Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al.,...

29
H. Lee, S. J. Ohh, I. K. Kwon and B. J. Chae S. Y. Yoon, Y. X. Yang, P. L. Shinde, J. Y. Choi, J. S. Kim, Y. W. Kim, K. Yun, J. K. Jo, J. nutrient digestibility, and carcass characteristics of grower-finisher pigs Effects of mannanase and distillers dried grain with solubles on growth performance, published online Sep 11, 2009; J Anim Sci http://jas.fass.org the World Wide Web at: The online version of this article, along with updated information and services, is located on www.asas.org at Serials Unit on September 18, 2009. jas.fass.org Downloaded from

Transcript of Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al.,...

Page 1: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

H. Lee, S. J. Ohh, I. K. Kwon and B. J. Chae S. Y. Yoon, Y. X. Yang, P. L. Shinde, J. Y. Choi, J. S. Kim, Y. W. Kim, K. Yun, J. K. Jo, J.

nutrient digestibility, and carcass characteristics of grower-finisher pigsEffects of mannanase and distillers dried grain with solubles on growth performance,

published online Sep 11, 2009; J Anim Sci

http://jas.fass.orgthe World Wide Web at:

The online version of this article, along with updated information and services, is located on

www.asas.org

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 2: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

1

Running title: Distillers grain with solubles in swine diets

Effects of mannanase and distillers dried grain with solubles on growth performance,

nutrient digestibility, and carcass characteristics of grower-finisher pigs1

S. Y. Yoon,*2 Y. X. Yang,*§2 P. L. Shinde,* J. Y. Choi,* J. S. Kim,* Y. W. Kim,* K. Yun,* J. K.

Jo,* J. H. Lee,† S. J. Ohh,* I. K. Kwon,* and B. J. Chae*3

*College of Animal Life Sciences, Kangwon National University, Chuncheon, 200-701,

Republic of Korea; §College of Animal Science and Technology, Northwest Agriculture and

Forest University, Yangling, Shaanxi, 712-100, China; and †CTC Bio, Inc., Seoul, 138-858,

Republic of Korea

1This study was supported by CTC Bio, Inc. and the Institute of Animal Resources at

Kangwon National University.

2Both authors contributed equally to this work.

3Corresponding author: [email protected]

Published Online First on September 11, 2009 as doi:10.2527/jas.2008-1741 at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 3: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

2

ABSTRACT: Four experiments were conducted to determine the effects of dietary

supplementation of corn distillers dried grain with solubles (DDGS) diets with mannanase on

performance, apparent total tract digestibility (ATTD) of energy and nutrients, blood metabolites

and carcass characteristics of grower-finisher pigs. In Exp. 1, 96 grower pigs (initial BW, 57.6

kg), 6 pigs per pen and 4 pens per treatment, were fed corn-soybean meal-based diets containing

10% DDGS and 0, 200, 400, or 600 unit (U) mannanase/kg. The ADG and blood glucose

increased (linear, P < 0.05) with increasing concentrations of dietary mannanase. Pigs fed diets

containing increasing levels of mannanase had improved ATTD of DM and CP (quadratic, P <

0.05). In Exp. 2, 64 finisher pigs (initial BW, 92.7 kg) were allotted to 4 treatment groups with 4

pigs per pen and 4 pens per treatment. Pigs were fed corn-soybean meal-based diets containing

15% DDGS and 0, 200, 400, or 600 U mannanase/kg. Linear increasess (P < 0.05) in ADG,

blood glucose and ATTD of DM, GE, and CP were observed with increasing levels of dietary

mannanase supplementation. In Exp. 3, 208 grower pigs (initial BW, 60.5 kg) were allotted to 4

treatment groups with 13 pigs per pen and 4 pens per treatment. Pigs were fed diets containing 0

or 10% DDGS and 0 or 400 U mannanase/kg in a 2 × 2 factorial arrangement. An increase (P <

0.05) in ADG and blood glucose for pigs fed diets containing mannanase was observed. The

ATTD of DM and CP (P < 0.05) was decreased with the inclusion of DDGS, whereas pigs fed

the mannanase supplemented diets had an increased (P < 0.05) ATTD of CP. In Exp. 4, 208

finisher pigs (initial BW, 86.5 kg), with 13 pigs per pen and 4 pens per treatment, were fed diets

containing 0 or 15% DDGS and 0 or 400 U mannanase/kg in a 2 × 2 factorial arrangement. The

ADG and blood glucose increased (P < 0.05) when mannanase was included in the diets. The

ATTD of DM (P < 0.05), GE (P < 0.10), and CP (P < 0.05) increased by the supplementation

with mannanase in the diets of finisher pigs. The carcass characteristics and meat quality were

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 4: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

3

not affected by the DDGS or mannanase inclusion. These results indicated that including 10 and

15% DDGS in conventional swine grower and finisher diets had no detrimental effects on

growth performance or carcass characteristics. In addition, supplementation with 400 U of

mannanase/kg diets containing 10 and 15% DDGS fed to grower and finisher pigs may improve

growth performance and the ATTD of CP.

Key words: distillers dried grain with solubles, grower-finisher pigs, mannanase, performance

INTRODUCTION

Corn distillers dried grains with solubles (DDGS) is a co-product from the production of

ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the

dry-grind method produces 34.4 kg of ethanol, 34.0 kg of carbon dioxide, and 31.6 kg of DDGS

(Fastinger and Mahan, 2006). The majority of DDGS is used in ruminant diets, but DDGS is also

used in diets fed to nonruminants (Shurson et al., 2004). Because of high fiber content in DDGS

and limited concentration of fiber degrading enzymes in the intestinal system of nonruminants,

the amount of DDGS included in swine diets should be limited. Research has shown that

inclusion of up to 20% DDGS had no effect on performance (Widmer et al., 2008); whereas,

negative effects were observed DDGS was included by 30% in diets fed to grower-finisher pigs

(Whitney et al., 2006). Batch-to-batch variations in drying methods, concentrations of residual

sugars, or grain quality might result in these inconsistencies (Linneen et al., 2008).

