S = x y z x + higher or er termsP

    Compile by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    132/197

    Divergence of a vector in Cartesian coor inatesSimilarly

    LEFT

    A S +

    RIGHT

    A S = x y z

    Ay yP

    + higher or er terms

    TOP

    A S +

    BOTTOM Az A S = x y z z

    + higher or er te rm sP

    Ax S A S = x y z x

    Az + x y z + x y z y P z P

    Ay

    + higher or

    er termsP

    Ax Ay Az S A S = x + y + z v + highe o de te ms PSubstituting in v 0

    lim

    S

    A S vCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    133/197

    Dive

    gence o

    a vecto

    in Ca

    tesian coo

    dinatesAx Ay Az + + S A dS = lim x y z lim v 0 v 0 v vP

    v

    Ax Ay Az = + + x y z

    P

    Since highe

    o

    de

    te

    ms vanish as v 0

    Dive

    gence o

    A at P ( x0 , y0 , z0 ) in Ca

    tesian coo

    dinates is Ax Ay Az A = + + x y z

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    134/197

    Divergence of a vector in other coordinatesIn cylindrical coordinates1 1 A Az A = ( A ) + + z

    In s

    herical coordinates1 2 1 1 A A = 2 ( r Ar ) + ( A sin ) + r r r sin r sin

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    135/197

    Divergence of a vector

    Physical significanceZ

    yx

    vy z F1P ( x, y , z )

    v y + yF2Y

    XCompile by: MKP for CEC S5 EC July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    136/197

    Divergence of a vector

    Physical significance Consi er the motion of a flui having velocity V = v x a x + v y a y + v z a z at a point P(x,y,z). Consi er a small parallelepipe with e ges x , y an z parallel to the axes enclosing the point P. The mass of flui entering through the face F1 per unit time is given by velocity x area v y x z The mass of flui flowingout through face F2 is v y + y x z By Taylors theorem (neglecting higher or er term)

    v y + y = v y +

    v y

    y v y v y + y x z = v y + y x z y Com

    iled by: MKP for CEC S5 EC

    July 2008

    y

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    137/197

    Divergence of a vector

    Physical significanceThe net ecrease in the mass of flui flowing across these two faces is

    v y v y v y + y y x z v y x z = y x y z

    Similarly by considering the other two faces we get the total decrease in the mass of fluid inside the

    arallele

    i

    ed

    er unit time

    v x v y vz + + Rate of loss of fluid

    er unit volume is x y z The above

    uantity is defined as the divergence of fluid velocity at the

    oint Pand is denoted by div V or VCompiled by: MKP

    o

    CEC S5 EC

    July 2008

    v x v y vz x + y + z x y z

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    138/197

    Divergence of a vector

    Physical significanceEXAMPLES Divergence of the velocity of water in a container after the outlet haso

    ened is zero because water is an incom

    ressible fluid. Volume of water entering and leaving different regions of the closed surface is e

    ual. When the valveon a steam boiler is o

    ened there is a net outward flow of steam for each elemental volume. In this case the divergence has a

    ositive value. It indicates a source of vector

    uantity at that

    oint. When an evacuated glass bulb is broken there is a sudden inrush of air and there is a net inward flow of air for each elemental volume. In this case the divergence has a negative value. It indicates a sink of that vector

    uantity.

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    139/197

    Divergence of a vector

    Physical significance

    ZERO DIVERGENCE

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    140/197

    Divergence of a vector

    Physical significance

    POSITIVE DIVERGENCE

    NEGATIVE DIVERGENCE

    SOURCE

    SINK

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    141/197

    Exam

    lesDetermine the divergence of the vector fields (i ) P = x 2 yza x + xza zP = 2 ( x yz ) + y ( 0 ) + z ( xz ) x Py Pz P P = x + + x y z

    P = 2 xyz + x

    (ii ) Q = sin a + 2 za + z cos a z1 1 Q = ( 2 sin ) + ( 2 z ) + z ( z cos ) Q = 2sin + cos

