Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled...

29
Slide 1 18 - 322 Fall 2003 Lecture 22 Emitter Coupled Logic & BiCMOS

Transcript of Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled...

Page 1: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 1

18 - 322 Fall 2003 Lecture 22

Emitter Coupled Logic & BiCMOS

Page 2: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 2

Emitter Coupled Logic

• ECL Inverter• Voltage Transfer Characteristics• ECL NOR Gate

Page 3: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 3

ECL

• Ultra-high speed (GHz performance)– All fabled supercomputers used ECL

• CRAY• NEC, Fujitsu

• Lower device count per gate than TTL• Symmetric noise margins• Low noise sources

Page 4: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 4

The Differential PairVccVcc

RcRc

Vout2Vout1

VEE

VrefVin

VccVcc

RcRc

Vout2Vout1

VEE

VrefVin

IEE

Vx

• Vref: Reference Voltage• Symmetric Design:

– Transistors, Resistors, Voltage Supplies

Page 5: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 5

Differential Pair

Ic = β Is (e VBE/ΦT - 1)

Ic1/Ic2 = (e (Vin-Vx)/ΦT - 1)/(e (Vref-Vx)/ΦT - 1)

≈ e (Vin-Vref)/ΦT

ΦT= 26mV

Vin - Vref = 60mV -> 10x changeVin - Vref = 120mV -> 100x change!

Page 6: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 6

Logic Levels

Assume Vin “high”

Output Levels:Vout1 = Vcc - IEERC (VOL)Vout2 = Vcc (VOH)

Input Levels:VIL = Vref - 120mVVOL = Vref + 120mV

Page 7: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 7

Differential Pair Characteristics

• Differential Outputs– No time differential between complements

• Steep Transition region– 240 mV!– Centered around Vref

• Constant Current Drawn– High static power dissipation

• No Saturation Mode

Page 8: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 8

Output Stage

• Problem: Output Loading Sensitivity• Problem: Logic Level Alignment• Solution: Output stage (emitter-follower)

VccVcc

RcRc

Vout2Vout1

VEE

VrefVin

IEE

Vx

VEE VEE

RB RB

Page 9: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 9

Logic Levels and VTCVcc=5V5V

300Ω300Ω

Vout2Vout1

VEE=0V

VrefVin

IEE=3mA

Vx

0V 0V

1.5kΩ 1.5kΩ

Page 10: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 10

Logic LevelsAssume Vin >> Vref

Vcc=5V5V

300Ω300Ω

Vout2Vout1

VEE=0V

IEE=3mA

0V 0V

1.5kΩ 1.5kΩ

Vout1 = 1.5kΩ (β+1) IB1300Ω (IB1 + 3mA) + .7V + Vout1 = 5V

Vout1 = (VOL)

Vout2 = 1.5kΩ (β+1) IB2300Ω IB2 + .7V + Vout2 = 5V

Vout2 = (VOH)

Page 11: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 11

Choosing Vref

To Maximize Noise Margins:

Choose Vref mid-way between VOL and VOH

Vref = (VOL and VOH ) / 2 =

VOL

VOH

Vout

VinVOL VOHVIL VIH

Trans. Region

NMH

NML

Page 12: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 12

Voltage Transfer CharacteristicVTC ECL Inverter

0

1

2

3

4

5

0 1 2 3 4 5

Vin

Vou

t Vout2Vout1

Page 13: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 13

Current SourceIn reality, usually a resistor:

Vcc=5V5V

300Ω300Ω

Vout2Vout1

VEE=0V

VrefVin

1.2kΩ

Vx

0V 0V

1.5kΩ 1.5kΩ

Q1

Q1 CAN saturate with high Vin!

Page 14: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 14

Current Source Resistor

5V

300Ω

VEE=0V

Vin

1.2kΩ

Vx

Q1

IC = IE = (Vin - .7V)/1.2kΩ

Vout = 4.825V - .25Vin

Saturation:

300Ω IC + 1.3kΩ IE = 4.9V

VTC ECL Inverter

3

4

5

3 3.5 4 4.5 5

Vin

Vout Vout2

Vout1

Saturationof Q1

Page 15: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 15

ECL OR-NOR GateVcc=5V5V

300Ω300Ω

ORNOR

VEE=0V

VrefV1

1.2kΩ

0V 0V

1.5kΩ 1.5kΩ

V2

Is this logically adequate?

Page 16: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 16

Wired-Or LogicVcc=5V

0V

1.5kΩ

Vcc=5V

0V

1.5kΩ

Vcc=5V

0V

1.5kΩ

If any base voltage is high, the net is high

What happens if more than one base is high?

Page 17: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 17

Wired-ORAB

CD

_____A + B + C + D

• Construct large input gates• In negative logic, Wired-AND

Page 18: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 18

ECL FanoutVcc=5V

300Ω

0V

3mA

300Ω

N-1gates

1.5kΩ

Vout (β+1) IB = 3mA N/(β+1) + Vout/ 1.5kΩ300Ω IB + .7V + Vout = 5V

• When does Vout = VIH?– Typical values ≈ 30

Page 19: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 19

Negative Supply Voltage

• Noise on VCC shows up on signal nets• VEE much more noise tolerant.

– Common mode noise to Vin, Vref, etc• Output shorted to ground

Vcc=5V

0V

1.5kΩ

Page 20: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 20

Power Dissipation

• Dynamic Power:– 10% of the voltage swing of CMOS

• 100x less power• Static Power:

– All gates consume static power• 3mA x 5V = 15mW!

• High Power• Low noise

Page 21: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 21

BiCMOS

• Introduction• System Requirements• Circuit Technology• Device Technology• Process Technology• Manufacturing Issues• BiCMOS Projections

Page 22: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 22

INTRODUCTION

BiCMOS Advantages:• Improved speed & robustness over CMOS• Lower power dissipation than bipolar• Flexible I/O’s• Higher performance analog IC’s• Latchup robustness

BiCMOS Disadvantages:• Higher costs• Longer fabrication cycle time

Page 23: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 23

BiCMOS Role

For µP:

° Reduced delays through critical paths

° Reduced clock skews

° Increased I/O throughput

° Larger, faster on-chip memory

Page 24: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 24

BiCMOS Inverter #1

V

P

N

N

N

1

1

2

3

NPN 1

NPN 2

V = 5 V

Vinout

CC

VOH = VCC - Vbe(on) VOL = VSS + Vce(sat)

Page 25: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 25

BiCMOS Inverter #2

VOH = VCC VOL = VSS

V

N

N1

P1

N2

3

NPN 1

NPN 2

V = 5 V

Vinout

CC

P2

8/1

8/1

8/1

Page 26: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 26

BiCMOS NAND Gate

N

N1

P1

N2

3

NPN 1

NPN 2

V = 5 V

Vout

CC

P2

A

B

Page 27: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 27

BiCMOS DEVICES

BJT in p-well CMOS process

Page 28: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 28

BiCMOS Technology

Page 29: Emitter Coupled Logic & BiCMOSece322/LECTURES/Lecture22/Lecture22.pdf · Slide 2 Emitter Coupled Logic • ECL Inverter • Voltage Transfer Characteristics • ECL NOR Gate

Slide 29

Manufacturing Issues

Main disadvantage of BiCMOS: COST

Cost adders:

° manufacturing cycle time

° defect density

° process control

° design verification