The main nonstarch polysaccharides in corn DDGS are arabinoxylan and galactomannan

(Pettey et al., 2002). These nonstarch polysaccharides have been shown to reduce growth

performance and inhibit energy and nutrient digestibility in swine (Bakker et al., 1998).

Therefore, it will be beneficial to supplement enzymes to swine diets containing high

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 5: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

4

concentrations of DDGS. Addition of the β-1,4-mannanase can directly target β-1,4-mannans in

feed ingredients (Pettey et al., 2002).

The negative effects of mannans on nutrient absorption has been emphasized; however,

enzymes that hydrolyze mannan have been largely neglected. Moreover, the effects of

mannanase addition and its interaction with DDGS on performance of pigs have not been

investigated. Therefore, the objectives of these 4 experiments were to determine the optimal level

of mannanase in DDGS-based diets on growth performance, nutrient digestibility, carcass

characteristics, and blood metabolites in grower-finisher pigs.

MATERIALS AND METHODS

The protocols for all 4 experiments were approved by the Institutional Animal Care and Use

Committee of Kangwon National University (Chuncheon, Republic of Korea).

General

All 4 experiments were conducted at a facility in Kangwon National University farm. The

facility consisted of 1 barn with 16 pens with concentrate floor (2.70 × 2.70 m for Exp. 1 and 2;

2.80 × 5.20 m for Exp. 3 and 4). All pens contained one 6-hole, self-feeder and a nipple waterer

to allow ad libitum access to feed and water. Crossbred pigs (Landrace × Yorkshire × Duroc)

were used in all 4 experiments.

The DDGS for all experiments were obtained from a commercial feed company (CTC Bio,

Inc., Seoul, Republic of Korea). Samples of DDGS collected from every batch were pooled, and

subsamples were analyzed for proximate chemical compositions and AA compositions. The ME

value of 3,814 kcal/kg was used for DDGS in the diet formulation, which was calculated

according to Pedersen et al. (2007). The commercial β-mannanase (Patent, 10-0477456-0000;

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 6: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

5

CTC Bio Inc., Seoul, Republic of Korea) was produced by using Bacillus subtilis (WL-7) grown

on Luria broth, and contained 800,000 unit (U)/kg.

Exp. 1

A total of 96 grower pigs, with an average initial BW of 57.6 kg, were allotted randomly to

one of 4 dietary treatments on the basis of BW and sex to investigate the effect of increasing

dietary mannanse supplementation on the growth performance. Each treatment had 4 replicate

pens with 6 pigs (3 males and 3 females) in each pen. Beta-mannanase was added at 0, 200, 400,

or 600 U/kg to the corn-soybean mean-based diet containing 10% DDGS. Diets were formulated

to contain 3,300 kcal/kg ME, 16.0% CP, and 0.86% total lysine (Table 1) and fed in meal form.

All the diets met or exceeded current nutrient requirements for grower pigs (NRC, 1998). The

experiment duration was 28 d and the final BW was approximately 82 kg.

Exp. 2

A total of 64 finisher pigs, with an initial BW of 92.7 kg, were randomly assigned based on

BW and sex to 4 dietary treatments to evaluate the effect of increasing levels of mannanase on

growth performance and energy and nutrient digestibility. Each treatment had 4 replicate pens

with 4 pigs (2 males and 2 females) per pen. All diets were corn-soybean meal based with 15%

DDGS, and the 4 experimental diets were prepared by supplementing the basal diet with 0, 200,

400, or 600 U of β-mannanase/kg. Diets were formulated to contain 3,300 kcal/kg ME, 14.62%

CP, and 0.75% total lysine (Table 1) and fed in meal form. All the diets met or exceeded current

nutrient requirements (NRC, 1998). The experiment duration was 28 d and the final BW was

approximately 115 kg.

Exp. 3

Based on the results obtained from Exp. 1, an experiment was designed to evaluate the

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 7: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

6

interaction of DDGS and mannanase on the growth performance of grower pigs. A total of 208

pigs with initial BW of 60.5 kg were randomly assigned based on BW and sex to 4 dietary

treatments in a 2 × 2 factorial arrangement. Each treatment had 4 replicate pens with 13 pigs (7

males and 6 females) per pen. Isocaloric and isonitrogenous diets were prepared to contain 2

DDGS levels (0 or 10%), and 2 mannanase levels (0 or 400 U/kg). Diets were formulated to

contain 3,300 kcal/kg ME, 16.10% CP, and 0.88% total lysine (Table 2) and fed in a meal form.

All the diets met or exceeded current nutrient requirements for grower pigs (NRC, 1998). The

experiment duration was 23 d and the final BW was approximately 82 kg.

Exp. 4

Based on the results obtained from Exp. 2, an experiment was designed to evaluate the

interaction of DDGS and mannanase on the growth performance of finisher pigs. A total of 208

pigs with initial BW of 86.5 kg were a randomly assigned based on BW and sex to 4 dietary

treatments in a 2 × 2 factorial arrangement. Each treatment had 4 replicate pens with 13 pigs (7

males and 6 females) per pen. Two levels of DDGS (0 or 15%) each with 2 levels of mannanase

(0 or 400 U/kg) were used as dietary treatments. Diets were formulated to contain 3,300 kcal/kg

ME, 14.6% CP, and 0.75% total lysine (Table 3) and fed in meal form. All the diets met or

exceeded current nutrient requirements for finisher pigs (NRC, 1998). The experiment duration

was for 29 d and the final BW was approximately 110 kg.

Experimental Procedures, Measurements, and Analyses

Feed samples of each experiment collected from every batch were pooled and subsamples

were analyzed for proximate chemical compositions. Pigs were weighed individually and feed

consumption was measured at the end of each experiment. Growth performance criteria (ADG,

ADFI, and G: F) were calculated for each experiment. To evaluate the effect of diets on the

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 8: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

7

apparent total tract digestibility (ATTD) of energy and nutrients, 0.25% chromic oxide was

included in the diets as an inert, indigestible indicator. The pigs were fed diets containing

chromium during the last 7 d of each experiment and fecal grab samples were collected from the

floor of each pen during the last 4 d. The fecal samples were pooled within pen and dried in an

air-forced drying oven at 60°C for 72 h and ground with Wiley mill using a 1-mm screen for

chemical analysis. On the last day of each experiment, a 10-mL blood sample was collected by

jugular venipuncture from 1 randomly selected pig in each pen using a disposable vacutainer

tube containing sodium heparin as an anticoagulant (Becton Dickinson, Franklin, NJ). After

centrifugation (3,000 × g for 15 min at 4°C), plasma samples were stored at -20°C and later

analyzed for concentrations of total cholesterol (TCHO), glucose (GLU), and triacylglyceride

(TG).