    1 Q 1 Q Q = ( Q ) + + zz

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    142/197

    Exam

    les1 (iii ) T = 2 cos ar + r sin cos a + cos a

    1 1 T = ( r T ) + r2

    2

    r

    sin ) +

    1 T r sin

    1 1 1 r sin 2 cos ) + cos ) T = 2 ( cos ) + ( ( r r r sin

    sin

    T = 2 cos cos

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    143/197

    Gausss Dive

    gence theo

    emThe integ

    al o

    the no

    mal component o

    any vecto

    ield ove

    a closed su

    ace is e

    ual to the integ

    al o

    the dive

    gence o

    this vecto

    ield th

    oughout the volume enclosed by the closed su

    ace. The total outwa

    d

    lux o

    a vecto

    ield Ath

    ough the closed su

    ace S is the same as the volume integ

    al o

    the dive

    gence o

    A

    S

    A dS = AdVV

    Volume integ

    als a

    e easie

    to evaluate than su

    ace integ

    als. Using dive

    gencetheo

    em we can conve

    t su

    ace integ

    al to a volume integ

    al and then easily evaluate it.

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    144/197

    Dive

    gence theo

    emP

    oo

    Ax Ay Az A = + + x y z

    V

    A dV =

    Ax Ay Az dxdydz + + V x y z

    Ay Ax Az dxdydz + dxdydz + dxdydz A dV = V V x V y V z Ay Ax A dxdy= V x y zCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    145/197

    Dive

    gence theo

    emAx x dx = Ax

    Ay y

    dy = Ay

    Az z dz = Az

    V

    A dV = Ax dydz + Ay dxdz + Az dxdy dxdy = dS y

    dydz = dS x

    dxdz = dS z= A dS

    V A dV = Ax dS x + Ay dS y + Az dS zS

    A dS = A dVV

    S

    A dS = A dVVCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    146/197

    Dive

    gence theo

    em

    ExplanationZClosed su

    ace S

    VY

    XCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    147/197

    Dive

    gence theo

    em

    ExplanationLet the volume V bounded by the su

    ace S is subdivided in to a numbe

    o

    elementa

    y volumes V The

    lux dive

    ging

    om each such cell ente

    s o

    conve

    ges on theadjacent cells unless the cell contains a po

    tion o

    the oute

    su

    ace. As a

    esult the dive

    gence o

    the

    lux density th

    oughout the volume leads to the same

    esult as dete

    mining the net

    lux c

    ossing the enclosing su

    ace.

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    148/197

    Example 1T

    Determine the flux of D = 2 cos 2 a + zsin a ove

    the su

    ace o

    the cylinde, = 4 Z Ve

    i

    y dive

    gence theo

    em .

    S

    Y

    X

    B

    Compiled b

    : MKP for CEC S5 EC - Jul

    2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    149/197

    Example 1If is the flux through the given surface = T + B + S

    For T , z = 1, dS = d d a z

    T = D dS = B = D dS =

    4

    =0 =0

    2

    2cos 2 a + zsin a ) d d a z = 0 (

    o

    B , z = 0, dS = d d ( a z )4

    =0 =0

    2 2cos 2 a + zsin a ) d d ( a z ) = 0 (

    o

    S , = 4, dS = d dza

    S = D dS =

    1

    z =0 =0

    2

    2cos 2 a + zsin a ) d dza (Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    150/197

    Example 1S =

    z =0

    1

    2 =0

    64 cos 2 d dz2

    64 2 = 64 cos d = = 0 1 + cos2 d =0 22

    = 32

    2

    =0

    1d = 64

    A

    lying divergence theorem

    S

    D S = D dVV

    1 1 D = ( D ) + D + z Dz = 1 1 z sin 3 cos 2 ) + ( Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    151/197

    Example 1 D = 3 cos 2 +4

    1

    z cos 1

    1 2 V D dV = =0 =0 z =0

    3 cos + z cos

    d d dz

    4 3 2 2

    =

    2

    4z 2 cos d = 64 z cos + =0 2 02 2

    =0 z =0

    ( 64 cos + 4 z cos )d dz

    1 21

    =

    2

    =0

    ( 64 cos + 2 cos ) d2

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    152/197

    Example 1=2

    =0

    64 cos d + 2

    2

    =0

    2 cos d

    64 2 = =0 (1 + cos 2 ) d 2= 32 2

    =02

    d +

    2 =0

    cos 2d

    = 32

    =0

    d = 64

    Com iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    153/197

    Exam

    le 2 Verify divergence theorem for the flux of D = x a x + xya y + yza z for the volume of cube with 1unit for each side. The cube is situated in the first octant ofthe coordinate system with one corner on the origin. Z2

