ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de...

29
Silvano De Franceschi – GDR Physique Quantique Mésoscopique, Aussois 8-11 décembre 2008 QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES Silvano De Franceschi http://www-drfmc.cea.fr/Pisp/55/silvano.de_franceschi.html INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity

Transcript of ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de...

Page 1: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – GDR Physique Quantique Mésoscopique, Aussois 8-11 décembre 2008

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURESSilvano De Franceschi

http://www-drfmc.cea.fr/Pisp/55/silvano.de_franceschi.html

INAC/SPSMS/LaTEQS: Laboratory of quantum electron transport and superconductivity

Page 2: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 217/12/2008

Top-down Quantum Dot Devices

Spathis et al. (poster session)

-2

-1

0

1

2

VS

D (

mV)

-650 -600 -550 -500Vg (mV)

N=0 1 2 3

Vg

Hofheinz, Jehl, Sanquer et al.

Page 3: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 317/12/2008

I+

I-

V+V-

I+

I-

V+V-

Vgate

SiO2Si (p+)

Catalytic VLS growth

goldparticle

liquideutect

vapor

nano

wire

time

φ

Lsd W

sour

ce

drain

1 μm

Semiconductor nanowires: growth and device fabrication

Page 4: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 417/12/2008

Bottom-up semiconductor nanowire devices @ LaTEQS

1µm

1 μm

Aluminum bottom gates

Ni silicide

Si nanowires (Mongillo et al.) InAs/InP core/shell nanowires

(Katsaros et al)

200 nm

GaN/AlGaN nanowires(Songmuang et al)

1µm

Mn-GaAs nanowires(Storace et al)

Page 5: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 517/12/2008

Self-assembled semiconductor quantum dot devices @ LaTEQS

source drain

gate

gate

Ge islands on Si

gate voltage

Sou

rce-

drai

n bi

as

(Katsaros et al)

Page 6: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 617/12/2008

Hybrid normal-superconductor devices

S SI

S SN

Josephson effect and Andreev reflection

_ _

_ _

Thin insulating (oxide) interlayer

Short (L< LΦ)normal-conductor interlayerAndreev reflection

IS = IC sin(φS - φD )

φS φD

φS φD

IS = IC sin(φS - φD )

L

Page 7: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 717/12/2008

Hybrid normal-superconductor devices

S SDOT_ _

Nano-link ? ?

Many energy scales involved• Superconducting gap Δ• Charging energy U • Level spacing ΔE • Lifetime broadening Γ• Thouless energy ETh = h/τD• Temperature kBT

How does superconductivity affects transport?Can a supercurrent flow ? What is the current-phase relationship?Can superconductivity provide insight on the electronic properties?

Page 8: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 817/12/2008

Hybrid normal-superconductor devices

Buizert et al. PRL ‘07

Heersche et al. Nature ‘06

Kasumov et al, Science 284 ’99)Morpurgo et al., Science 286 ’99Buitelaar et al., PRL ’02Jarillo-Herrero et al., Nature ’06Cleuziou et al., Nature Nanotech. ‘06

Metal Nanoparticles in an oxide thin layer: Ralph et al, PRL ’95Atomic-size contacts: Scheer et al., PRL ’97; PRL ’01.

Doh et al. Science ‘05 van Dam et al. Nature ’06Xiang et al., Nature Nanotech. ’06Sand-Jespersen, PRL ‘07

Page 9: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 917/12/2008

Andreev reflection vs Coulomb blockade

S-N-S devices based on InAs or InP nanowire

DIfferent regimes depending on relative value of the relevant energy scales:

RN/RQ as characteristic parameter(with RN the normal-state resistance and RQ ≡ (2e2/h)-1 ~26 kΩ the quantum resistance)

Y.-J. Doh, SD, et al. Nano Letters, 8 Dec. 2008

• Superconducting gap Δ• Charging energy U • Level spacing ΔE • Lifetime broadening Γ• Thouless energy ETh = h/τD• Temperature kBT