In Exp. 2 and 4, all pigs were harvested at a commercial abattoir at approximately 115 kg BW.

The 2 pigs from each pen with a BW close to the average of the pen (8 pigs per treatment) were

weighed just before immobilization, then, exsanguinated, scalded, dehaired, decapitated,

eviscerated, halved, and evaluated for carcass characteristic. Carcasses were split along the

dorsal midline, weighed, and placed in a cooler overnight. After chilling for 24 h at 4°C, LM area

was determined and backfat thickness was measured at the 10th rib (three quarters distance along

the LM toward the belly). The LM area was measured and meat quality scores (marbling and

color) were determined according to NPPC (1991), and fat-free lean concentration was

calculated as suggested by NPB (2000). The CIE colors, L* (lightness), a* (redness), and b*

(yellowness), were measured by using a chroma meter (CR-400, Konica Minolta Sensing Inc.,

Osaka, Japan).

Proximate analyses of the experimental diets, feces, and DDGS were conducted following

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 9: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

8

the AOAC (1990) methods to determine DM and CP contents. Gross energy was measured by a

bomb calorimeter (Model 1261, Parr Instrument Co., Molin, IL), and chromium concentration

was determined with an automated spectrophotometer (Jasco V-650, Jasco Corp., Tokyo, Japan)

according to the procedure of Fenton and Fenton (1979). Amino acid composition of DDGS and

feed samples was determined by HPLC (Waters 486, Waters Corp., Milford, MA) following acid

hydrolysis. Methionine and Cys were determined following oxidation with performic acid

(Moore, 1963). Trptophan content was not determined. Commercial kits (Fujifilm Corp., Saitama,

Japan) were used for analysis of plasma metabolites (TCHO, GLU, and TG) using an automated

chemistry analyzer (Fuji Dri-chem 3500i, Fujifilm Corp.).

Statistical Analyses

In Exp. 1 and 2, statistical analysis was conducted by using the GLM procedure (SAS Inst.

Inc., Cary, NC) as a randomized complete block design. The pen was used as the experimental

unit for the analysis of growth performance and energy and nutrient digestibility data. For the

analysis of carcass characteristics, the mean of 2 pigs from each pen was used as the

experimental unit, and 1 randomly selected pig from each pen was used as the experimental unit

for the analysis of blood metabolites. Orthogonal polynomials were used to evaluate linear and

quadratic effects of dietary mannanase supplementation. In Exp. 3 and 4, data were analyzed as a

2 × 2 factorial arrangement of treatments in randomized blocks. The main effects of DDGS,

mannanase, and their interaction were determined by the MIXED procedure of SAS. The initial

analysis included all possible interactions. Because no interaction was significant for growth

performance, energy and nutrient digestibility, and blood metabolites data (P > 0.10), they were

removed from the final model. However, some interactions approached significance for carcass

data (P < 0.10) in Exp. 4, and, thus, they were retained in the final model. The P-values of ≤ 0.05

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 10: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

9

were considered significant; whereas, P ≤ 0.10 was considered as a trend.

RESULTS

Growth Performance

In Exp. 1, pigs had an increased ADG (linear, P < 0.05; Table 4) as dietary supplementation

with mannanase increased; whereas, no differences were observed for ADFI and G:F among

treatments. In Exp. 2, a linear improvement in ADG (P < 0.05) with increasing concentrations of

dietary mannanase was observed (Table 4). As in Exp. 1, there were no differences on ADFI and

G: F among dietary treatments. In Exp. 3 and 4, supplementation with mannanase in the diets

improved ADG in grower and finisher (P < 0.05) pigs (Table 5). There were no effect of DDGS

on pig performance in these experiments, and no interactions between mannanase and DDGS

were observed.

Nutrient Digestibility

In Exp. 1, pigs fed increasing levels of mannanase had improved ATTD of DM and CP

(quadratic, P < 0.05); whereas, no difference was noted on ATTD of GE (Table 6). In Exp. 2, the

ATTD of DM (linear, P < 0.05), GE (linear, P < 0.05), and CP (linear and quadratic, P < 0.05)

improved as dietary supplementation with mannanase increased (Table 6). In Exp. 3, the ATTD

of DM and CP (P < 0.05) was decreased with the inclusion of DDGS in the diets of grower pigs

(Table 7). Pigs fed the diets supplemented with mannanase had a greater (P < 0.05) ATTD of CP

compared with pigs fed the diets without mannanase supplementation. The ATTD of GE was not

affected by DDGS or mannanase, and there was no interaction between DDGS and mannanase.

In Exp. 4, the ATTD of DM and CP (P < 0.05) was increased with the supplementation with

mannanase in the diets of finisher pigs. The ATTD of GE tended (P < 0.10) to increase in pigs

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 11: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

10

fed diets containing mannanase compared with pigs fed the diet without mannanase, but there

were no effects of DDGS on the ATTD of DM, GE, and CP, and no interactions between DDGS

and mannanase were observed.

Carcass Characteristics and Pork Quality

In Exp. 2, carcass characteristics were not affected by dietary mannanase supplementation in

finisher pigs (Table 8). The marbling score and meat color score did not differ among treatments.

However, the CIE color of L* (lightness; quadratic, P < 0.10) and b* (yellowness; linear, P <

0.10) tended to increase with increasing concentrations of dietary mannanase. The CIE color of

a* (redness) was not affected by dietary treatment. In Exp. 4, the carcass characteristics were not

affected by dietary DDGS or mannanase inclusion, except that there was a tendency (P < 0.10)

for an interaction between DDGS and mannanase on LM area (Table 9). Pigs fed 15% DDGS

without mannanase supplementation had the lowest LM area, but it was not affected in those fed

0% DDGS. The marbling score, meat color and CIE color score of L* (lightness) and a* (redness)

were not different among treatments. Supplementation with mannanase tended (P < 0.10) to

increase CIE color of b* (yellowness).