    1E

    A

    DB

    C

    Y

    1H G

    1

    XCom iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    154/197

    Exam

    le 2 D = x 2 a x + xya y + yza z

    S

    D S = D dVV

    S

    D dS =

    (

    RONT

    +1

    BACK

    +

    LE

    T

    +

    RIGHT

    +

    TOP

    +

    BOTTOM

    )and x = 1

    RONT

    D dS =

    1

    y =0 z =0

    x 2a x + xya y + yza z ) dydza x (

    =BACK

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    155/197

    1 1

    0 0

    dydz =

    1and x = 0

    D dS =

    1

    y =0 z =0

    1

    x 2a x + xya y + yza z ) dydz ( a x ) (

    = 0

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    156/197

    Example 2LE

    T

    D dS =

    1

    z =0 x =0

    (x a1 2

    x

    + xya y + yza z ) dxdz ( a y )

    and y = 0

    = 0

    RIGHT

    D dS =

    1

    z =0 x =0

    (x a1 2

    x

    + xya y + yza z ) dxdza y

    1 1

    and y = 1

    1 = xdxdz = 0 0 2

    TOP

    D dS =

    1

    y =0 x =0

    1

    x 2 a x + xya y + yza z ) dxdya z ( =1 1 0 0

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    157/197

    and z = 1

    ydxdy =

    1 2Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    158/197

    Example 2BOTTOM

    D dS =

    1

    y =0 x =0

    (x a1 2

    x

    + xya y + yza z ) dxdy ( a z )

    and z = 0

    = 0

    S

    D dS = 1 +

    1 1 + = 2 2 2

    D x D y D z D = + + x y z

    2 = ( x ) + ( xy ) + ( yz ) = 3 x + y x y z= 2

    V

    DdV = S V

    1

    0

    (3x + y )dxdydz0 0

    1

    1

    D dS = D dV

    Thus dive

    gence theo

    em is ve

    i

    ied .Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    159/197

    Cu

    l o

    a vecto

    The cu

    l o

    a vecto

    A is an axial o

    otational vecto

    whose magnitude is the maximum ci

    culation (closed line integ

    al) o

    A pe

    unit a

    ea as the a

    ea tends to ze

    o and whose di

    ection is the no

    mal di

    ection o

    the a

    ea when the a

    ea iso

    iented so as to make the ci

    culation maximum. The ci

    culation o

    a vecto

    ield A a

    ound a closed path L is the integ

    al A dL

    L

    Cu

    l A =

    A = lim

    S 0

    A l L an S M AX

    Where the area S is bounded by the cu

    ve L an is the unit vecto

    no

    mal to the su

    ace S and is dete

    mined by

    ight hand

    ule.Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    160/197

    Cu

    l o

    a vecto

    Conside

    the di

    e

    ential a

    ea in the yz plane.X

    ddz

    c

    Y

    a

    dy

    bCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    161/197

    Cu

    l o

    a vecto

    Closed line integ

    al o

    vecto

    A a

    ound abcd is obtained as below:

    l

    A dl =

    (

    ab

    +

    bc

    +

    cd

    +

    da

    ) A dl

    (1)+ ( y y0 )P

    Ay ( x, y, z ) = Ay ( x0 , y0 , z0 ) + ( x x0 )

    Ay x Az x

    Ay y Az yP

    + ( z z0 )

    Ay zP

    Az ( x, y, z ) = Az ( x0 , y0 , z0 ) + ( x x0 )

    + ( y y0 )P

    + ( z z0 )P

    Az z

    P

    Along ab dl = dya y and z = z0

    dz 2

    dz Ay ab A dl = Ay ( x0 , y0 , z0 ) 2 z dy

    (a) PCompiled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    162/197

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    163/197

    Curl of a vector Along bc dl = dza z and y = y0 +

    dy Az A dl = Az ( x0 , y0 , z0 ) + dz

    (b) bc 2 y P Along cd dl = dya y and z = z0 + dz 2

    dy 2

    dz Ay cd A dl = Ay ( x0 , y0 , z0 ) + 2 z dy

    (c) Pdy Along da dl = dza z and y = y0 2

    dy Az da A dl = Az ( x0 , y0 , z0 ) 2 y dz

    (d) PCompiled by: MKP for CEC S5 EC July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    164/197