Page 10: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1017/12/2008

U

U ~ 1 meV

B= 20 mT

dI/dVsd vs (Vsd,Vg)

sd

B= 20 mT

RN >> RQ ≡ (2e2/h)-1 ~26 kΩ => Coulomb blockade

n-type InP nanowire (n~1019 cm-3): weak coupling case

Charging energy:

Page 11: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1117/12/2008

dI/dVsd vs (Vsd,Vg)

sd

B= 0 B= 20 mT

RN >> RQ ≡ (2e2/h)-1 ~26 kΩ

+2Δ

-2Δ

Δ << UB = 0

n-type InP nanowire (n~1019 cm-3): weak coupling case

Page 12: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1217/12/2008

B = 20 mT

Δ

Δ

B = 0

Negative differential conductance due to BCS singularities

Page 13: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1317/12/2008

DrainSource

Supercond. Supercond.Normal

SiO2

exp( ), ,j j ji j R LϕΨ = Ψ =

sin( ) S C LR LR L RI I whereφ φ ϕ ϕ= ≡ −

(DC Josephson effect)

SD SD S D

Δ , ϕSΔ , ϕS

Δ∗ < Δ(induced gap)

-150 -100 -50 0 50 100 150

-40

-20

0

20

40

IR IC

V (μ

V)

I (nA)

n-doped InAs nanowires (n~1019 cm-3): strong coupling case

T = 40 mK

IC = 136 nARN = 417 ΩICRN = 60 μV ~ Δ0/e

~

S,D

RN as low as ~1 KΩ => No Coulomb blockade

Page 14: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1417/12/2008

Field-effect control of the supercurrent

-2 -1 0 1 2

-10

0

10

-71 V -61 V -50 V -40 V -30 V -20 V -10 V 0 V

V (μ

V)

I (nA)

Vgate

DrainSource

S SN

Vg< 0

0 4100

101

102

I C(n

A)

RN(kΩ)

Ic for different devices

Ic decreases with RN

Science 309 272 (2005)

Page 15: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1517/12/2008

Supercurrent fluctuations correlate with normal-state universal conductance fluctations

0 5 10 15 20

dV/dI (kOhm)

0 5 10 15 20

dV/dI (kOhm)

-70 0-2

0

2

I (nA

)

Vg (V)0 30 kΩ

2

4

GN (2e

2/h)

Electron transport through the nanowireis diffusive and phase coherent=> mesoscopic Josephson junctions

Field-effect control of the supercurrent

-2 -1 0 1 2

-10

0

10

-71 V -61 V -50 V -40 V -30 V -20 V -10 V 0 V

V (μ

V)

I (nA)

Vgate

DrainSource

S SN

Vg< 0

Theory: Altshuler & Spivak (‘87)

Page 16: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1617/12/2008

rms(GB)=√⟨(G(B) - ⟨G(B)⟩)2⟩

rms(GB)= 0.3 e2/h

rms(GB)= 0.29 e2/hI+

I-

V+V-

I+

I-

V+V-B

I+

I-

V+V-

I+

I-

V+V-B

Device 2Device 1L= 440 nm L= 110 nm

Note: rms(GB) ~ (Lφ/L)3/2 e2/h]

• G is not proportional to L! • rms(G) is almost the same [in theory:

Metal contacts are 500 nm wide => L does not correspond to the distance between them

Phase-coherent diffusive transport in InAs nanowires(normal state)

Page 17: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1717/12/2008

Autocorrelation function: F(ΔB)=⟨G(B)G(B+ΔB)⟩ -⟨G(B)⟩2

(i.e.: F(ΔB)=1/2 F(0) for ΔB = Bc) F(ΔB) decays on a field scale Bc

Bc = 0.214 T Bc = 0.184 T

Lφ ~ wire diameter ~ 100 nm

For the long wire rms(GB) = 2.45 (Lφ/L)3/2 e2/h

Device 2Device 1L= 440 nm L= 110 nm

Bc is independent of channel length and field direction!