Blood Metabolites

In both Exp. 1 and 2, GLU concentrations increased (linear, P < 0.05) as mannanase was

added to the diets (Table 10). The concentrations of blood TCHO in Exp. 2 tended to increase as

the increasing levels of mannanase added in the diets. The concentration of blood TG was not

affected by dietary treatment. In Exp. 3, increased concentrations of GLU were noted (P < 0.05)

in pigs fed diets supplemented with mannanase (Table 11). Blood TCHO and TG were not

affected by DDGS or mannanase, and there were no DDGS × mannanase interactions. In Exp. 4,

a similar tendency was observed for the concentration of GLU (P < 0.05) in finisher pigs. The

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 12: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

11

concentrations of blood TCHO and TG tended to increase (P < 0.10) in pigs fed diets

supplemented with mannanase. A trend (P < 0.10) for a reduction of the concentration of GLU

was also observed as DDGS was included in the diets.

DISCUSSION

Beta-mannan is commonly found in corn DDGS (Tucker et al., 2004). The main nonstarch

polysaccharides in DDGS are arabinoxylan and galactomannan. Arabinoxylan consists of L-

arabinofuranose residues attached as branch-points to β-1-4-linked D-xylopyranose polymeric

backbone chains, whereas galactomannan is chemically composed of D-mannose units attached

to a chain by β-1-4 linkages, with D-galactose units attached as side chains by α-1-6 linkages. A

beneficial effect of adding mannanase to diets containing soybean meal has been reported in pigs

(Pettey et al., 2002). However, β-mannan may be deleterious to animals' growth performance,

compromising weight gain, and decreasing digestibility of the feed. The improved growth

performance observed in the present experiments (when β-mannanase was added to the diets for

grower and finisher pigs) agrees with previous results. Similarly, Jackson et al. (2004) reported

that inclusion of β-mannanase at 80 million U/ton improved ADG of broiler chicks; whereas,

increasing the inclusion level to 110 million U/ton resulted in no additional response. Zou et al.

(2006) reported that addition of 0.05% β-mannanase increased weight gain of broilers when

compared with non-supplemented treatment; whereas, there was no difference among the 0.025,

0.05, and 0.075% β-mannanase supplemented treatments. However, supplementation with β-

mannanase linearly increased ADG of grower and finisher pigs in the present experiments. Kim

and Baker (2003) reviewed several reports and suggested that β-mannanase supplementation

positively affected the efficiency of digestibility in grower pigs, but not in finisher pigs. Results

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 13: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

12

of the present experiment agree with these observations. In addition, the growth performance and

ATTD of CP were increased in pigs fed diets containing mannanase without DDGS inclusion,

which indicated that mannanase supplementation possibly improved the digestibility of corn and

SBM presented in the diets. Similar results have been observed by Zou et al. (2006).

Growth performance was not affected by the addition of 10 or 15% DDGS to diets fed to

grower and finisher pigs. These observations are in agreement with the findings by Xu et al.

(2007), who concluded that feeding diets containing up to 30% DDGS to grower-finisher pigs

has no effect on pig performance. Similarly, Widmer et al. (2007) observed no differences in

growth performance of grower-finisher pigs fed diets containing 10 or 20% DDGS. However,

Whitney et al. (2006) and Linneen et al. (2008) included up to 30% DDGS in diets fed to

grower-finisher pigs and reported a decrease in pig performance as dietary DDGS concentration

increased. The possible reasons for these conflicting observations may be that different qualities

of DDGS were used.

The improved gain observed by feeding β-mannanase may be associated with greater nutrient

digestibility. In the present study, greater ATTD of CP in grower period and DM and CP in

finisher period were noted in pigs fed diets supplemented with mannanase. Similarly, Radcliffe et

al. (1999) showed that addition with 0.5% of β-mannanase increased apparent ileal digestibility

of DM and ATTD of GE in pigs fed with corn-soybean meal based diet. However, Pettey et al.

(2002) did not observe a difference in ATTD of GE or DM. The dietary compositions (corn-

soybean meal vs. corn-soybean meal-DDGS) could contribute to the differences in results of the

2 experiments. The greater concentration of galactomannans in DDGS and soybean meal

compared to corn may result in reduced nutrient digestibility. It is possible that supplemental

mannanase may be acting in a manner similar to that of exogenous xylanases in corn-soybean

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 14: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

13

meal-DDGS based diets by disrupting the cell wall matrix and enhancing the contact between

digestive enzyme and cell content, which results in improved energy and nutrient digestibility

(Wu et al., 2004). In addition, inclusion of a greater amount of wheat bran in DDGS added diets

might also result in the lower nutrient digestibility.

In Exp. 2, the carcass characteristics were not affected by the dietary mannanase inclusion,

which is in agreement with a previous study conducted by O’Quinn et al. (2002). However,

Pettey et al. (2002) showed that pigs fed diets containing 0.05% mannananse had a greater fat-

free lean index than pigs fed diets containing no enzymes. The inclusion of DDGS might result

in the tendency for increased CIE color values of LM though the same amount of DDGS was

added in the diets. To our knowledge, there are no other reports documenting CIE values of LM

in pigs fed with mannanase supplemented corn-soybean meal-DDGS-based diets. The reasons

for this change in color need further research. In Exp. 4, the carcass composition of pigs did not

differ between pigs fed the control diets and pigs fed the DDGS diets. A decrease in dressing

percentage as a result of dietary DDGS has been observed in a previous report (Whitney et al.,

2006). However, Widmer et al. (2008) did not observe any differences in the dressing percentage

between pigs fed control or DDGS containing diets.

The concentrations of plasma glucose increased in pigs fed the diets containing mannanase;

whereas, the concentrations of plasma total cholesterol and triacylglyceride were not affected.