    Curl of a vectorSubstituting e

    uations a, b, c and d in (1)Ay Az l A dl = y dydz z dydz

    Az Ay = S z y

    l

    A l S

    A A = z y z y

    S 0

    lim

    l

    A dl S

    Az Ay = y z A A = z y z yBy definition the above e

    uation re resents curl of vector about x axis

    (

    curl A

    ) (x

    =

    A

    )

    x

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    165/197

    Cu

    l o

    a vecto

    y and z components o

    the cu

    l o

    A can simila

    ly obtained .

    (

    cu

    l A

    (

    A A = x z y y x z A A curl A =

    A = y x z z y x

    ) (=

    A

    )

    ) (

    )

    The

    esultant cu

    l will be the sum o

    component cu

    ls about x, y,z axes A A A A A A

    A = z y ax + x z a y + y x az ax

    A= x Ax ay y Ay az z Az

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    166/197

    Cu

    l o

    a vecto

    in othe

    coo

    dinatesThe exp

    ession

    o

    cu

    l in cylind

    ical and sphe

    ical coo

    dinates a

    e

    a

    A= A a

    A=

    A

    a A

    a

    A

    az z Az

    sin a

    sin ACompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    167/197

    Cu

    l o

    a vecto

    Some p

    ope

    ties The cu

    l o

    a vecto

    ield is anothe

    vecto

    ield The cu

    l o

    a scala

    ield does not exist

    ( )

    ( A

    B ) = A ( B ) B ( A)

    (VA) = V

    A + V

    A

    A+ B =

    A+

    B

    The dive gence o the cu l o a vecto ield vanishes

    A = 0

    (

    )

    The cu

    l o

    the g

    adient o

    a scala

    ield vanishes.

    V = 0Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    168/197

    Cu

    l o

    a vecto

    Z

    a

    b

    d

    c

    Y

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    169/197

    Cu

    l o

    a vecto

    Z

    Y

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    170/197

    Cu

    l o

    a vecto

    Z

    a

    b

    d

    cY

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    171/197

    Cu

    l o

    a vecto

    Z

    Y

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    172/197

    Cu

    l o

    a vecto

    Physical inte

    p

    etation

    Z

    X

    Y

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    173/197

    Cu

    l o

    a vecto

    Physical inte

    p

    etation

    Z Y

    X

    Rotation o

    the paddle wheel along x,y and z axes

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    174/197

    Cu

    l o

    a vecto

    Physical inte

    p

    etationCu

    l Di

    ection

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    175/197

    Example 1Dete

    mine the cu

    l o

    the

    ollowing vecto

    ields

    (i ) P = x 2 yza x + xza z

    (ii ) Q = sin a + 2 za + z cos a z(iii ) T = 1 cos a

    +

    sin cos a + cos a 2

    Solution : (i ) P = x 2 yza x + xza z ax

    P = x Px ay y Py az z Pz Pz Py Px Pz Py Px

    Com iled by: MKP for CEC S5 EC July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    176/197

    Exam

    le 1 P P P P P P

    P = z y ax + x z a y + y x az

    = ( 0 0 ) ax + ( x 2 y z ) a y + ( 0 x 2 z ) az

    = ( x 2 y z ) a y ( x 2 z ) az

    (ii ) Q = sin a + 2 za + z cos a z

    a

    Q = Q

    a Q

    az z QzCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    177/197

    Example 1 1 Q z Q

    Q = z Q Q z + a z Q 1

    z 1 2 = sin z a + ( 0 0 ) a + ( 3 2 z cos ) az = ( z sin + ) a + ( 3 z cos ) a 13

    z

    (iii ) T =

    1 cos a

    +

    sin cos a + cos a 2

    a

    a

    sin a

    T =

    T

    T

    sin TCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    178/197

    Example 1

    T = 1 1 1 1 T

    (rT ) a + ( rT ) Tr a (T s

    =

    1 1 1 cos (cos sin ) (r sin cos ) ar + (r cos )

    1 cos + ( r 2 sin cos ) 2 a r r

    =

    1 1 1 sin ( cos2 + r sin sin ) a

    + ( 0 cos ) a + 2

    sin cos + 2

    a

    cos2 cos a = + sin ar r r sin

    1 + 2cos + 3 a

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    179/197

    Stokes theoremStokes theorem states that the circulation of a vector field A around a closed

    ath L is e

    ual to the surface integral of the curl of A over the o

    en surface Sbounded by L rovided that A and

    A a

    e continuous on S

    L

    A dl = (

    A) dSS

    Closed path L

    dS dl

    Su

    ace S

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    180/197

    Stokes theo

    em

    The su

    ace S is subdivided in to a la

    ge numbe

    o

    cells.