=>

= 2.45 (100/440)3/2 e2/h = 0.3 e2/h

Phase-coherent diffusive transport in InAs nanowires(normal state)

[van Houten and Beenakker Solid State Physics ’91]

Page 18: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1817/12/2008

Enhancement of rms(G) due to combined UCF and Andreev reflection

UCF and Andreev reflection( )( )

0.0 0.3 0.60.4

0.8

rms(

Gg)

(e2 /h

)

V (mV)

-20 -1020

30

dI/d

V (e

2 /h)

Vg (V)

b

0.0 0.3 0.60.4

0.8

rms(

Gg)

(e2 /h

)

V (mV)

-20 -1020

30

dI/d

V (e

2 /h)

Vg (V)

b

V=0; B=0.1T

, @ B=0

Page 19: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 1917/12/2008

Δ

Δ

Andreev regime

RN ~ RQ => expected competition Andreev reflection – Coulomb blockade(+ high-order cotunneling)

n-type InP nanowire (n~1019 cm-3): intermediate coupling case

RN/RQ = 0.77

500 nm

Page 20: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2017/12/2008

T dependence

Gate dependence

Coulomb blockade affects only the low-bias regime

From fit:

n-type InP nanowire (n~1019 cm-3): intermediate coupling case

G/Gmax ~ cosh-2[(e(Cg/CΣ)|Vg,peak - Vg|)/2.5kBT]

U = e2/CΣ ~ 13.2 kBT ~ 30 μeV

Page 21: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2117/12/2008

Sand-Jespersen et al. PRL ’07 (InAs nanowires)

Buizert et al, PRL ’07 (with InAs self-assembled quantum dots)

n-type InP nanowire (n~1019 cm-3): intermediate coupling case

RN ~ RQ but U>>Δ :

=> Andreev Reflection vs Kondo effect/high-order cotunneling

=> Single-electron supercurrent transistor and π Josephson junction IS = IC sin(φSD+π)

Buitelaar et al. PRL ’02 (carbon nanotubes)

DrainSource

S SVL<0 VR<0

quantum dotinduced gapΔ* ~ Δ

induced gapΔ* ~ Δ

Nature 442, 667 (2006)

Page 22: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2217/12/2008

Negative and positive supercurrent

Simplest case: single-level quantum dot

initial final

12 34

intermediate

4-th order co-tunneling

initial final

12 3

4

intermediate

N=1

S=1/2

N=2

S=0

)sin()sin(

LRc

LRcs

III

φπφ

−=+=

)sin( LRcs II φ=

(π-junction)

(ordinary junction)

[Bulaevski, Knzii, Sobbianin, JETP Lett. 25, 290 (’77);Spivak and Kivelson PRB 43, 3740 (‘91)]

Page 23: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2317/12/2008

Summary

Hybrid nanodevices? ?

Γ < ΔE U,Δ ~

RN ~ RQ

RN >> RQ

RN << RQ

Single-electron tunneling, NDC due to BCS density of states (Doh et al. Nano Letters ’08)Case of a diffusive normale conductor (ΔE=0)

Δ, U, ΔE, Γ, ETh, kBTRelevant energy scales:

• pi-junction behavior: IS = IC sin(φSD+π) (van Dam et al., Nature ’06)

•Tunable proximity supercurrent (Doh et al. Science ’05) •Correlation between Ic fluctuations and UCF•Enhance UCF amplitude due to Andreev reflection (at finite bias)Case of a ballistic conductor (quantum dot with finite ΔE)• Resonant supercurrent transistor (Jarillo-Herrero et al. Nature ’06)

Case of a large quantum dot (ΔE~0, U<<Δ)• Clear energy scale separation between Coulomb blockade and Andreev reflection (Doh et al. Nano Letters ’08)

Case of a small quantum dot ( , )