Mannans and galactomannans may reduce the absorption of glucose and decrease the production

of glucose dependent insulinotrophic polypeptide, insulin, and IGF-I (Rainbird et al., 1984;

Nunes and Malmlof, 1992). The reduction in glucose absorption and circulating IGF-I levels

caused by the presence of mannans and galactomananas in the diet may be ameliorated by

mannanase, which can explain the observed growth responses with the addition of a β-

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 15: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

14

mannanase to the diet. Pettey et al. (2002) observed that pigs fed a diet containing β-mannanase

had greater circulating concentrations of IGF-I than pigs not fed the enzyme.

These results indicate that including 10 and 15% DDGS in conventional swine grower and

finisher diets had no detrimental effects on performance and carcass characteristics of swine. In

addition, supplementation with 400 U of β-mannanase/kg to diets containing 10 and 15% DDGS

fed to grower and finisher pigs may improve growth performance by improving the nutrient

digestibility.

LITERATURE CITED

AOAC. 1990. Official Methods of Analysis, 15th ed. Assoc. Off. Anal. Chem. Arlington, VA.

Bakker, G. C. M., R. A. Dekker, R. Jongbloed, and A. W. Jongbloed. 1998. Non-starch

polysaccharides in pig feeding. Vet. Q. 20:S59-S64.

Fastinger, N. D., and D. C. Mahan. 2006. Determination of the ileal amino acid and energy

digestibilities of corn distillers dried grains with solubles using grower-finisher pigs. J. Anim.

Sci. 84:1722-1728.

Fenton, T. W., and M. Fenton. 1979. An improved method for chromic oxide determination in

feed and feces. Can. J. Anim. Sci. 59:631-634.

Jackson, M. E., K. Geronian, A. Knox, J. McNab, and E. McCartney. 2004. A dose-response

study with the feed enzyme beta-mannanase in broilers provided with corn-soybean meal

based diets in the absence of antibiotic growth promoters. Poult. Sci. 83:1992-1996.

Kim, S. W., and D. H. Baker. 2003. Use of enzyme supplements in pigs diets based on soyabean

meal. Pig News Info. 24:91N-96N.

Linneen, S. K., J. M. DeRouchey, S. S. Dritz, R. D. Goodband, M. D. Tokach, and J. L. Nelssen.

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 16: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

15

2008. Effects of dried distillers grains with solubles on growing and finishing pig

performance in a commercial environment. J. Anim. Sci. 86:1579-1587.

Moore, S. 1963. On the determination of cystine as cysteic acid. J. Biol. Chem. 238:235-237.

NPB. 2000. Pork Composition and Quality Assessment Procedures. National Pork Board, Des

Moines, IA.

NPPC. 1991. Procedures to Evaluate Market Hogs. National Pork Producers Council, Des

Moines, IA.

NRC. 1998. Nutrient Requirements of Swine. 10th rev. ed. Natl. Acad. Press, Washington, DC.

Nunes, C. S., and K. Malmlof. 1992. Effects of guar gum and cellulose on glucose absorption,

hormonal release and hepatic metabolism in the pig. Br. J. Nutr. 68:693-700.

O’Quinn, P. P., D. W. Funderburke, C. L. Funderburke, and R. L. James. 2002. Influence of

dietary supplementation with β-1,4-mannanase on performance of finishing pigs in a

commercial system. J. Anim. Sci. 80(Suppl. 2):65. (Abstr.)

Pedersen, C., M. G. Boersma, and H. H. Stein. 2007. Digestibility of energy and phosphorus in

ten samples of distillers dried grains with solubles fed to growing pigs. J. Anim. Sci.

85:1168-1176.

Pettey, L. A., S. D. Carter, B. W. Senne, and J. A. Shriver. 2002. Effects of beta-mannanase

addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient

digestibility of weanling and growing-finishing pigs. J. Anim. Sci. 80:1012-1019.

Radcliffe, J. S., B. C. Robbins, J. P. Rice, R. S. Pleasant, and E. T. Kornegay. 1999. The effects

of Hemicell® on digestibilities of minerals, energy, and amino acids in pigs fitted with steered

ileocecal cannulas and fed a low and high protein corn-soybean meal diet. J. Anim. Sci.

77(Suppl. 1):197. (Abstr.)

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 17: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

16

Rainbird, A. L., A. G. Low, and T. Zebrowska. 1984. Effect of guar gum on glucose and water

absorption from isolated loops of jejunum in conscious growing pigs. Br. J. Nutr. 52:489-498.

Shurson, G., M. Spiehs, and M. Whitney. 2004. The use of maize distillers dried grains with

solubles in pig diets. Pig News Info. 25:75N-83N.

Tucker, M. P., N. J. Nagle, E. W. Jennings, K. N. Ibsen, A. Aden, Q. A. Nguyen, K. H. Kim, and

S. L. Noll. 2004. Conversion of distiller’s grain into fuel alcohol and a higher-value animal

feed by dilute-acid pretreatment. Appl. Biochem. Biotechnol. 115:1139-1159.

Whitney, M. H., G. C. Shurson, L. J. Johnston, D. M. Wulf, and B. C. Shanks. 2006. Growth

performance and carcass characteristics of grower-finisher pigs fed high-quality corn

distillers dried grain with solubles originating from a modern Midwestern ethanol plant. J.

Anim. Sci. 84:3356-3363.

Widmer, M. R., L. M. McGinnis, and H. H. Stein. 2007. Digestibility of energy, phosphorus, and

amino acids in high protein distillers dried grains with solubles and corn germ fed to growing

pigs. J. Anim. Sci. 85:2994-3003.

Widmer, M. R., L. M. McGinnis, D. M. Wulf, and H. H. Stein. 2008. Effects of feeding distillers

dried grains with solubles, high-protein distillers dried grains, and corn germ to growing-

finishing pigs on pig performance, carcass quality, and the palatability of pork. J. Anim. Sci.

86:1819-1831.

Wu, Y. B., V. Ravindran, W. H. Hendriks, P. C. H. Morel, and J. Pierce. 2004. Evaluation of a

microbial phytase, produced by solid state fermentation, in broiler diets II. influence on

phytate hydrolysis, apparent metabolizable energy, and nutrient utilization. J. Appl. Poult.

Res. 13:561-569.