    I

    the k th cell has su

    ace a

    ea Sk and is bounded by the path L

    L

    A dl = A dl = k Lk k

    Lk

    A dl

    S k

    S kCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    181/197

    Stokes theo

    emThe

    e is cancellation on eve

    y inte

    io

    path. So the sum o

    line integ

    als a

    ound Lks is the same as the line integ

    als a

    ound the bounding cu

    ve L. Taking the limit o

    the above e

    uation

    Lk A dl S lim0 S k S k k k By definition the

    uantity insidethe k th cell As Sk 0 the summation becomes integ

    ation ove

    the whole su

    ace.

    L

    A dl = (

    A).dS which is stoke

    s theo

    emS

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    182/197

    Example 1Y

    I

    cos a + sin a , evaluate A dl a

    ound the path shown below. Ve

    i

    y Sto

    emda

    5

    2

    S Sb30

    c

    60

    0

    2

    5YCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    183/197

    Example 1L

    b + A dl = a

    c b

    +

    d c

    +

    a d

    A dl

    Along ab = 2 dl = d a

    b a

    A dl =

    30 = 60

    sin d

    = [ 2 cos ]60 = 30

    (

    3 1

    )

    Along bc = 30 dl = d a

    c b

    A dl =

    5 =2

    cos d

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    184/197

    Along cd = 5 dl = d a

    21 3 = cos 30 = 2 2 4 2

    5

    d c

    A dl =

    60 = 30

    sin d

    = [ 5 cos ]3060

    5 = 2

    (

    3 1

    )

    Compiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    185/197

    Example 1 Along da = 60 dl = d a

    a d

    A dl =

    2 =5

    cos d

    21 = cos 60 = 2 5 4 2

    2

    L

    A dl = (

    21 3 5 + 3 1 + 4 2

    )

    (

    21 3 1 4

    )

    L

    A dl = 4.941

    Using stoke's theorem

    L

    A dl = (

    A).dSS

    1 Az A A A + z

    A= a z z

    A 1 + ( A ) a z a

    dS = d d a zCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    186/197

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    187/197

    Example 11

    A = ( 0 0 ) a + ( 0 0 ) a + (1 + ) sin a z 1 = (1 + ) sin

    S

    (

    A).dS =

    60

    =3060

    5 =2

    1

    (1 + ) sin d d az5

    =

    =30

    sin d 60

    =2

    (1 + )d

    2 5

    S

    = [ cos ]30 + = 4.941 2 2 (

    A).dS = 4.941 = A dlL

    Stoke s Theo

    em is thus ve

    i

    iedCompiled by: MKP

    o

    CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    188/197

    Laplacian o

    a scala

    The Laplacian o

    a scala

    ield V , w

    itten as 2V is the dive

    genceo

    the g

    adient o

    V . It is anothe

    scala

    ield

    In Ca

    tesian coo

    dinates,Laplacian V= V = 2V V V V = ax + a y + az ax + ay + az y z x

    2V 2V 2V 2 V= 2 + 2 + 2 x y z

    A scala

    ield V is said to be ha

    monic in a given

    egion i

    itsLaplacian vanishes in that

    egion. 2 V=0 Laplace s EquationCompiled by: MKP for CEC S5 EC - July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    189/197

    Laplacian of a scalar in other coordinatesIn cylindrical coordinates,

    1 V 2 V=

    1 2V 2V + 2 2 + z 2

    In s

    herical coordinates,

    1 2 V 1 V 1 2V 2 V= 2 r + 2 sin + 2 2 r sin 2

    Com

    iled by: MKP for CEC S5 EC

    July 2008

  • 7/29/2019 35675966 EMT Electromagnetic Theory MODULE I (1)

    190/197

    La

    lacian