Page 24: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2417/12/2008

AcknowledgementsINAC/SPSMS/LaTEQS: M. Mongillo (PhD), G. Katsaros (PD), P. Spathis (PD)

F. Lefloch, J.L. Thomassin, X. Jehl, M. Sanquer

S. Rubini, F. Martelli, F. Jabeen (Mn-doped GaAs/InAs NWs, CNR-INFM TASC,Trieste)E. Storace, J. Weis, K. von Klitzing (Mn-doped GaAs/InAs NWs, MPI Stuttgart)

C. Mouchet, E. Rouviere, J.P. Simonato (doped Si NWs, LITEN)P. Gentile, N. Pauc, T. Baron (undoped Si NWs, INAC/LTM)

Collaborators on semiconductor nanowires (NWs):J. Van Dam, Y.J. Doh, S. Sapmaz, L. Kouwenhoven (InAs/InP NWs, TU Delft)E. Bakkers, A. Roest (InAs/InP NWs, Philips Eindhoven)

X. Jiang, C. Lieber (InAs-InP core-shell NWs, Harvard)R. Songmuang, B. Daudin, B. Gayral (GaN-based NWs, INAC/CNRS)

…open positions available at master, PhD and PD level

Collaborators on self-assembled semiconductor quantum dots:M. Stoffel, A. Rastelli, O. Schmidt (IFW Dresden)

Funding: ANR (chair d’excellence & ERC starting grant), EU FP6 (HYSWITCH)

Page 25: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2517/12/2008

1 μm

VL

VR

200 nm

V(m

V)

1.5

-1.5

VL (mV) -390-410

eVR= - 400 mV

V = δ

δ

Fully tunable quantum dot: intermediate tunnel coupling

Inelastic cotunneling

Can be used for spectroscopy in strong coupling regime [PRL 86, 878 (2001)]

δB=100 mT

Page 26: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2617/12/2008

1 μm

VL

VR

200 nm

V(m

V)

1.5

-1.5

VL (mV) -390-410

eVR= - 400 mV

δ

B=100 mTLevel spacing: 0.1 – 0.5 meV

Supercond. gap: 0.14 meV

Charging energy: ~ 1 meVQuantum dot parameters:

Fully tunable quantum dot: intermediate tunnel coupling

Page 27: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2717/12/2008

L R

S DQDΔ* Δ*

VL (mV)-460 -450 -440 -430

V(m

V)

1-1

b

Source

VL

VR

VREF

Drain2µm

Ic,REF = 320 pA (VREF = fixed constant) Ic=Ic,QD+Ic,REF

I c,Q

D(n

A)

00.

5

Study of Josephson Supercurrentthrough an interacting QD

We exploit the independent tunability of nanowire JJs

negative supercurrent!N N+1 N+2 N+3 N+4

Nature 442, 667 (2006)

Page 28: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2817/12/2008

L R

S DQDΔ* Δ*

Source

VL

VR

VREF

Drain2µm I c,Q

D(n

A)

00.

5

VL (mV)-460 -450 -440 -430

V(m

V)

1-1

b

-432

Φ(Φ

0)

VL(mV)-439

1

5

I c(n

A)

0.4

0.2

Φ (Φ0)1 4

π-junction behaviour

Φ

N N+1 N+2 N+3 N+4

Similar π-behavior seenalso in CNT-SQUIDs[Cleuziou et al. (2006)]

Page 29: ELECTRON TRANSPORT IN SEMICONDUCTOR · PDF fileSilvano De Franceschi – Laboratoire de Transpor t Electronique Quantique et Supraconductivité 17/12/2008 2 Top-down Quantum Dot Devices

Silvano De Franceschi – Laboratoire de Transport Electronique Quantique et Supraconductivité 2917/12/2008

B=0: UCF drops for V>ETh

This is consistent with a Thouless energy ETH ~ 0.14 meV

B=0.1T: UCF drops for kT>ETh

Phase-coherent diffusive transport in InAs nanowires