Xu, G., S. K. Baidoo, L. J. Johnston, J. E. Cannon, and G. C. Shurson. 2007. Effects of adding

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 18: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

17

increasing levels of corn dried distillers grains with solubles (DDGS) to corn-soybean meal

diets on growth performance and pork quality of growing-finishing pigs. J. Anim. Sci.

85(Suppl. 2):76. (Abstr.)

Zou, X. T., X. J. Qiao, and Z. R. Xu. 2006. Effect of β-mannanase (hemicell) on growth

performance and immunity of broilers. Poult. Sci. 85:2176-2179.

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 19: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

18

Table 1. Compositions of the basal diets (Exp. 1 and 2; as-fed basis) Exp. 1 Exp. 2 Ingredients, %

Corn 61.44 61.83 Wheat bran 5.20 5.93 Soybean meal, 44% CP 16.00 9.29 Animal fat 1.50 1.00 Molasses 3.50 4.50

L-Lys·HCl, 78% 0.15 0.19

DL-Met, 100% 0.04 - Choline chloride, 25% 0.05 0.10 Dicalcium phosphate 0.31 0.35 Limestone 1.21 1.21 Salt 0.30 0.30 Mineral premix1 0.20 0.20 Vitamin premix2 0.10 0.10 Distillers dried grains with solubles (DDGS)3 10.00 15.00

Chemical composition ME,4 kcal/kg 3,300 3,300 CP,5 % 16.00 14.62 Arg,5 % 0.93 0.78 His,5 % 0.43 0.39 Ile,5 % 0.62 0.54 Leu,5 % 1.57 1.53 Lys,5 % 0.86 0.75 Met + Cys,5 % 0.62 0.57 Phe,5 % 0.62 0.48 Thr,5 % 0.59 0.53 Val,5 % 0.75 0.69 Ca,4 % 0.60 0.60 Available P,4 % 0.20 0.23 1Supplied per kilogram of diet: 150 mg Fe as ferrous sulfate, 96 mg Cu as copper sulfate, 72

mg Zn as zinc sulfate, 46.5 mg Mn as manganese sulfate, 0.9 mg I as calcium iodate, 0.9 mg Co as cobalt sulfate, and 0.3 mg Se as sodium selenite.

2Supplied per kilogram of diet: 8,000 IU vitamin A, 1,500 IU vitamin D3, 16 mg vitamin E, 1.0 mg vitamin B1, 8.0 mg vitamin B2, 1.6 mg vitamin B6, 0.03 mg vitamin B12, 1.0 mg vitamin K3, 16 mg pantothenic acid, 30 mg niacin, 0.06 mg biotin, 0.26 mg folic acid, and 4.8 mg ethoxyquin.

3Analyzed chemical and indispensable AA compositions of DDGS (as-fed basis): 88.73% DM, 27.98% CP, 9.08% ADF, 36.47% NDF, 1.28% Arg, 0.74% His, 1.00% Ile, 3.63% Leu, 0.95% Lys, 0.84% Met, 1.37% Phe, 1.04% Thr, and 1.38% Val.

4Values were calculated according to NRC (1998). 5Analyzed values.

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 20: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

19

Table 2. Compositions of the experimental diets (Exp. 3; as-fed basis) Distillers dried grains with solubles (DDGS), % 0 10 Mannanase, unit (U)/kg 0 400 0 400 Ingredients, %

Corn 65.89 65.84 61.44 61.39 Wheat bran 2.77 2.77 5.20 5.20 Soybean meal, 44% CP 22.58 22.58 16.00 16.00 Animal fat 2.93 2.93 1.50 1.50 Molasses 3.50 3.50 3.50 3.50 L-Lys·HCl, 78% 0.04 0.04 0.15 0.15 DL-Met, 100% 0.04 0.04 0.04 0.04 Choline chloride, 25% 0.05 0.05 0.05 0.05 Dicalcium phosphate 0.62 0.62 0.31 0.31 Limestone 0.98 0.98 1.21 1.21 Salt 0.30 0.30 0.30 0.30 Mineral premix1 0.20 0.20 0.20 0.20 Vitamin premix2 0.10 0.10 0.10 0.10 DDGS3 - - 10.00 10.00 Mannanase, 800 U/g - 0.05 - 0.05

Chemical composition ME,4 kcal/kg 3,300 3,300 3,300 3,300 CP,5 % 15.91 16.08 16.11 16.06 Arg,5 % 1.00 0.99 0.93 0.92 His,5 % 0.43 0.43 0.42 0.42 Ile,5 % 0.65 0.64 0.62 0.62 Leu,5 % 1.45 1.45 1.57 1.56 Lys,5 % 0.82 0.86 0.88 0.84 Met + Cys,5 % 0.54 0.57 0.59 0.55 Phe,5 % 0.76 0.76 0.62 0.61 Thr,5 % 0.60 0.59 0.59 0.58 Val,5 % 0.75 0.74 0.75 0.75 Ca,4 % 0.60 0.60 0.60 0.60 Available P,4 % 0.20 0.20 0.20 0.20 1Supplied per kilogram of diet: 150 mg Fe as ferrous sulfate, 96 mg Cu as copper sulfate, 72

mg Zn as zinc sulfate, 46.5 mg Mn as manganese sulfate, 0.9 mg I as calcium iodate, 0.9 mg Co as cobalt sulfate, and 0.3 mg Se as sodium selenite.

2Supplied per kilogram of diet: 8,000 IU vitamin A, 1,500 IU vitamin D3, 16 mg vitamin E, 1.0 mg vitamin B1, 8.0 mg vitamin B2, 1.6 mg vitamin B6, 0.03 mg vitamin B12, 1.0 mg vitamin K3, 16 mg pantothenic acid, 30 mg niacin, 0.06 mg biotin, 0.26 mg folic acid, and 4.8 mg ethoxyquin.

3Analyzed chemical and indispensable AA compositions of DDGS (as-fed basis): 88.73% DM, 27.98% CP, 9.08% ADF, 36.47% NDF, 1.28% Arg, 0.74% His, 1.00% Ile, 3.63% Leu, 0.95% Lys, 0.84% Met, 1.37% Phe, 1.04% Thr, and 1.38% Val.

4Values were calculated according to NRC (1998). 5Analyzed values.

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 21: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

20

Table 3. Compositions of the experimental diets (Exp. 4; as-fed basis) Distillers dried grains with solubles (DDGS), % 0 15 Mannanase, unit (U)/kg 0 400 0 400 Ingredients, %

Corn 69.90 69.85 61.83 61.78 Wheat bran 1.00 1.00 5.93 5.93 Soybean meal, 44% CP 19.35 19.35 9.29 9.29 Animal fat 2.84 2.84 1.00 1.00 Molasses 4.50 4.50 4.50 4.50 L-Lys·HCl, 78% 0.02 0.02 0.19 0.19 Choline chloride, 25% 0.10 0.10 0.10 0.10 Dicalcium phosphate 0.84 0.84 0.35 0.35 Limestone 0.85 0.85 1.21 1.21 Salt 0.30 0.30 0.30 0.30 Mineral premix1 0.20 0.20 0.20 0.20 Vitamin premix2 0.10 0.10 0.10 0.10 DDGS3 - - 15.00 15.00 Mannanase, 800 U/g - 0.05 - 0.05

Chemical composition ME,4 kcal/kg 3,300 3,300 3,300 3,300 CP,5 % 14.56 14.61 14.68 14.59 Arg,5 % 0.89 0.89 0.78 0.78 His,5 % 0.39 0.38 0.39 0.39 Ile,5 % 0.59 0.58 0.54 0.54 Leu,5 % 1.37 1.36 1.53 1.53 Lys,5 % 0.72 0.74 0.77 0.76 Met + Cys,5 % 0.48 0.50 0.59 0.51 Phe,5 % 0.70 0.69 0.48 0.47 Thr,5 % 0.55 0.54 0.53 0.53 Val,5 % 0.68 0.68 0.69 0.68 Ca,4 % 0.60 0.60 0.60 0.60 Available P,4 % 0.23 0.23 0.23 0.23 1Supplied per kilogram of diet: 150 mg Fe as ferrous sulfate, 96 mg Cu as copper sulfate, 72

mg Zn as zinc sulfate, 46.5 mg Mn as manganese sulfate, 0.9 mg I as calcium iodate, 0.9 mg Co as cobalt sulfate, and 0.3 mg Se as sodium selenite.

2Supplied per kilogram of diet: 8,000 IU vitamin A, 1,500 IU vitamin D3, 16 mg vitamin E, 1.0 mg vitamin B1, 8.0 mg vitamin B2, 1.6 mg vitamin B6, 0.03 mg vitamin B12, 1.0 mg vitamin K3, 16 mg pantothenic acid, 30 mg niacin, 0.06 mg biotin, 0.26 mg folic acid, and 4.8 mg ethoxyquin.

3Analyzed chemical and indispensable AA compositions of DDGS (as-fed basis): 88.73% DM, 27.98% CP, 9.08% ADF, 36.47% NDF, 1.28% Arg, 0.74% His, 1.00% Ile, 3.63% Leu, 0.95% Lys, 0.84% Met, 1.37% Phe, 1.04% Thr, and 1.38% Val.

4Values were calculated according to NRC (1998). 5Analyzed values.

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 22: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

21

Table 4. Growth performance of grower and finisher pigs fed diets supplemented with mannanase (Exp. 1 and 2)1

Item Mannanase, unit (U)/kg

SEM P-value2

0 200 400 600 Linear Quadratic

Exp. 1 (Grower pigs)

ADG, g 846 852 866 860 3.1 0.044 0.286

ADFI, g 2,664 2,652 2,639 2,667 14.4 0.976 0.540

G:F, g/kg 318 321 328 323 1.7 0.166 0.177

Exp. 2 (Finisher pigs)

ADG, g 769 772 805 789 4.6 0.010 0.179

ADFI, g 2,683 2,665 2,668 2,689 16.5 0.896 0.609

G:F, g/kg 287 290 302 293 2.6 0.192 0.279 1Values are means of 4 observations per treatment. 2Linear and quadratic effects of increasing mannanase levels (0 to 600 U/kg of the diet).

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 23: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

22

Table 5. Growth performance of grower and finisher pigs fed diets supplemented with distillers dried grains with solubles (DDGS) and mannanase (Exp. 3 and 4)1

Exp. 3 (Grower pigs) Exp. 4 (Finisher pigs) DDGS, % 0 10

SEM P-value2 0 15

SEM P-value2

Mannanase, unit/kg 0 400 0 400 D M 0 400 0 400 D M ADG, g 948 961 925 954 5.4 0.128 0.042 775 807 762 781 6.7 0.123 0.047 ADFI, g 2,833 2,858 2,819 2,838 21.4 0.727 0.656 2,981 2,872 2,932 2,953 34.0 0.832 0.557 G:F, g/kg 335 337 328 337 2.8 0.624 0.419 260 282 261 265 4.2 0.354 0.123

1Values are means of 4 observations per treatment. 2D = main effect of DDGS; M = main effect of mannanase.

at Serials Unit on Septem

ber 18, 2009. jas.fass.org

Dow

nloaded from

Page 24: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

23

Table 6. Apparent total tract digestibility of grower and finisher pigs fed diets supplemented with mannanase (Exp. 1 and 2)1

Item Mannanase, unit (U)/kg

SEM P-value2

0 200 400 600 Linear Quadratic

Exp. 1 (Grower pigs)

DM, % 85.75 86.69 86.67 86.43 0.151 0.103 0.039

GE, % 87.11 87.94 88.15 87.79 0.221 0.276 0.204

CP, % 83.18 83.73 84.36 83.37 0.169 0.354 0.016

Exp. 2 (Finisher pigs)

DM, % 84.94 85.32 86.12 85.93 0.192 0.026 0.407

GE, % 88.05 88.23 88.52 88.45 0.069 0.011 0.303

CP, % 80.70 81.62 83.08 81.90 0.289 0.020 0.029 1Values are means of 4 observations per treatment. 2Linear and quadratic effects of increasing mannanase levels (0 to 600 U/kg of the diet).

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 25: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

24

Table 7. Apparent total tract digestibility of grower and finisher pigs fed diets supplemented with distillers dried grains with solubles (DDGS) and mannanase (Exp. 3 and 4)1

Exp. 3 (Grower pigs) Exp. 4 (Finisher pigs) DDGS, % 0 10

SEM P-value2 0 15

SEM P-value2

Mannanase, unit/kg 0 400 0 400 D M 0 400 0 400 D M DM, % 84.19 84.42 83.98 83.94 0.085 0.046 0.569 84.05 85.12 84.20 84.42 0.160 0.318 0.032 GE, % 85.98 86.15 85.33 85.89 0.197 0.284 0.383 85.10 85.66 85.00 85.66 0.166 0.890 0.086 CP, % 82.89 83.38 81.91 82.71 0.185 0.012 0.040 81.05 83.16 82.15 83.17 0.354 0.383 0.025

1Values are means of 4 observations per treatment. 2D = main effect of DDGS; M = main effect of mannanase.

at Serials Unit on Septem

ber 18, 2009. jas.fass.org

Dow

nloaded from

Page 26: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

25

Table 8. Carcass characteristics and meat quality of finisher pigs fed diets supplemented with mannanase (Exp. 2)1

Item Mannanase, unit (U)/kg

SEM P-value2

0 200 400 600 Linear Quadratic

Carcass traits

Dressing, % 74.50 75.26 74.67 74.74 0.278 0.666 0.160

Backfat thickness, mm 20.38 20.25 19.87 20.00 0.304 0.626 0.855

LM area, cm2 49.89 50.41 51.02 50.59 0.260 0.280 0.391

Fat-free lean3, % 45.97 46.32 46.82 46.50 0.410 0.615 0.812

Meat quality

Marbling score 2.58 2.75 2.67 2.67 0.106 0.868 0.749

Meat color score 3.08 3.17 3.25 3.42 0.079 0.156 0.913

CIE

L* 51.74 53.63 53.83 52.85 0.366 0.259 0.052

a* 6.64 6.83 7.96 7.37 0.243 0.131 0.410 b* 5.23 5.78 6.64 6.40 0.270 0.082 0.551

1Values are means of 4 observations per treatment. 2Linear and quadratic effects of increasing mannanase levels (0 to 600 U/kg of the diet). 3Calculated from the NPB (2000) equation.

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 27: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

26

Table 9. Carcass characteristics and meat quality of finisher pigs fed diets supplemented with distillers dried grains with solubles (DDGS) and mannanase (Exp. 4)1 DDGS, % 0 15

SEM P-value2

Mannanase, unit/kg 0 400 0 400 D M D × MCarcass traits

Dressing, % 75.27 78.26 74.43 75.80 0.808 0.326 0.200 0.625 Backfat thickness, mm 20.13 23.38 22.25 23.75 1.225 0.641 0.382 0.744 LM area, cm2 53.66 52.27 49.00 55.24 1.124 0.700 0.277 0.099 Fat-free lean3, % 49.11 46.73 43.93 47.51 1.063 0.319 0.781 0.184

Meat quality Marbling score 2.67 3.17 2.33 2.50 0.169 0.157 0.338 0.624 Meat color score 3.33 3.58 3.25 3.42 0.082 0.478 0.240 0.811 CIE

L* 50.99 52.88 52.33 52.60 0.472 0.594 0.285 0.417 a* 7.14 8.21 7.08 6.12 0.378 0.168 0.947 0.190 b* 5.48 6.78 5.89 6.15 0.216 0.785 0.075 0.216

1Values are means of 4 observations per treatment. 2D = main effect of DDGS; M = main effect of mannanase; D × M = DDGS × mannanase

interaction. 3Calculated from the NPB (2000) equation.

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 28: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

27

Table 10. Concentrations of blood metabolites for grower and finisher pigs fed diets supplemented with mannanase (Exp.1 and 2)1

Item Mannanase, unit (U)/kg

SEM P-value2

0 200 400 600 Linear Quadratic

Exp. 1 (Grower pigs)

Cholesterol, mg/dL 80.75 88.50 86.00 88.25 2.950 0.495 0.673

Glucose, mg/dL 77.25 79.25 91.25 89.00 2.331 0.018 0.594

Triacylglyceride, mg/dL 36.25 32.50 35.25 45.25 2.124 0.111 0.101

Exp. 2 (Finisher pigs)

Cholesterol, mg/dL 99.25 102.50 103.25 130.00 6.406 0.062 0.992

Glucose, mg/dL 64.50 73.00 82.50 82.00 3.075 0.025 0.420

Triacylglyceride, mg/dL 30.00 31.00 41.25 37.50 3.406 0.325 0.745 1Values are means of 4 observations per treatment. 2Linear and quadratic effects of increasing mannanase levels (0 to 600 U/kg of the diet).

at Serials Unit on September 18, 2009. jas.fass.orgDownloaded from

Page 29: Effects of mannanase and distillers dried grain with ... · ethanol from corn (Shurson et al., 2004). Production of ethanol from 100 kg of corn using the Production of ethanol from

28

Table 11. Concentrations of blood metabolites in grower and finisher pigs fed diets supplemented with distillers dried grains with solubles (DDGS) and mannanase (Exp. 3 and 4)1

Exp. 3 (Grower pigs) Exp. 4 (Finisher pigs) DDGS, % 0 10

SEM P-value2 0 15

SEM P-value2

Mannanase, unit/kg 0 400 0 400 D M 0 400 0 400 D M Cholesterol, mg/dL 100.75 119.00 103.75 104.75 3.445 0.407 0.167 101.50 107.00 100.25 117.75 3.283 0.456 0.087 Glucose, mg/dL 82.75 86.25 78.50 85.50 1.259 0.279 0.035 86.00 94.50 84.75 87.00 1.467 0.098 0.048 Triacylglyceride, mg/dL 39.25 53.00 54.25 55.00 3.077 0.167 0.234 29.00 42.00 28.00 36.25 2.871 0.552 0.078

1Values are means of 4 observations per treatment. 2D = main effect of DDGS; M = main effect of mannanase.

at Serials Unit on Septem

ber 18, 2009. jas.fass.org

Dow

nloaded from